1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
* Copyright (C) 2013,2014 Cloudwatt <libre.licensing@cloudwatt.com>
*
* Author: Loic Dachary <loic@dachary.org>
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
#ifndef CEPH_OSDMAP_H
#define CEPH_OSDMAP_H
/*
* describe properties of the OSD cluster.
* disks, disk groups, total # osds,
*
*/
#include "include/types.h"
#include "osd_types.h"
//#include "include/ceph_features.h"
#include "crush/CrushWrapper.h"
#include <vector>
#include <list>
#include <set>
#include <map>
#include "include/memory.h"
using namespace std;
// forward declaration
class CephContext;
class CrushWrapper;
/*
* we track up to two intervals during which the osd was alive and
* healthy. the most recent is [up_from,up_thru), where up_thru is
* the last epoch the osd is known to have _started_. i.e., a lower
* bound on the actual osd death. down_at (if it is > up_from) is an
* upper bound on the actual osd death.
*
* the second is the last_clean interval [first,last]. in that case,
* the last interval is the last epoch known to have been either
* _finished_, or during which the osd cleanly shut down. when
* possible, we push this forward to the epoch the osd was eventually
* marked down.
*
* the lost_at is used to allow build_prior to proceed without waiting
* for an osd to recover. In certain cases, progress may be blocked
* because an osd is down that may contain updates (i.e., a pg may have
* gone rw during an interval). If the osd can't be brought online, we
* can force things to proceed knowing that we _might_ be losing some
* acked writes. If the osd comes back to life later, that's fine to,
* but those writes will still be lost (the divergent objects will be
* thrown out).
*/
struct osd_info_t {
epoch_t last_clean_begin; // last interval that ended with a clean osd shutdown
epoch_t last_clean_end;
epoch_t up_from; // epoch osd marked up
epoch_t up_thru; // lower bound on actual osd death (if > up_from)
epoch_t down_at; // upper bound on actual osd death (if > up_from)
epoch_t lost_at; // last epoch we decided data was "lost"
osd_info_t() : last_clean_begin(0), last_clean_end(0),
up_from(0), up_thru(0), down_at(0), lost_at(0) {}
void dump(Formatter *f) const;
void encode(bufferlist& bl) const;
void decode(bufferlist::iterator& bl);
static void generate_test_instances(list<osd_info_t*>& o);
};
WRITE_CLASS_ENCODER(osd_info_t)
ostream& operator<<(ostream& out, const osd_info_t& info);
struct osd_xinfo_t {
utime_t down_stamp; ///< timestamp when we were last marked down
float laggy_probability; ///< encoded as __u32: 0 = definitely not laggy, 0xffffffff definitely laggy
__u32 laggy_interval; ///< average interval between being marked laggy and recovering
uint64_t features; ///< features supported by this osd we should know about
__u32 old_weight; ///< weight prior to being auto marked out
osd_xinfo_t() : laggy_probability(0), laggy_interval(0),
features(0), old_weight(0) {}
void dump(Formatter *f) const;
void encode(bufferlist& bl) const;
void decode(bufferlist::iterator& bl);
static void generate_test_instances(list<osd_xinfo_t*>& o);
};
WRITE_CLASS_ENCODER(osd_xinfo_t)
ostream& operator<<(ostream& out, const osd_xinfo_t& xi);
/** OSDMap
*/
class OSDMap {
public:
class Incremental {
public:
/// feature bits we were encoded with. the subsequent OSDMap
/// encoding should match.
uint64_t encode_features;
uuid_d fsid;
epoch_t epoch; // new epoch; we are a diff from epoch-1 to epoch
utime_t modified;
int64_t new_pool_max; //incremented by the OSDMonitor on each pool create
int32_t new_flags;
// full (rare)
bufferlist fullmap; // in lieu of below.
bufferlist crush;
// incremental
int32_t new_max_osd;
map<int64_t,pg_pool_t> new_pools;
map<int64_t,string> new_pool_names;
set<int64_t> old_pools;
map<string,map<string,string> > new_erasure_code_profiles;
vector<string> old_erasure_code_profiles;
map<int32_t,entity_addr_t> new_up_client;
map<int32_t,entity_addr_t> new_up_cluster;
map<int32_t,uint8_t> new_state; // XORed onto previous state.
map<int32_t,uint32_t> new_weight;
map<pg_t,vector<int32_t> > new_pg_temp; // [] to remove
map<pg_t, int32_t> new_primary_temp; // [-1] to remove
map<int32_t,uint32_t> new_primary_affinity;
map<int32_t,epoch_t> new_up_thru;
map<int32_t,pair<epoch_t,epoch_t> > new_last_clean_interval;
map<int32_t,epoch_t> new_lost;
map<int32_t,uuid_d> new_uuid;
map<int32_t,osd_xinfo_t> new_xinfo;
map<entity_addr_t,utime_t> new_blacklist;
vector<entity_addr_t> old_blacklist;
map<int32_t, entity_addr_t> new_hb_back_up;
map<int32_t, entity_addr_t> new_hb_front_up;
map<pg_t,vector<int32_t>> new_pg_remap;
map<pg_t,vector<pair<int32_t,int32_t>>> new_pg_remap_items;
set<pg_t> old_pg_remap, old_pg_remap_items;
string cluster_snapshot;
float new_nearfull_ratio = -1;
float new_backfillfull_ratio = -1;
float new_full_ratio = -1;
mutable bool have_crc; ///< crc values are defined
uint32_t full_crc; ///< crc of the resulting OSDMap
mutable uint32_t inc_crc; ///< crc of this incremental
int get_net_marked_out(const OSDMap *previous) const;
int get_net_marked_down(const OSDMap *previous) const;
int identify_osd(uuid_d u) const;
void encode_client_old(bufferlist& bl) const;
void encode_classic(bufferlist& bl, uint64_t features) const;
void encode(bufferlist& bl, uint64_t features=CEPH_FEATURES_ALL) const;
void decode_classic(bufferlist::iterator &p);
void decode(bufferlist::iterator &bl);
void dump(Formatter *f) const;
static void generate_test_instances(list<Incremental*>& o);
explicit Incremental(epoch_t e=0) :
encode_features(0),
epoch(e), new_pool_max(-1), new_flags(-1), new_max_osd(-1),
have_crc(false), full_crc(0), inc_crc(0) {
memset(&fsid, 0, sizeof(fsid));
}
explicit Incremental(bufferlist &bl) {
bufferlist::iterator p = bl.begin();
decode(p);
}
explicit Incremental(bufferlist::iterator &p) {
decode(p);
}
pg_pool_t *get_new_pool(int64_t pool, const pg_pool_t *orig) {
if (new_pools.count(pool) == 0)
new_pools[pool] = *orig;
return &new_pools[pool];
}
bool has_erasure_code_profile(const string &name) const {
map<string,map<string,string> >::const_iterator i =
new_erasure_code_profiles.find(name);
return i != new_erasure_code_profiles.end();
}
void set_erasure_code_profile(const string &name,
const map<string,string> &profile) {
new_erasure_code_profiles[name] = profile;
}
/// propage update pools' snap metadata to any of their tiers
int propagate_snaps_to_tiers(CephContext *cct, const OSDMap &base);
};
private:
uuid_d fsid;
epoch_t epoch; // what epoch of the osd cluster descriptor is this
utime_t created, modified; // epoch start time
int32_t pool_max; // the largest pool num, ever
uint32_t flags;
int num_osd; // not saved; see calc_num_osds
int num_up_osd; // not saved; see calc_num_osds
int num_in_osd; // not saved; see calc_num_osds
int32_t max_osd;
vector<uint8_t> osd_state;
struct addrs_s {
vector<ceph::shared_ptr<entity_addr_t> > client_addr;
vector<ceph::shared_ptr<entity_addr_t> > cluster_addr;
vector<ceph::shared_ptr<entity_addr_t> > hb_back_addr;
vector<ceph::shared_ptr<entity_addr_t> > hb_front_addr;
entity_addr_t blank;
};
ceph::shared_ptr<addrs_s> osd_addrs;
vector<__u32> osd_weight; // 16.16 fixed point, 0x10000 = "in", 0 = "out"
vector<osd_info_t> osd_info;
ceph::shared_ptr< map<pg_t,vector<int32_t> > > pg_temp; // temp pg mapping (e.g. while we rebuild)
ceph::shared_ptr< map<pg_t,int32_t > > primary_temp; // temp primary mapping (e.g. while we rebuild)
ceph::shared_ptr< vector<__u32> > osd_primary_affinity; ///< 16.16 fixed point, 0x10000 = baseline
// remap (post-CRUSH, pre-up)
map<pg_t,vector<int32_t>> pg_remap; ///< remap pg
map<pg_t,vector<pair<int32_t,int32_t>>> pg_remap_items; ///< remap osds in up set
map<int64_t,pg_pool_t> pools;
map<int64_t,string> pool_name;
map<string,map<string,string> > erasure_code_profiles;
map<string,int64_t> name_pool;
ceph::shared_ptr< vector<uuid_d> > osd_uuid;
vector<osd_xinfo_t> osd_xinfo;
ceph::unordered_map<entity_addr_t,utime_t> blacklist;
epoch_t cluster_snapshot_epoch;
string cluster_snapshot;
bool new_blacklist_entries;
float full_ratio = 0, backfillfull_ratio = 0, nearfull_ratio = 0;
mutable uint64_t cached_up_osd_features;
mutable bool crc_defined;
mutable uint32_t crc;
void _calc_up_osd_features();
public:
bool have_crc() const { return crc_defined; }
uint32_t get_crc() const { return crc; }
ceph::shared_ptr<CrushWrapper> crush; // hierarchical map
friend class OSDMonitor;
public:
OSDMap() : epoch(0),
pool_max(-1),
flags(0),
num_osd(0), num_up_osd(0), num_in_osd(0),
max_osd(0),
osd_addrs(std::make_shared<addrs_s>()),
pg_temp(std::make_shared<map<pg_t,vector<int32_t>>>()),
primary_temp(std::make_shared<map<pg_t,int32_t>>()),
osd_uuid(std::make_shared<vector<uuid_d>>()),
cluster_snapshot_epoch(0),
new_blacklist_entries(false),
cached_up_osd_features(0),
crc_defined(false), crc(0),
crush(std::make_shared<CrushWrapper>()) {
memset(&fsid, 0, sizeof(fsid));
}
// no copying
private:
OSDMap(const OSDMap& other) = default;
OSDMap& operator=(const OSDMap& other) = default;
public:
void deepish_copy_from(const OSDMap& o) {
*this = o;
primary_temp.reset(new map<pg_t,int32_t>(*o.primary_temp));
pg_temp.reset(new map<pg_t,vector<int32_t> >(*o.pg_temp));
osd_uuid.reset(new vector<uuid_d>(*o.osd_uuid));
if (o.osd_primary_affinity)
osd_primary_affinity.reset(new vector<__u32>(*o.osd_primary_affinity));
// NOTE: this still references shared entity_addr_t's.
osd_addrs.reset(new addrs_s(*o.osd_addrs));
// NOTE: we do not copy crush. note that apply_incremental will
// allocate a new CrushWrapper, though.
}
// map info
const uuid_d& get_fsid() const { return fsid; }
void set_fsid(uuid_d& f) { fsid = f; }
epoch_t get_epoch() const { return epoch; }
void inc_epoch() { epoch++; }
void set_epoch(epoch_t e);
/* stamps etc */
const utime_t& get_created() const { return created; }
const utime_t& get_modified() const { return modified; }
bool is_blacklisted(const entity_addr_t& a) const;
void get_blacklist(list<pair<entity_addr_t,utime_t > > *bl) const;
string get_cluster_snapshot() const {
if (cluster_snapshot_epoch == epoch)
return cluster_snapshot;
return string();
}
float get_full_ratio() const {
return full_ratio;
}
float get_backfillfull_ratio() const {
return backfillfull_ratio;
}
float get_nearfull_ratio() const {
return nearfull_ratio;
}
void count_full_nearfull_osds(int *full, int *backfill, int *nearfull) const;
/***** cluster state *****/
/* osds */
int get_max_osd() const { return max_osd; }
void set_max_osd(int m);
unsigned get_num_osds() const {
return num_osd;
}
unsigned get_num_up_osds() const {
return num_up_osd;
}
unsigned get_num_in_osds() const {
return num_in_osd;
}
/// recalculate cached values for get_num{,_up,_in}_osds
int calc_num_osds();
void get_all_osds(set<int32_t>& ls) const;
void get_up_osds(set<int32_t>& ls) const;
unsigned get_num_pg_temp() const {
return pg_temp->size();
}
int get_flags() const { return flags; }
bool test_flag(int f) const { return flags & f; }
void set_flag(int f) { flags |= f; }
void clear_flag(int f) { flags &= ~f; }
static void calc_state_set(int state, set<string>& st);
int get_state(int o) const {
assert(o < max_osd);
return osd_state[o];
}
int get_state(int o, set<string>& st) const {
assert(o < max_osd);
unsigned t = osd_state[o];
calc_state_set(t, st);
return osd_state[o];
}
void set_state(int o, unsigned s) {
assert(o < max_osd);
osd_state[o] = s;
}
void set_weight(int o, unsigned w) {
assert(o < max_osd);
osd_weight[o] = w;
if (w)
osd_state[o] |= CEPH_OSD_EXISTS;
}
unsigned get_weight(int o) const {
assert(o < max_osd);
return osd_weight[o];
}
float get_weightf(int o) const {
return (float)get_weight(o) / (float)CEPH_OSD_IN;
}
void adjust_osd_weights(const map<int,double>& weights, Incremental& inc) const;
void set_primary_affinity(int o, int w) {
assert(o < max_osd);
if (!osd_primary_affinity)
osd_primary_affinity.reset(new vector<__u32>(max_osd,
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY));
(*osd_primary_affinity)[o] = w;
}
unsigned get_primary_affinity(int o) const {
assert(o < max_osd);
if (!osd_primary_affinity)
return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
return (*osd_primary_affinity)[o];
}
float get_primary_affinityf(int o) const {
return (float)get_primary_affinity(o) / (float)CEPH_OSD_MAX_PRIMARY_AFFINITY;
}
bool has_erasure_code_profile(const string &name) const {
map<string,map<string,string> >::const_iterator i =
erasure_code_profiles.find(name);
return i != erasure_code_profiles.end();
}
int get_erasure_code_profile_default(CephContext *cct,
map<string,string> &profile_map,
ostream *ss);
void set_erasure_code_profile(const string &name,
const map<string,string> &profile) {
erasure_code_profiles[name] = profile;
}
const map<string,string> &get_erasure_code_profile(const string &name) const {
map<string,map<string,string> >::const_iterator i =
erasure_code_profiles.find(name);
static map<string,string> empty;
if (i == erasure_code_profiles.end())
return empty;
else
return i->second;
}
const map<string,map<string,string> > &get_erasure_code_profiles() const {
return erasure_code_profiles;
}
bool exists(int osd) const {
//assert(osd >= 0);
return osd >= 0 && osd < max_osd && (osd_state[osd] & CEPH_OSD_EXISTS);
}
bool is_up(int osd) const {
return exists(osd) && (osd_state[osd] & CEPH_OSD_UP);
}
bool has_been_up_since(int osd, epoch_t epoch) const {
return is_up(osd) && get_up_from(osd) <= epoch;
}
bool is_down(int osd) const {
return !is_up(osd);
}
bool is_out(int osd) const {
return !exists(osd) || get_weight(osd) == CEPH_OSD_OUT;
}
bool is_in(int osd) const {
return !is_out(osd);
}
/**
* check if an entire crush subtree is down
*/
bool subtree_is_down(int id, set<int> *down_cache) const;
bool containing_subtree_is_down(CephContext *cct, int osd, int subtree_type, set<int> *down_cache) const;
int identify_osd(const entity_addr_t& addr) const;
int identify_osd(const uuid_d& u) const;
int identify_osd_on_all_channels(const entity_addr_t& addr) const;
bool have_addr(const entity_addr_t& addr) const {
return identify_osd(addr) >= 0;
}
int find_osd_on_ip(const entity_addr_t& ip) const;
const entity_addr_t &get_addr(int osd) const {
assert(exists(osd));
return osd_addrs->client_addr[osd] ? *osd_addrs->client_addr[osd] : osd_addrs->blank;
}
const entity_addr_t &get_cluster_addr(int osd) const {
assert(exists(osd));
if (!osd_addrs->cluster_addr[osd] || *osd_addrs->cluster_addr[osd] == entity_addr_t())
return get_addr(osd);
return *osd_addrs->cluster_addr[osd];
}
const entity_addr_t &get_hb_back_addr(int osd) const {
assert(exists(osd));
return osd_addrs->hb_back_addr[osd] ? *osd_addrs->hb_back_addr[osd] : osd_addrs->blank;
}
const entity_addr_t &get_hb_front_addr(int osd) const {
assert(exists(osd));
return osd_addrs->hb_front_addr[osd] ? *osd_addrs->hb_front_addr[osd] : osd_addrs->blank;
}
entity_inst_t get_most_recent_inst(int osd) const {
assert(exists(osd));
return entity_inst_t(entity_name_t::OSD(osd), get_addr(osd));
}
entity_inst_t get_inst(int osd) const {
assert(is_up(osd));
return get_most_recent_inst(osd);
}
entity_inst_t get_cluster_inst(int osd) const {
assert(is_up(osd));
return entity_inst_t(entity_name_t::OSD(osd), get_cluster_addr(osd));
}
entity_inst_t get_hb_back_inst(int osd) const {
assert(is_up(osd));
return entity_inst_t(entity_name_t::OSD(osd), get_hb_back_addr(osd));
}
entity_inst_t get_hb_front_inst(int osd) const {
assert(is_up(osd));
return entity_inst_t(entity_name_t::OSD(osd), get_hb_front_addr(osd));
}
const uuid_d& get_uuid(int osd) const {
assert(exists(osd));
return (*osd_uuid)[osd];
}
const epoch_t& get_up_from(int osd) const {
assert(exists(osd));
return osd_info[osd].up_from;
}
const epoch_t& get_up_thru(int osd) const {
assert(exists(osd));
return osd_info[osd].up_thru;
}
const epoch_t& get_down_at(int osd) const {
assert(exists(osd));
return osd_info[osd].down_at;
}
const osd_info_t& get_info(int osd) const {
assert(osd < max_osd);
return osd_info[osd];
}
const osd_xinfo_t& get_xinfo(int osd) const {
assert(osd < max_osd);
return osd_xinfo[osd];
}
int get_next_up_osd_after(int n) const {
if (get_max_osd() == 0)
return -1;
for (int i = n + 1; i != n; ++i) {
if (i >= get_max_osd())
i = 0;
if (i == n)
break;
if (is_up(i))
return i;
}
return -1;
}
int get_previous_up_osd_before(int n) const {
if (get_max_osd() == 0)
return -1;
for (int i = n - 1; i != n; --i) {
if (i < 0)
i = get_max_osd() - 1;
if (i == n)
break;
if (is_up(i))
return i;
}
return -1;
}
/**
* get feature bits required by the current structure
*
* @param entity_type [in] what entity type we are asking about
* @param mask [out] set of all possible map-related features we could set
* @return feature bits used by this map
*/
uint64_t get_features(int entity_type, uint64_t *mask) const;
/**
* get intersection of features supported by up osds
*/
uint64_t get_up_osd_features() const;
int apply_incremental(const Incremental &inc);
/// try to re-use/reference addrs in oldmap from newmap
static void dedup(const OSDMap *oldmap, OSDMap *newmap);
static void clean_temps(CephContext *cct, const OSDMap& osdmap,
Incremental *pending_inc);
// serialize, unserialize
private:
void encode_client_old(bufferlist& bl) const;
void encode_classic(bufferlist& bl, uint64_t features) const;
void decode_classic(bufferlist::iterator& p);
void post_decode();
public:
void encode(bufferlist& bl, uint64_t features=CEPH_FEATURES_ALL) const;
void decode(bufferlist& bl);
void decode(bufferlist::iterator& bl);
/**** mapping facilities ****/
int map_to_pg(
int64_t pool,
const string& name,
const string& key,
const string& nspace,
pg_t *pg) const;
int object_locator_to_pg(const object_t& oid, const object_locator_t& loc,
pg_t &pg) const;
pg_t object_locator_to_pg(const object_t& oid,
const object_locator_t& loc) const {
pg_t pg;
int ret = object_locator_to_pg(oid, loc, pg);
assert(ret == 0);
return pg;
}
static object_locator_t file_to_object_locator(const file_layout_t& layout) {
return object_locator_t(layout.pool_id, layout.pool_ns);
}
ceph_object_layout file_to_object_layout(object_t oid,
file_layout_t& layout) const {
return make_object_layout(oid, layout.pool_id, layout.pool_ns);
}
ceph_object_layout make_object_layout(object_t oid, int pg_pool,
string nspace) const;
int get_pg_num(int pg_pool) const
{
const pg_pool_t *pool = get_pg_pool(pg_pool);
assert(NULL != pool);
return pool->get_pg_num();
}
bool pg_exists(pg_t pgid) const {
const pg_pool_t *p = get_pg_pool(pgid.pool());
return p && pgid.ps() < p->get_pg_num();
}
private:
/// pg -> (raw osd list)
int _pg_to_raw_osds(
const pg_pool_t& pool, pg_t pg,
vector<int> *osds,
ps_t *ppps) const;
int _pick_primary(const vector<int>& osds) const;
void _remove_nonexistent_osds(const pg_pool_t& pool, vector<int>& osds) const;
void _apply_primary_affinity(ps_t seed, const pg_pool_t& pool,
vector<int> *osds, int *primary) const;
/// apply pg_remap[_items] mappings
void _apply_remap(const pg_pool_t& pi, pg_t pg, vector<int> *raw) const;
/// pg -> (up osd list)
void _raw_to_up_osds(const pg_pool_t& pool, const vector<int>& raw,
vector<int> *up) const;
/**
* Get the pg and primary temp, if they are specified.
* @param temp_pg [out] Will be empty or contain the temp PG mapping on return
* @param temp_primary [out] Will be the value in primary_temp, or a value derived
* from the pg_temp (if specified), or -1 if you should use the calculated (up_)primary.
*/
void _get_temp_osds(const pg_pool_t& pool, pg_t pg,
vector<int> *temp_pg, int *temp_primary) const;
/**
* map to up and acting. Fills in whatever fields are non-NULL.
*/
void _pg_to_up_acting_osds(const pg_t& pg, vector<int> *up, int *up_primary,
vector<int> *acting, int *acting_primary,
bool raw_pg_to_pg = true) const;
public:
/***
* This is suitable only for looking at raw CRUSH outputs. It skips
* applying the temp and up checks and should not be used
* by anybody for data mapping purposes.
* raw and primary must be non-NULL
*/
int pg_to_raw_osds(pg_t pg, vector<int> *raw, int *primary) const;
/// map a pg to its acting set. @return acting set size
int pg_to_acting_osds(const pg_t& pg, vector<int> *acting,
int *acting_primary) const {
_pg_to_up_acting_osds(pg, NULL, NULL, acting, acting_primary);
return acting->size();
}
int pg_to_acting_osds(pg_t pg, vector<int>& acting) const {
return pg_to_acting_osds(pg, &acting, NULL);
}
/**
* This does not apply temp overrides and should not be used
* by anybody for data mapping purposes. Specify both pointers.
*/
void pg_to_raw_up(pg_t pg, vector<int> *up, int *primary) const;
/**
* map a pg to its acting set as well as its up set. You must use
* the acting set for data mapping purposes, but some users will
* also find the up set useful for things like deciding what to
* set as pg_temp.
* Each of these pointers must be non-NULL.
*/
void pg_to_up_acting_osds(pg_t pg, vector<int> *up, int *up_primary,
vector<int> *acting, int *acting_primary) const {
_pg_to_up_acting_osds(pg, up, up_primary, acting, acting_primary);
}
void pg_to_up_acting_osds(pg_t pg, vector<int>& up, vector<int>& acting) const {
int up_primary, acting_primary;
pg_to_up_acting_osds(pg, &up, &up_primary, &acting, &acting_primary);
}
bool pg_is_ec(pg_t pg) const {
map<int64_t, pg_pool_t>::const_iterator i = pools.find(pg.pool());
assert(i != pools.end());
return i->second.ec_pool();
}
bool get_primary_shard(const pg_t& pgid, spg_t *out) const {
map<int64_t, pg_pool_t>::const_iterator i = get_pools().find(pgid.pool());
if (i == get_pools().end()) {
return false;
}
if (!i->second.ec_pool()) {
*out = spg_t(pgid);
return true;
}
int primary;
vector<int> acting;
pg_to_acting_osds(pgid, &acting, &primary);
for (uint8_t i = 0; i < acting.size(); ++i) {
if (acting[i] == primary) {
*out = spg_t(pgid, shard_id_t(i));
return true;
}
}
return false;
}
int64_t lookup_pg_pool_name(const string& name) const {
map<string,int64_t>::const_iterator p = name_pool.find(name);
if (p == name_pool.end())
return -ENOENT;
return p->second;
}
int64_t get_pool_max() const {
return pool_max;
}
const map<int64_t,pg_pool_t>& get_pools() const {
return pools;
}
map<int64_t,pg_pool_t>& get_pools() {
return pools;
}
const string& get_pool_name(int64_t p) const {
map<int64_t, string>::const_iterator i = pool_name.find(p);
assert(i != pool_name.end());
return i->second;
}
bool have_pg_pool(int64_t p) const {
return pools.count(p);
}
const pg_pool_t* get_pg_pool(int64_t p) const {
map<int64_t, pg_pool_t>::const_iterator i = pools.find(p);
if (i != pools.end())
return &i->second;
return NULL;
}
unsigned get_pg_size(pg_t pg) const {
map<int64_t,pg_pool_t>::const_iterator p = pools.find(pg.pool());
assert(p != pools.end());
return p->second.get_size();
}
int get_pg_type(pg_t pg) const {
map<int64_t,pg_pool_t>::const_iterator p = pools.find(pg.pool());
assert(p != pools.end());
return p->second.get_type();
}
pg_t raw_pg_to_pg(pg_t pg) const {
map<int64_t,pg_pool_t>::const_iterator p = pools.find(pg.pool());
assert(p != pools.end());
return p->second.raw_pg_to_pg(pg);
}
// pg -> acting primary osd
int get_pg_acting_primary(pg_t pg) const {
int primary = -1;
_pg_to_up_acting_osds(pg, nullptr, nullptr, nullptr, &primary);
return primary;
}
/*
* check whether an spg_t maps to a particular osd
*/
bool is_up_acting_osd_shard(spg_t pg, int osd) const {
vector<int> up, acting;
_pg_to_up_acting_osds(pg.pgid, &up, NULL, &acting, NULL, false);
if (pg.shard == shard_id_t::NO_SHARD) {
if (calc_pg_role(osd, acting, acting.size()) >= 0 ||
calc_pg_role(osd, up, up.size()) >= 0)
return true;
} else {
if (pg.shard < (int)acting.size() && acting[pg.shard] == osd)
return true;
if (pg.shard < (int)up.size() && up[pg.shard] == osd)
return true;
}
return false;
}
/* what replica # is a given osd? 0 primary, -1 for none. */
static int calc_pg_rank(int osd, const vector<int>& acting, int nrep=0);
static int calc_pg_role(int osd, const vector<int>& acting, int nrep=0);
static bool primary_changed(
int oldprimary,
const vector<int> &oldacting,
int newprimary,
const vector<int> &newacting);
/* rank is -1 (stray), 0 (primary), 1,2,3,... (replica) */
int get_pg_acting_rank(pg_t pg, int osd) const {
vector<int> group;
int nrep = pg_to_acting_osds(pg, group);
return calc_pg_rank(osd, group, nrep);
}
/* role is -1 (stray), 0 (primary), 1 (replica) */
int get_pg_acting_role(const pg_t& pg, int osd) const {
vector<int> group;
int nrep = pg_to_acting_osds(pg, group);
return calc_pg_role(osd, group, nrep);
}
bool osd_is_valid_op_target(pg_t pg, int osd) const {
int primary;
vector<int> group;
int nrep = pg_to_acting_osds(pg, &group, &primary);
if (osd == primary)
return true;
if (pg_is_ec(pg))
return false;
return calc_pg_role(osd, group, nrep) >= 0;
}
int clean_remaps(
CephContext *cct,
Incremental *pending_inc);
bool try_pg_remap(
CephContext *cct,
pg_t pg, ///< pg to potentially remap
const set<int>& overfull, ///< osds we'd want to evacuate
const vector<int>& underfull, ///< osds to move to, in order of preference
vector<int> *orig,
vector<int> *out); ///< resulting alternative mapping
int remap_pgs(
CephContext *cct,
float max_deviation, ///< max deviation from target (value < 1.0)
int max_iterations, ///< max iterations to run
const set<int64_t>& pools, ///< [optional] restrict to pool
OSDMap::Incremental *pending_inc
);
/*
* handy helpers to build simple maps...
*/
/**
* Build an OSD map suitable for basic usage. If **num_osd** is >= 0
* it will be initialized with the specified number of OSDs in a
* single host. If **num_osd** is < 0 the layout of the OSD map will
* be built by reading the content of the configuration file.
*
* @param cct [in] in core ceph context
* @param e [in] initial epoch
* @param fsid [in] id of the cluster
* @param num_osd [in] number of OSDs if >= 0 or read from conf if < 0
* @return **0** on success, negative errno on error.
*/
int build_simple(CephContext *cct, epoch_t e, uuid_d &fsid,
int num_osd, int pg_bits, int pgp_bits);
static int _build_crush_types(CrushWrapper& crush);
static int build_simple_crush_map(CephContext *cct, CrushWrapper& crush,
int num_osd, ostream *ss);
static int build_simple_crush_map_from_conf(CephContext *cct,
CrushWrapper& crush,
ostream *ss);
static int build_simple_crush_rulesets(CephContext *cct, CrushWrapper& crush,
const string& root,
ostream *ss);
bool crush_ruleset_in_use(int ruleset) const;
void clear_temp() {
pg_temp->clear();
primary_temp->clear();
}
private:
void print_osd_line(int cur, ostream *out, Formatter *f) const;
public:
void print(ostream& out) const;
void print_pools(ostream& out) const;
void print_summary(Formatter *f, ostream& out) const;
void print_oneline_summary(ostream& out) const;
void print_tree(Formatter *f, ostream *out) const;
int summarize_mapping_stats(
OSDMap *newmap,
const set<int64_t> *pools,
std::string *out,
Formatter *f) const;
string get_flag_string() const;
static string get_flag_string(unsigned flags);
static void dump_erasure_code_profiles(const map<string,map<string,string> > &profiles,
Formatter *f);
void dump(Formatter *f) const;
static void generate_test_instances(list<OSDMap*>& o);
bool check_new_blacklist_entries() const { return new_blacklist_entries; }
};
WRITE_CLASS_ENCODER_FEATURES(OSDMap)
WRITE_CLASS_ENCODER_FEATURES(OSDMap::Incremental)
typedef ceph::shared_ptr<const OSDMap> OSDMapRef;
inline ostream& operator<<(ostream& out, const OSDMap& m) {
m.print_oneline_summary(out);
return out;
}
#endif
|