1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
|
"""
Balance PG distribution across OSDs.
"""
import copy
import enum
import errno
import json
import math
import random
import time
from mgr_module import CLIReadCommand, CLICommand, CommandResult, MgrModule, Option, OSDMap, CephReleases
from threading import Event
from typing import cast, Any, Dict, List, Optional, Sequence, Tuple, Union
from mgr_module import CRUSHMap
import datetime
TIME_FORMAT = '%Y-%m-%d_%H:%M:%S'
class MappingState:
def __init__(self, osdmap, raw_pg_stats, raw_pool_stats, desc=''):
self.desc = desc
self.osdmap = osdmap
self.osdmap_dump = self.osdmap.dump()
self.crush = osdmap.get_crush()
self.crush_dump = self.crush.dump()
self.raw_pg_stats = raw_pg_stats
self.raw_pool_stats = raw_pool_stats
self.pg_stat = {
i['pgid']: i['stat_sum'] for i in raw_pg_stats.get('pg_stats', [])
}
osd_poolids = [p['pool'] for p in self.osdmap_dump.get('pools', [])]
pg_poolids = [p['poolid'] for p in raw_pool_stats.get('pool_stats', [])]
self.poolids = set(osd_poolids) & set(pg_poolids)
self.pg_up = {}
self.pg_up_by_poolid = {}
for poolid in self.poolids:
self.pg_up_by_poolid[poolid] = osdmap.map_pool_pgs_up(poolid)
for a, b in self.pg_up_by_poolid[poolid].items():
self.pg_up[a] = b
def calc_misplaced_from(self, other_ms):
num = len(other_ms.pg_up)
misplaced = 0
for pgid, before in other_ms.pg_up.items():
if before != self.pg_up.get(pgid, []):
misplaced += 1
if num > 0:
return float(misplaced) / float(num)
return 0.0
class Mode(enum.Enum):
none = 'none'
crush_compat = 'crush-compat'
upmap = 'upmap'
read = 'read'
upmap_read = 'upmap-read'
class Plan(object):
def __init__(self, name, mode, osdmap, pools):
self.name = name
self.mode = mode
self.osdmap = osdmap
self.osdmap_dump = osdmap.dump()
self.pools = pools
self.osd_weights = {}
self.compat_ws = {}
self.inc = osdmap.new_incremental()
self.pg_status = {}
def dump(self) -> str:
return json.dumps(self.inc.dump(), indent=4, sort_keys=True)
def show(self) -> str:
return 'upmap plan'
class MsPlan(Plan):
"""
Plan with a preloaded MappingState member.
"""
def __init__(self, name: str, mode: str, ms: MappingState, pools: List[str]) -> None:
super(MsPlan, self).__init__(name, mode, ms.osdmap, pools)
self.initial = ms
def final_state(self) -> MappingState:
self.inc.set_osd_reweights(self.osd_weights)
self.inc.set_crush_compat_weight_set_weights(self.compat_ws)
return MappingState(self.initial.osdmap.apply_incremental(self.inc),
self.initial.raw_pg_stats,
self.initial.raw_pool_stats,
'plan %s final' % self.name)
def show(self) -> str:
ls = []
ls.append('# starting osdmap epoch %d' % self.initial.osdmap.get_epoch())
ls.append('# starting crush version %d' %
self.initial.osdmap.get_crush_version())
ls.append('# mode %s' % self.mode)
if len(self.compat_ws) and \
not CRUSHMap.have_default_choose_args(self.initial.crush_dump):
ls.append('ceph osd crush weight-set create-compat')
for osd, weight in self.compat_ws.items():
ls.append('ceph osd crush weight-set reweight-compat %s %f' %
(osd, weight))
for osd, weight in self.osd_weights.items():
ls.append('ceph osd reweight osd.%d %f' % (osd, weight))
incdump = self.inc.dump()
for pgid in incdump.get('old_pg_upmap_items', []):
ls.append('ceph osd rm-pg-upmap-items %s' % pgid)
for item in incdump.get('new_pg_upmap_items', []):
osdlist = []
for m in item['mappings']:
osdlist += [m['from'], m['to']]
ls.append('ceph osd pg-upmap-items %s %s' %
(item['pgid'], ' '.join([str(a) for a in osdlist])))
for item in incdump.get('new_pg_upmap_primaries', []):
ls.append('ceph osd pg-upmap-primary %s %s' % (item['pgid'], item['primary_osd']))
for item in incdump.get('old_pg_upmap_primaries', []):
ls.append('ceph osd rm-pg-upmap-primary %s' % item['pgid'])
return '\n'.join(ls)
class Eval:
def __init__(self, ms: MappingState):
self.ms = ms
self.root_ids: Dict[str, int] = {} # root name -> id
self.pool_name: Dict[str, str] = {} # pool id -> pool name
self.pool_id: Dict[str, int] = {} # pool name -> id
self.pool_roots: Dict[str, List[str]] = {} # pool name -> root name
self.root_pools: Dict[str, List[str]] = {} # root name -> pools
self.target_by_root: Dict[str, Dict[int, float]] = {} # root name -> target weight map
self.count_by_pool: Dict[str, dict] = {}
self.count_by_root: Dict[str, dict] = {}
self.actual_by_pool: Dict[str, dict] = {} # pool -> by_* -> actual weight map
self.actual_by_root: Dict[str, dict] = {} # pool -> by_* -> actual weight map
self.total_by_pool: Dict[str, dict] = {} # pool -> by_* -> total
self.total_by_root: Dict[str, dict] = {} # root -> by_* -> total
self.stats_by_pool: Dict[str, dict] = {} # pool -> by_* -> stddev or avg -> value
self.stats_by_root: Dict[str, dict] = {} # root -> by_* -> stddev or avg -> value
self.score_by_pool: Dict[str, float] = {}
self.score_by_root: Dict[str, Dict[str, float]] = {}
self.score = 0.0
self.read_balance_score_by_pool: Dict[str, Dict[str, float]] = {}
self.read_balance_score_acting_by_pool: Dict[str, float] = {}
def show(self, verbose: bool = False) -> str:
if verbose:
r = self.ms.desc + '\n'
r += 'target_by_root %s\n' % self.target_by_root
r += 'actual_by_pool %s\n' % self.actual_by_pool
r += 'actual_by_root %s\n' % self.actual_by_root
r += 'count_by_pool %s\n' % self.count_by_pool
r += 'count_by_root %s\n' % self.count_by_root
r += 'total_by_pool %s\n' % self.total_by_pool
r += 'total_by_root %s\n' % self.total_by_root
r += 'stats_by_root %s\n' % self.stats_by_root
r += 'score_by_pool %s\n' % self.score_by_pool
r += 'score_by_root %s\n' % self.score_by_root
r += 'score %f (lower is better)\n' % self.score
r += 'read_balance_score_by_pool %s\n' % self.read_balance_score_by_pool
else:
r = self.ms.desc + ' '
r += 'score %f (lower is better)\n' % self.score
r += 'read_balance_scores (lower is better) %s\n' % self.read_balance_score_acting_by_pool
return r
def calc_stats(self, count, target, total):
num = max(len(target), 1)
r: Dict[str, Dict[str, Union[int, float]]] = {}
for t in ('pgs', 'objects', 'bytes'):
if total[t] == 0:
r[t] = {
'max': 0,
'min': 0,
'avg': 0,
'stddev': 0,
'sum_weight': 0,
'score': 0,
}
continue
avg = float(total[t]) / float(num)
dev = 0.0
# score is a measure of how uneven the data distribution is.
# score lies between [0, 1), 0 means perfect distribution.
score = 0.0
sum_weight = 0.0
for k, v in count[t].items():
# adjust/normalize by weight
if target[k]:
adjusted = float(v) / target[k] / float(num)
else:
adjusted = 0.0
# Overweighted devices and their weights are factors to calculate reweight_urgency.
# One 10% underfilled device with 5 2% overfilled devices, is arguably a better
# situation than one 10% overfilled with 5 2% underfilled devices
if adjusted > avg:
'''
F(x) = 2*phi(x) - 1, where phi(x) = cdf of standard normal distribution
x = (adjusted - avg)/avg.
Since, we're considering only over-weighted devices, x >= 0, and so phi(x) lies in [0.5, 1).
To bring range of F(x) in range [0, 1), we need to make the above modification.
In general, we need to use a function F(x), where x = (adjusted - avg)/avg
1. which is bounded between 0 and 1, so that ultimately reweight_urgency will also be bounded.
2. A larger value of x, should imply more urgency to reweight.
3. Also, the difference between F(x) when x is large, should be minimal.
4. The value of F(x) should get close to 1 (highest urgency to reweight) with steeply.
Could have used F(x) = (1 - e^(-x)). But that had slower convergence to 1, compared to the one currently in use.
cdf of standard normal distribution: https://stackoverflow.com/a/29273201
'''
score += target[k] * (math.erf(((adjusted - avg) / avg) / math.sqrt(2.0)))
sum_weight += target[k]
dev += (avg - adjusted) * (avg - adjusted)
stddev = math.sqrt(dev / float(max(num - 1, 1)))
score = score / max(sum_weight, 1)
r[t] = {
'max': max(count[t].values()),
'min': min(count[t].values()),
'avg': avg,
'stddev': stddev,
'sum_weight': sum_weight,
'score': score,
}
return r
class Module(MgrModule):
MODULE_OPTIONS = [
Option(name='active',
type='bool',
default=True,
desc='automatically balance PGs across cluster',
runtime=True),
Option(name='begin_time',
type='str',
default='0000',
desc='beginning time of day to automatically balance',
long_desc='This is a time of day in the format HHMM.',
runtime=True),
Option(name='end_time',
type='str',
default='2359',
desc='ending time of day to automatically balance',
long_desc='This is a time of day in the format HHMM.',
runtime=True),
Option(name='begin_weekday',
type='uint',
default=0,
min=0,
max=6,
desc='Restrict automatic balancing to this day of the week or later',
long_desc='0 = Sunday, 1 = Monday, etc.',
runtime=True),
Option(name='end_weekday',
type='uint',
default=0,
min=0,
max=6,
desc='Restrict automatic balancing to days of the week earlier than this',
long_desc='0 = Sunday, 1 = Monday, etc.',
runtime=True),
Option(name='crush_compat_max_iterations',
type='uint',
default=25,
min=1,
max=250,
desc='maximum number of iterations to attempt optimization',
runtime=True),
Option(name='crush_compat_metrics',
type='str',
default='pgs,objects,bytes',
desc='metrics with which to calculate OSD utilization',
long_desc='Value is a list of one or more of "pgs", "objects", or "bytes", and indicates which metrics to use to balance utilization.',
runtime=True),
Option(name='crush_compat_step',
type='float',
default=.5,
min=.001,
max=.999,
desc='aggressiveness of optimization',
long_desc='.99 is very aggressive, .01 is less aggressive',
runtime=True),
Option(name='min_score',
type='float',
default=0,
desc='minimum score, below which no optimization is attempted',
runtime=True),
Option(name='mode',
desc='Balancer mode',
default='upmap',
enum_allowed=['none', 'crush-compat', 'upmap', 'read', 'upmap-read'],
runtime=True),
Option(name='sleep_interval',
type='secs',
default=60,
desc='how frequently to wake up and attempt optimization',
runtime=True),
Option(name='upmap_max_optimizations',
type='uint',
default=10,
desc='maximum upmap optimizations to make per attempt',
runtime=True),
Option(name='upmap_max_deviation',
type='int',
default=5,
min=1,
desc='deviation below which no optimization is attempted',
long_desc='If the number of PGs are within this count then no optimization is attempted',
runtime=True),
Option(name='pool_ids',
type='str',
default='',
desc='pools which the automatic balancing will be limited to',
runtime=True),
Option(name='update_pg_upmap_activity',
type='bool',
default=False,
desc='Updates pg_upmap activity stats to be used in `balancer status detail`',
runtime=True)
]
active = False
run = True
plans: Dict[str, Plan] = {}
mode = ''
optimizing = False
last_optimize_started = ''
last_optimize_duration = ''
optimize_result = ''
no_optimization_needed = False
success_string = 'Optimization plan created successfully'
in_progress_string = 'in progress'
pg_upmap_items_added: List[Dict[str, Any]] = []
pg_upmap_items_removed: List[Dict[str, Any]] = []
pg_upmap_primaries_added: List[Dict[str, Any]] = []
pg_upmap_primaries_removed: List[Dict[str, Any]] = []
def __init__(self, *args: Any, **kwargs: Any) -> None:
super(Module, self).__init__(*args, **kwargs)
self.event = Event()
@CLIReadCommand('balancer status')
def show_status(self) -> Tuple[int, str, str]:
"""
Show balancer status
"""
s = {
'plans': list(self.plans.keys()),
'active': self.active,
'last_optimize_started': self.last_optimize_started,
'last_optimize_duration': self.last_optimize_duration,
'optimize_result': self.optimize_result,
'no_optimization_needed': self.no_optimization_needed,
'mode': self.get_module_option('mode'),
}
return (0, json.dumps(s, indent=4, sort_keys=True), '')
@CLIReadCommand('balancer status detail')
def show_status_detail(self) -> Tuple[int, str, str]:
"""
Show balancer status (detailed)
"""
pg_upmap_activity = cast(bool, self.get_module_option('update_pg_upmap_activity'))
if not pg_upmap_activity:
msg = 'This command is disabled.\n' \
'To enable, run `ceph config set mgr mgr/balancer/update_pg_upmap_activity True`.\n'
return 0, msg, ''
s = {
'plans': list(self.plans.keys()),
'active': self.active,
'last_optimize_started': self.last_optimize_started,
'last_optimize_duration': self.last_optimize_duration,
'optimize_result': self.optimize_result,
'no_optimization_needed': self.no_optimization_needed,
'mode': self.get_module_option('mode'),
'pg_upmap_items_added': self.pg_upmap_items_added,
'pg_upmap_items_removed': self.pg_upmap_items_removed,
'pg_upmap_primaries_added': self.pg_upmap_primaries_added,
'pg_upmap_primaries_removed': self.pg_upmap_primaries_removed
}
return (0, json.dumps(s, indent=4, sort_keys=True), '')
@CLICommand('balancer mode')
def set_mode(self, mode: Mode) -> Tuple[int, str, str]:
"""
Set balancer mode
"""
min_compat_client = self.get_osdmap().dump().get('require_min_compat_client', '')
if mode == Mode.upmap:
try:
release = CephReleases[min_compat_client]
if release.value < CephReleases.luminous.value:
warn = ('min_compat_client "%s" '
'< "luminous", which is required for pg-upmap. '
'Try "ceph osd set-require-min-compat-client luminous" '
'before enabling this mode' % min_compat_client)
return (-errno.EPERM, '', warn)
except KeyError:
self.log.error('Unable to apply mode {} due to unknown min_compat_client {}'.format(mode, min_compat_client))
warn = ('Unable to apply mode {} due to unknown min_compat_client {}.'.format(mode, min_compat_client))
return (-errno.EPERM, '', warn)
elif mode == Mode.crush_compat:
ms = MappingState(self.get_osdmap(),
self.get("pg_stats"),
self.get("pool_stats"),
'initialize compat weight-set')
self.get_compat_weight_set_weights(ms) # ignore error
elif (mode == Mode.read) or (mode == Mode.upmap_read):
try:
release = CephReleases[min_compat_client]
if release.value < CephReleases.reef.value:
warn = ('min_compat_client "%s" '
'< "reef", which is required for pg-upmap-primary. '
'Try "ceph osd set-require-min-compat-client reef" '
'before enabling this mode' % min_compat_client)
return (-errno.EPERM, '', warn)
except KeyError:
self.log.error('Unable to apply mode {} due to unknown min_compat_client {}'.format(mode, min_compat_client))
warn = ('Unable to apply mode {} due to unknown min_compat_client {}.'.format(mode, min_compat_client))
return (-errno.EPERM, '', warn)
self.set_module_option('mode', mode.value)
return (0, '', '')
@CLICommand('balancer on')
def on(self) -> Tuple[int, str, str]:
"""
Enable automatic balancing
"""
if not self.active:
self.set_module_option('active', 'true')
self.active = True
self.event.set()
return (0, '', '')
@CLICommand('balancer off')
def off(self) -> Tuple[int, str, str]:
"""
Disable automatic balancing
"""
if self.active:
self.set_module_option('active', 'false')
self.active = False
self.event.set()
return (0, '', '')
@CLIReadCommand('balancer pool ls')
def pool_ls(self) -> Tuple[int, str, str]:
"""
List automatic balancing pools
Note that empty list means all existing pools will be automatic balancing targets,
which is the default behaviour of balancer.
"""
pool_ids = cast(str, self.get_module_option('pool_ids'))
if pool_ids == '':
return (0, '', '')
pool_ids = [int(p) for p in pool_ids.split(',')]
pool_name_by_id = dict((p['pool'], p['pool_name'])
for p in self.get_osdmap().dump().get('pools', []))
should_prune = False
final_ids: List[int] = []
final_names = []
for p in pool_ids:
if p in pool_name_by_id:
final_ids.append(p)
final_names.append(pool_name_by_id[p])
else:
should_prune = True
if should_prune: # some pools were gone, prune
self.set_module_option('pool_ids', ','.join(str(p) for p in final_ids))
return (0, json.dumps(sorted(final_names), indent=4, sort_keys=True), '')
@CLICommand('balancer pool add')
def pool_add(self, pools: Sequence[str]) -> Tuple[int, str, str]:
"""
Enable automatic balancing for specific pools
"""
raw_names = pools
pool_id_by_name = dict((p['pool_name'], p['pool'])
for p in self.get_osdmap().dump().get('pools', []))
invalid_names = [p for p in raw_names if p not in pool_id_by_name]
if invalid_names:
return (-errno.EINVAL, '', 'pool(s) %s not found' % invalid_names)
to_add = set(str(pool_id_by_name[p]) for p in raw_names if p in pool_id_by_name)
pool_ids = cast(str, self.get_module_option('pool_ids'))
existing = set(pool_ids.split(',') if pool_ids else [])
final = to_add | existing
self.set_module_option('pool_ids', ','.join(final))
return (0, '', '')
@CLICommand('balancer pool rm')
def pool_rm(self, pools: Sequence[str]) -> Tuple[int, str, str]:
"""
Disable automatic balancing for specific pools
"""
raw_names = pools
existing = cast(str, self.get_module_option('pool_ids'))
if existing == '': # for idempotence
return (0, '', '')
existing = existing.split(',')
osdmap = self.get_osdmap()
pool_ids = [str(p['pool']) for p in osdmap.dump().get('pools', [])]
pool_id_by_name = dict((p['pool_name'], p['pool']) for p in osdmap.dump().get('pools', []))
final = [p for p in existing if p in pool_ids]
to_delete = [str(pool_id_by_name[p]) for p in raw_names if p in pool_id_by_name]
final = set(final) - set(to_delete)
self.set_module_option('pool_ids', ','.join(final))
return (0, '', '')
def _state_from_option(self, option: Optional[str] = None) -> Tuple[MappingState, List[str]]:
pools = []
if option is None:
ms = MappingState(self.get_osdmap(),
self.get("pg_stats"),
self.get("pool_stats"),
'current cluster')
elif option in self.plans:
plan = self.plans.get(option)
assert plan
pools = plan.pools
if plan.mode == 'upmap':
# Note that for upmap, to improve the efficiency,
# we use a basic version of Plan without keeping the obvious
# *redundant* MS member.
# Hence ms might not be accurate here since we are basically
# using an old snapshotted osdmap vs a fresh copy of pg_stats.
# It should not be a big deal though..
ms = MappingState(plan.osdmap,
self.get("pg_stats"),
self.get("pool_stats"),
f'plan "{plan.name}"')
else:
ms = cast(MsPlan, plan).final_state()
else:
# not a plan, does it look like a pool?
osdmap = self.get_osdmap()
valid_pool_names = [p['pool_name'] for p in osdmap.dump().get('pools', [])]
if option not in valid_pool_names:
raise ValueError(f'option "{option}" not a plan or a pool')
pools.append(option)
ms = MappingState(osdmap,
self.get("pg_stats"),
self.get("pool_stats"),
f'pool "{option}"')
return ms, pools
@CLIReadCommand('balancer eval-verbose')
def plan_eval_verbose(self, option: Optional[str] = None):
"""
Evaluate data distribution for the current cluster or specific pool or specific
plan (verbosely)
"""
try:
ms, pools = self._state_from_option(option)
return (0, self.evaluate(ms, pools, verbose=True), '')
except ValueError as e:
return (-errno.EINVAL, '', str(e))
@CLIReadCommand('balancer eval')
def plan_eval_brief(self, option: Optional[str] = None):
"""
Evaluate data distribution for the current cluster or specific pool or specific plan
"""
try:
ms, pools = self._state_from_option(option)
return (0, self.evaluate(ms, pools, verbose=False), '')
except ValueError as e:
return (-errno.EINVAL, '', str(e))
@CLIReadCommand('balancer optimize')
def plan_optimize(self, plan: str, pools: List[str] = []) -> Tuple[int, str, str]:
"""
Run optimizer to create a new plan
"""
# The GIL can be release by the active balancer, so disallow when active
if self.active:
return (-errno.EINVAL, '', 'Balancer enabled, disable to optimize manually')
if self.optimizing:
return (-errno.EINVAL, '', 'Balancer finishing up....try again')
osdmap = self.get_osdmap()
valid_pool_names = [p['pool_name'] for p in osdmap.dump().get('pools', [])]
invalid_pool_names = []
for p in pools:
if p not in valid_pool_names:
invalid_pool_names.append(p)
if len(invalid_pool_names):
return (-errno.EINVAL, '', 'pools %s not found' % invalid_pool_names)
plan_ = self.plan_create(plan, osdmap, pools)
self.last_optimize_started = time.asctime(time.localtime())
self.optimize_result = self.in_progress_string
start = time.time()
r, detail = self.optimize(plan_)
end = time.time()
self.last_optimize_duration = str(datetime.timedelta(seconds=(end - start)))
if r == 0:
# Add plan if an optimization was created
self.optimize_result = self.success_string
self.plans[plan] = plan_
else:
self.optimize_result = detail
return (r, '', detail)
@CLIReadCommand('balancer show')
def plan_show(self, plan: str) -> Tuple[int, str, str]:
"""
Show details of an optimization plan
"""
plan_ = self.plans.get(plan)
if not plan_:
return (-errno.ENOENT, '', f'plan {plan} not found')
return (0, plan_.show(), '')
@CLICommand('balancer rm')
def plan_rm(self, plan: str) -> Tuple[int, str, str]:
"""
Discard an optimization plan
"""
if plan in self.plans:
del self.plans[plan]
return (0, '', '')
@CLICommand('balancer reset')
def plan_reset(self) -> Tuple[int, str, str]:
"""
Discard all optimization plans
"""
self.plans = {}
return (0, '', '')
@CLIReadCommand('balancer dump')
def plan_dump(self, plan: str) -> Tuple[int, str, str]:
"""
Show an optimization plan
"""
plan_ = self.plans.get(plan)
if not plan_:
return -errno.ENOENT, '', f'plan {plan} not found'
else:
return (0, plan_.dump(), '')
@CLIReadCommand('balancer ls')
def plan_ls(self) -> Tuple[int, str, str]:
"""
List all plans
"""
return (0, json.dumps([p for p in self.plans], indent=4, sort_keys=True), '')
@CLIReadCommand('balancer execute')
def plan_execute(self, plan: str) -> Tuple[int, str, str]:
"""
Execute an optimization plan
"""
# The GIL can be release by the active balancer, so disallow when active
if self.active:
return (-errno.EINVAL, '', 'Balancer enabled, disable to execute a plan')
if self.optimizing:
return (-errno.EINVAL, '', 'Balancer finishing up....try again')
plan_ = self.plans.get(plan)
if not plan_:
return (-errno.ENOENT, '', f'plan {plan} not found')
r, detail = self.execute(plan_)
pg_upmap_activity = cast(bool, self.get_module_option('update_pg_upmap_activity'))
if pg_upmap_activity:
self.update_pg_upmap_activity(plan_) # update pg activity in `balancer status detail`
self.plan_rm(plan)
return (r, '', detail)
def shutdown(self) -> None:
self.log.info('Stopping')
self.run = False
self.event.set()
def time_permit(self) -> bool:
local_time = time.localtime()
time_of_day = time.strftime('%H%M', local_time)
weekday = (local_time.tm_wday + 1) % 7 # be compatible with C
permit = False
def check_time(time: str, option: str):
if len(time) != 4:
self.log.error('invalid time for %s - expected HHMM format', option)
try:
datetime.time(int(time[:2]), int(time[2:]))
except ValueError as err:
self.log.error('invalid time for %s - %s', option, err)
begin_time = cast(str, self.get_module_option('begin_time'))
check_time(begin_time, 'begin_time')
end_time = cast(str, self.get_module_option('end_time'))
check_time(end_time, 'end_time')
if begin_time < end_time:
permit = begin_time <= time_of_day < end_time
elif begin_time == end_time:
permit = True
else:
permit = time_of_day >= begin_time or time_of_day < end_time
if not permit:
self.log.debug("should run between %s - %s, now %s, skipping",
begin_time, end_time, time_of_day)
return False
begin_weekday = cast(int, self.get_module_option('begin_weekday'))
end_weekday = cast(int, self.get_module_option('end_weekday'))
if begin_weekday < end_weekday:
permit = begin_weekday <= weekday <= end_weekday
elif begin_weekday == end_weekday:
permit = True
else:
permit = weekday >= begin_weekday or weekday < end_weekday
if not permit:
self.log.debug("should run between weekday %d - %d, now %d, skipping",
begin_weekday, end_weekday, weekday)
return False
return True
def serve(self) -> None:
self.log.info('Starting')
while self.run:
self.active = cast(bool, self.get_module_option('active'))
sleep_interval = cast(float, self.get_module_option('sleep_interval'))
self.log.debug('Waking up [%s, now %s]',
"active" if self.active else "inactive",
time.strftime(TIME_FORMAT, time.localtime()))
if self.active and self.time_permit():
self.log.debug('Running')
name = 'auto_%s' % time.strftime(TIME_FORMAT, time.gmtime())
osdmap = self.get_osdmap()
pool_ids = cast(str, self.get_module_option('pool_ids'))
if pool_ids:
allow = [int(p) for p in pool_ids.split(',')]
else:
allow = []
final: List[str] = []
if allow:
pools = osdmap.dump().get('pools', [])
valid = [p['pool'] for p in pools]
ids = set(allow) & set(valid)
if set(allow) - set(valid): # some pools were gone, prune
self.set_module_option('pool_ids', ','.join(str(p) for p in ids))
pool_name_by_id = dict((p['pool'], p['pool_name']) for p in pools)
final = [pool_name_by_id[p] for p in ids if p in pool_name_by_id]
plan = self.plan_create(name, osdmap, final)
self.optimizing = True
self.last_optimize_started = time.asctime(time.localtime())
self.optimize_result = self.in_progress_string
start = time.time()
r, detail = self.optimize(plan)
end = time.time()
self.last_optimize_duration = str(datetime.timedelta(seconds=(end - start)))
if r == 0:
self.optimize_result = self.success_string
self.execute(plan)
else:
self.optimize_result = detail
pg_upmap_activity = cast(bool, self.get_module_option('update_pg_upmap_activity'))
if pg_upmap_activity:
self.update_pg_upmap_activity(plan) # update pg activity in `balancer status detail`
self.optimizing = False
self.log.debug('Sleeping for %d', sleep_interval)
self.event.wait(sleep_interval)
self.event.clear()
def plan_create(self, name: str, osdmap: OSDMap, pools: List[str]) -> Plan:
mode = cast(str, self.get_module_option('mode'))
if mode == 'upmap':
# drop unnecessary MS member for upmap mode.
# this way we could effectively eliminate the usage of a
# complete pg_stats, which can become horribly inefficient
# as pg_num grows..
plan = Plan(name, mode, osdmap, pools)
else:
plan = MsPlan(name,
mode,
MappingState(osdmap,
self.get("pg_stats"),
self.get("pool_stats"),
'plan %s initial' % name),
pools)
return plan
def calc_eval(self, ms: MappingState, pools: List[str]) -> Eval:
pe = Eval(ms)
pool_rule = {}
pool_info = {}
for p in ms.osdmap_dump.get('pools', []):
if len(pools) and p['pool_name'] not in pools:
continue
# skip dead or not-yet-ready pools too
if p['pool'] not in ms.poolids:
continue
pe.pool_name[p['pool']] = p['pool_name']
pe.pool_id[p['pool_name']] = p['pool']
pool_rule[p['pool_name']] = p['crush_rule']
pe.pool_roots[p['pool_name']] = []
pool_info[p['pool_name']] = p
if len(pool_info) == 0:
return pe
self.log.debug('pool_name %s' % pe.pool_name)
self.log.debug('pool_id %s' % pe.pool_id)
self.log.debug('pools %s' % pools)
self.log.debug('pool_rule %s' % pool_rule)
osd_weight = {a['osd']: a['weight']
for a in ms.osdmap_dump.get('osds', []) if a['weight'] > 0}
# get expected distributions by root
actual_by_root: Dict[str, Dict[str, dict]] = {}
rootids = ms.crush.find_takes()
roots = []
for rootid in rootids:
ls = ms.osdmap.get_pools_by_take(rootid)
want = []
# find out roots associating with pools we are passed in
for candidate in ls:
if candidate in pe.pool_name:
want.append(candidate)
if len(want) == 0:
continue
root = ms.crush.get_item_name(rootid)
pe.root_pools[root] = []
for poolid in want:
pe.pool_roots[pe.pool_name[poolid]].append(root)
pe.root_pools[root].append(pe.pool_name[poolid])
pe.root_ids[root] = rootid
roots.append(root)
weight_map = ms.crush.get_take_weight_osd_map(rootid)
adjusted_map = {
osd: cw * osd_weight[osd]
for osd, cw in weight_map.items() if osd in osd_weight and cw > 0
}
sum_w = sum(adjusted_map.values())
assert len(adjusted_map) == 0 or sum_w > 0
pe.target_by_root[root] = {osd: w / sum_w
for osd, w in adjusted_map.items()}
actual_by_root[root] = {
'pgs': {},
'objects': {},
'bytes': {},
}
for osd in pe.target_by_root[root]:
actual_by_root[root]['pgs'][osd] = 0
actual_by_root[root]['objects'][osd] = 0
actual_by_root[root]['bytes'][osd] = 0
pe.total_by_root[root] = {
'pgs': 0,
'objects': 0,
'bytes': 0,
}
self.log.debug('pool_roots %s' % pe.pool_roots)
self.log.debug('root_pools %s' % pe.root_pools)
self.log.debug('target_by_root %s' % pe.target_by_root)
# pool and root actual
for pool, pi in pool_info.items():
poolid = pi['pool']
pm = ms.pg_up_by_poolid[poolid]
pgs = 0
objects = 0
bytes = 0
pgs_by_osd = {}
objects_by_osd = {}
bytes_by_osd = {}
for pgid, up in pm.items():
for osd in [int(osd) for osd in up]:
if osd == CRUSHMap.ITEM_NONE:
continue
if osd not in pgs_by_osd:
pgs_by_osd[osd] = 0
objects_by_osd[osd] = 0
bytes_by_osd[osd] = 0
pgs_by_osd[osd] += 1
objects_by_osd[osd] += ms.pg_stat[pgid]['num_objects']
bytes_by_osd[osd] += ms.pg_stat[pgid]['num_bytes']
# pick a root to associate this pg instance with.
# note that this is imprecise if the roots have
# overlapping children.
# FIXME: divide bytes by k for EC pools.
for root in pe.pool_roots[pool]:
if osd in pe.target_by_root[root]:
actual_by_root[root]['pgs'][osd] += 1
actual_by_root[root]['objects'][osd] += ms.pg_stat[pgid]['num_objects']
actual_by_root[root]['bytes'][osd] += ms.pg_stat[pgid]['num_bytes']
pgs += 1
objects += ms.pg_stat[pgid]['num_objects']
bytes += ms.pg_stat[pgid]['num_bytes']
pe.total_by_root[root]['pgs'] += 1
pe.total_by_root[root]['objects'] += ms.pg_stat[pgid]['num_objects']
pe.total_by_root[root]['bytes'] += ms.pg_stat[pgid]['num_bytes']
break
pe.count_by_pool[pool] = {
'pgs': {
k: v
for k, v in pgs_by_osd.items()
},
'objects': {
k: v
for k, v in objects_by_osd.items()
},
'bytes': {
k: v
for k, v in bytes_by_osd.items()
},
}
pe.actual_by_pool[pool] = {
'pgs': {
k: float(v) / float(max(pgs, 1))
for k, v in pgs_by_osd.items()
},
'objects': {
k: float(v) / float(max(objects, 1))
for k, v in objects_by_osd.items()
},
'bytes': {
k: float(v) / float(max(bytes, 1))
for k, v in bytes_by_osd.items()
},
}
pe.total_by_pool[pool] = {
'pgs': pgs,
'objects': objects,
'bytes': bytes,
}
try:
read_balance_scores = pi['read_balance']
pe.read_balance_score_acting_by_pool[pool] = read_balance_scores['score_acting']
score_keys = ['score_type', 'score_acting', 'score_stable',
'optimal_score', 'raw_score_acting', 'raw_score_stable',
'primary_affinity_weighted', 'average_primary_affinity',
'average_primary_affinity_weighted', 'average_osd_load',
'most_loaded_osd', 'most_loaded_acting_osd']
pe.read_balance_score_by_pool[pool] = {}
for key in score_keys:
if key in read_balance_scores:
pe.read_balance_score_by_pool[pool][key] = read_balance_scores[key]
except KeyError:
self.log.debug("Skipping pool '{}' since it does not have a read_balance_score, "
"likely because it is not replicated.".format(pool))
for root in pe.total_by_root:
pe.count_by_root[root] = {
'pgs': {
k: float(v)
for k, v in actual_by_root[root]['pgs'].items()
},
'objects': {
k: float(v)
for k, v in actual_by_root[root]['objects'].items()
},
'bytes': {
k: float(v)
for k, v in actual_by_root[root]['bytes'].items()
},
}
pe.actual_by_root[root] = {
'pgs': {
k: float(v) / float(max(pe.total_by_root[root]['pgs'], 1))
for k, v in actual_by_root[root]['pgs'].items()
},
'objects': {
k: float(v) / float(max(pe.total_by_root[root]['objects'], 1))
for k, v in actual_by_root[root]['objects'].items()
},
'bytes': {
k: float(v) / float(max(pe.total_by_root[root]['bytes'], 1))
for k, v in actual_by_root[root]['bytes'].items()
},
}
self.log.debug('actual_by_pool %s' % pe.actual_by_pool)
self.log.debug('actual_by_root %s' % pe.actual_by_root)
# average and stddev and score
pe.stats_by_root = {
a: pe.calc_stats(
b,
pe.target_by_root[a],
pe.total_by_root[a]
) for a, b in pe.count_by_root.items()
}
self.log.debug('stats_by_root %s' % pe.stats_by_root)
# the scores are already normalized
pe.score_by_root = {
r: {
'pgs': pe.stats_by_root[r]['pgs']['score'],
'objects': pe.stats_by_root[r]['objects']['score'],
'bytes': pe.stats_by_root[r]['bytes']['score'],
} for r in pe.total_by_root.keys()
}
self.log.debug('score_by_root %s' % pe.score_by_root)
# get the list of score metrics, comma separated
metrics = cast(str, self.get_module_option('crush_compat_metrics')).split(',')
# total score is just average of normalized stddevs
pe.score = 0.0
for r, vs in pe.score_by_root.items():
for k, v in vs.items():
if k in metrics:
pe.score += v
pe.score /= len(metrics) * len(roots)
return pe
def evaluate(self, ms: MappingState, pools: List[str], verbose: bool = False) -> str:
pe = self.calc_eval(ms, pools)
return pe.show(verbose=verbose)
def optimize(self, plan: Plan) -> Tuple[int, str]:
self.log.info('Optimize plan %s' % plan.name)
max_misplaced = cast(float, self.get_ceph_option('target_max_misplaced_ratio'))
self.log.info('Mode %s, max misplaced %f' %
(plan.mode, max_misplaced))
info = self.get('pg_status')
unknown = info.get('unknown_pgs_ratio', 0.0)
degraded = info.get('degraded_ratio', 0.0)
inactive = info.get('inactive_pgs_ratio', 0.0)
misplaced = info.get('misplaced_ratio', 0.0)
plan.pg_status = info
self.log.debug('unknown %f degraded %f inactive %f misplaced %g',
unknown, degraded, inactive, misplaced)
if unknown > 0.0:
detail = 'Some PGs (%f) are unknown; try again later' % unknown
self.log.info(detail)
return -errno.EAGAIN, detail
elif degraded > 0.0:
detail = 'Some objects (%f) are degraded; try again later' % degraded
self.log.info(detail)
return -errno.EAGAIN, detail
elif inactive > 0.0:
detail = 'Some PGs (%f) are inactive; try again later' % inactive
self.log.info(detail)
return -errno.EAGAIN, detail
elif misplaced >= max_misplaced:
detail = 'Too many objects (%f > %f) are misplaced; ' \
'try again later' % (misplaced, max_misplaced)
self.log.info(detail)
return -errno.EAGAIN, detail
else:
if plan.mode == 'upmap':
return self.do_upmap(plan)
elif plan.mode == 'crush-compat':
return self.do_crush_compat(cast(MsPlan, plan))
elif plan.mode == 'read':
return self.do_read_balancing(plan)
elif plan.mode == 'upmap-read':
r_upmap, detail_upmap = self.do_upmap(plan)
r_read, detail_read = self.do_read_balancing(plan)
if (r_upmap < 0) and (r_read < 0):
return r_upmap, detail_upmap
return 0, ''
elif plan.mode == 'none':
detail = 'Please do "ceph balancer mode" to choose a valid mode first'
self.log.info('Idle')
return -errno.ENOEXEC, detail
else:
detail = 'Unrecognized mode %s' % plan.mode
self.log.info(detail)
return -errno.EINVAL, detail
def do_read_balancing(self, plan: Plan) -> Tuple[int, str]:
self.log.info('do_read_balancing')
osdmap_dump = plan.osdmap_dump
msg = 'Unable to find further optimization, ' \
'or distribution is already perfect'
if len(plan.pools):
pools = plan.pools
else: # all
pools = [str(i['pool_name']) for i in osdmap_dump.get('pools', [])]
if len(pools) == 0:
detail = 'No pools available'
self.log.info(detail)
return -errno.ENOENT, detail
self.log.info('pools %s' % pools)
adjusted_pools = []
inc = plan.inc
total_num_changes = 0
pools_with_pg_merge = []
crush_rule_by_pool_name = {}
no_read_balance_info = []
replicated_pools_with_optimal_score = []
rb_error_message = {}
for p in osdmap_dump.get('pools', []):
for pool_pg_status in plan.pg_status.get('pgs_by_pool_state', []):
if pool_pg_status['pool_id'] != p['pool']:
continue
for state in pool_pg_status['pg_state_counts']:
if state['state_name'] != 'active+clean':
msg = "Not all PGs are active+clean; try again later."
return -errno.EALREADY, msg
if p['pg_num'] > p['pg_num_target']:
pools_with_pg_merge.append(p['pool_name'])
crush_rule_by_pool_name[p['pool_name']] = p['crush_rule']
if 'read_balance' not in p:
no_read_balance_info.append(p['pool_name'])
if 'read_balance' in p:
if 'error_message' in p['read_balance']:
rb_error_message[p['pool_name']] = p['read_balance']['error_message']
elif 'optimal_score' in p['read_balance']:
if p['read_balance']['score_acting'] == p['read_balance']['optimal_score']:
replicated_pools_with_optimal_score.append(p['pool_name'])
for pool in pools:
if pool not in crush_rule_by_pool_name:
self.log.debug('pool %s does not exist' % pool)
continue
if pool in pools_with_pg_merge:
self.log.debug('pool %s has pending PG(s) for merging, skipping for now' % pool)
continue
if pool in no_read_balance_info:
self.log.debug('pool %s has no read_balance information, skipping' % pool)
continue
if pool in replicated_pools_with_optimal_score:
self.log.debug('pool %s is already balanced, skipping' % pool)
continue
if pool in rb_error_message:
self.log.error(rb_error_message[pool])
continue
adjusted_pools.append(pool)
pool_dump = osdmap_dump.get('pools', [])
for pool in adjusted_pools:
for p in pool_dump:
if p['pool_name'] == pool:
pool_id = p['pool']
break
num_changes = plan.osdmap.balance_primaries(pool_id, inc)
total_num_changes += num_changes
if total_num_changes < 0:
self.no_optimization_needed = True
self.log.debug('unable to balance reads.')
return -errno.EALREADY, msg
self.log.info('prepared {} read changes'.format(total_num_changes))
if total_num_changes == 0:
self.no_optimization_needed = True
return -errno.EALREADY, msg
return 0, ''
def do_upmap(self, plan: Plan) -> Tuple[int, str]:
self.log.info('do_upmap')
max_optimizations = cast(float, self.get_module_option('upmap_max_optimizations'))
max_deviation = cast(int, self.get_module_option('upmap_max_deviation'))
osdmap_dump = plan.osdmap_dump
if len(plan.pools):
pools = plan.pools
else: # all
pools = [str(i['pool_name']) for i in osdmap_dump.get('pools', [])]
if len(pools) == 0:
detail = 'No pools available'
self.log.info(detail)
return -errno.ENOENT, detail
# shuffle pool list so they all get equal (in)attention
random.shuffle(pools)
self.log.info('pools %s' % pools)
adjusted_pools = []
inc = plan.inc
total_did = 0
left = max_optimizations
pools_with_pg_merge = [p['pool_name'] for p in osdmap_dump.get('pools', [])
if p['pg_num'] > p['pg_num_target']]
crush_rule_by_pool_name = dict((p['pool_name'], p['crush_rule'])
for p in osdmap_dump.get('pools', []))
for pool in pools:
if pool not in crush_rule_by_pool_name:
self.log.info('pool %s does not exist' % pool)
continue
if pool in pools_with_pg_merge:
self.log.info('pool %s has pending PG(s) for merging, skipping for now' % pool)
continue
adjusted_pools.append(pool)
# shuffle so all pools get equal (in)attention
random.shuffle(adjusted_pools)
pool_dump = osdmap_dump.get('pools', [])
for pool in adjusted_pools:
for p in pool_dump:
if p['pool_name'] == pool:
pool_id = p['pool']
break
# note that here we deliberately exclude any scrubbing pgs too
# since scrubbing activities have significant impacts on performance
num_pg_active_clean = 0
for p in plan.pg_status.get('pgs_by_pool_state', []):
pgs_pool_id = p['pool_id']
if pgs_pool_id != pool_id:
continue
for s in p['pg_state_counts']:
if s['state_name'] == 'active+clean':
num_pg_active_clean += s['count']
break
available = min(left, num_pg_active_clean)
did = plan.osdmap.calc_pg_upmaps(inc, max_deviation, available, [pool])
total_did += did
left -= did
if left <= 0:
break
self.log.info('prepared %d/%d upmap changes' % (total_did, max_optimizations))
if total_did == 0:
self.no_optimization_needed = True
return -errno.EALREADY, 'Unable to find further optimization, ' \
'or pool(s) pg_num is decreasing, ' \
'or distribution is already perfect'
return 0, ''
def do_crush_compat(self, plan: MsPlan) -> Tuple[int, str]:
self.log.info('do_crush_compat')
max_iterations = cast(int, self.get_module_option('crush_compat_max_iterations'))
if max_iterations < 1:
return -errno.EINVAL, '"crush_compat_max_iterations" must be >= 1'
step = cast(float, self.get_module_option('crush_compat_step'))
if step <= 0 or step >= 1.0:
return -errno.EINVAL, '"crush_compat_step" must be in (0, 1)'
max_misplaced = cast(float, self.get_ceph_option('target_max_misplaced_ratio'))
min_pg_per_osd = 2
ms = plan.initial
osdmap = ms.osdmap
crush = osdmap.get_crush()
pe = self.calc_eval(ms, plan.pools)
min_score_to_optimize = cast(float, self.get_module_option('min_score'))
if pe.score <= min_score_to_optimize:
if pe.score == 0:
detail = 'Distribution is already perfect'
else:
detail = 'score %f <= min_score %f, will not optimize' \
% (pe.score, min_score_to_optimize)
self.log.info(detail)
return -errno.EALREADY, detail
# get current osd reweights
orig_osd_weight = {a['osd']: a['weight']
for a in ms.osdmap_dump.get('osds', [])}
# get current compat weight-set weights
orig_ws = self.get_compat_weight_set_weights(ms)
if not orig_ws:
return -errno.EAGAIN, 'compat weight-set not available'
orig_ws = {a: b for a, b in orig_ws.items() if a >= 0}
# Make sure roots don't overlap their devices. If so, we
# can't proceed.
roots = list(pe.target_by_root.keys())
self.log.debug('roots %s', roots)
visited: Dict[int, str] = {}
overlap: Dict[int, List[str]] = {}
for root, wm in pe.target_by_root.items():
for osd in wm:
if osd in visited:
if osd not in overlap:
overlap[osd] = [visited[osd]]
overlap[osd].append(root)
visited[osd] = root
if len(overlap) > 0:
detail = 'Some osds belong to multiple subtrees: %s' % \
overlap
self.log.error(detail)
return -errno.EOPNOTSUPP, detail
# rebalance by pgs, objects, or bytes
metrics = cast(str, self.get_module_option('crush_compat_metrics')).split(',')
key = metrics[0] # balancing using the first score metric
if key not in ['pgs', 'bytes', 'objects']:
self.log.warning("Invalid crush_compat balancing key %s. Using 'pgs'." % key)
key = 'pgs'
# go
best_ws = copy.deepcopy(orig_ws)
best_ow = copy.deepcopy(orig_osd_weight)
best_pe = pe
left = max_iterations
bad_steps = 0
next_ws = copy.deepcopy(best_ws)
next_ow = copy.deepcopy(best_ow)
while left > 0:
# adjust
self.log.debug('best_ws %s' % best_ws)
random.shuffle(roots)
for root in roots:
pools = best_pe.root_pools[root]
osds = len(best_pe.target_by_root[root])
min_pgs = osds * min_pg_per_osd
if best_pe.total_by_root[root][key] < min_pgs:
self.log.info('Skipping root %s (pools %s), total pgs %d '
'< minimum %d (%d per osd)',
root, pools,
best_pe.total_by_root[root][key],
min_pgs, min_pg_per_osd)
continue
self.log.info('Balancing root %s (pools %s) by %s' %
(root, pools, key))
target = best_pe.target_by_root[root]
actual = best_pe.actual_by_root[root][key]
queue = sorted(actual.keys(),
key=lambda osd: -abs(target[osd] - actual[osd]))
for osd in queue:
if orig_osd_weight[osd] == 0:
self.log.debug('skipping out osd.%d', osd)
else:
deviation = target[osd] - actual[osd]
if deviation == 0:
break
self.log.debug('osd.%d deviation %f', osd, deviation)
weight = best_ws[osd]
ow = orig_osd_weight[osd]
if actual[osd] > 0:
calc_weight = target[osd] / actual[osd] * weight * ow
else:
# for newly created osds, reset calc_weight at target value
# this way weight-set will end up absorbing *step* of its
# target (final) value at the very beginning and slowly catch up later.
# note that if this turns out causing too many misplaced
# pgs, then we'll reduce step and retry
calc_weight = target[osd]
new_weight = weight * (1.0 - step) + calc_weight * step
self.log.debug('Reweight osd.%d %f -> %f', osd, weight,
new_weight)
next_ws[osd] = new_weight
if ow < 1.0:
new_ow = min(1.0, max(step + (1.0 - step) * ow,
ow + .005))
self.log.debug('Reweight osd.%d reweight %f -> %f',
osd, ow, new_ow)
next_ow[osd] = new_ow
# normalize weights under this root
root_weight = crush.get_item_weight(pe.root_ids[root])
root_sum = sum(b for a, b in next_ws.items()
if a in target.keys())
if root_sum > 0 and root_weight > 0:
factor = root_sum / root_weight
self.log.debug('normalizing root %s %d, weight %f, '
'ws sum %f, factor %f',
root, pe.root_ids[root], root_weight,
root_sum, factor)
for osd in actual.keys():
next_ws[osd] = next_ws[osd] / factor
# recalc
plan.compat_ws = copy.deepcopy(next_ws)
next_ms = plan.final_state()
next_pe = self.calc_eval(next_ms, plan.pools)
next_misplaced = next_ms.calc_misplaced_from(ms)
self.log.debug('Step result score %f -> %f, misplacing %f',
best_pe.score, next_pe.score, next_misplaced)
if next_misplaced > max_misplaced:
if best_pe.score < pe.score:
self.log.debug('Step misplaced %f > max %f, stopping',
next_misplaced, max_misplaced)
break
step /= 2.0
next_ws = copy.deepcopy(best_ws)
next_ow = copy.deepcopy(best_ow)
self.log.debug('Step misplaced %f > max %f, reducing step to %f',
next_misplaced, max_misplaced, step)
else:
if next_pe.score > best_pe.score * 1.0001:
bad_steps += 1
if bad_steps < 5 and random.randint(0, 100) < 70:
self.log.debug('Score got worse, taking another step')
else:
step /= 2.0
next_ws = copy.deepcopy(best_ws)
next_ow = copy.deepcopy(best_ow)
self.log.debug('Score got worse, trying smaller step %f',
step)
else:
bad_steps = 0
best_pe = next_pe
best_ws = copy.deepcopy(next_ws)
best_ow = copy.deepcopy(next_ow)
if best_pe.score == 0:
break
left -= 1
# allow a small regression if we are phasing out osd weights
fudge = 0.0
if best_ow != orig_osd_weight:
fudge = .001
if best_pe.score < pe.score + fudge:
self.log.info('Success, score %f -> %f', pe.score, best_pe.score)
plan.compat_ws = best_ws
for osd, w in best_ow.items():
if w != orig_osd_weight[osd]:
self.log.debug('osd.%d reweight %f', osd, w)
plan.osd_weights[osd] = w
return 0, ''
else:
self.log.info('Failed to find further optimization, score %f',
pe.score)
plan.compat_ws = {}
return -errno.EDOM, 'Unable to find further optimization, ' \
'change balancer mode and retry might help'
def get_compat_weight_set_weights(self, ms: MappingState):
have_choose_args = CRUSHMap.have_default_choose_args(ms.crush_dump)
if have_choose_args:
# get number of buckets in choose_args
choose_args_len = len(CRUSHMap.get_default_choose_args(ms.crush_dump))
if not have_choose_args or choose_args_len != len(ms.crush_dump['buckets']):
# enable compat weight-set first
self.log.debug('no choose_args or all buckets do not have weight-sets')
self.log.debug('ceph osd crush weight-set create-compat')
result = CommandResult('')
self.send_command(result, 'mon', '', json.dumps({
'prefix': 'osd crush weight-set create-compat',
'format': 'json',
}), '')
r, outb, outs = result.wait()
if r != 0:
self.log.error('Error creating compat weight-set')
return
result = CommandResult('')
self.send_command(result, 'mon', '', json.dumps({
'prefix': 'osd crush dump',
'format': 'json',
}), '')
r, outb, outs = result.wait()
if r != 0:
self.log.error('Error dumping crush map')
return
try:
crushmap = json.loads(outb)
except json.JSONDecodeError:
raise RuntimeError('unable to parse crush map')
else:
crushmap = ms.crush_dump
raw = CRUSHMap.get_default_choose_args(crushmap)
weight_set = {}
for b in raw:
bucket = None
for t in crushmap['buckets']:
if t['id'] == b['bucket_id']:
bucket = t
break
if not bucket:
raise RuntimeError('could not find bucket %s' % b['bucket_id'])
self.log.debug('bucket items %s' % bucket['items'])
self.log.debug('weight set %s' % b['weight_set'][0])
if len(bucket['items']) != len(b['weight_set'][0]):
raise RuntimeError('weight-set size does not match bucket items')
for pos in range(len(bucket['items'])):
weight_set[bucket['items'][pos]['id']] = b['weight_set'][0][pos]
self.log.debug('weight_set weights %s' % weight_set)
return weight_set
def do_crush(self) -> None:
self.log.info('do_crush (not yet implemented)')
def do_osd_weight(self) -> None:
self.log.info('do_osd_weight (not yet implemented)')
def execute(self, plan: Plan) -> Tuple[int, str]:
self.log.info('Executing plan %s' % plan.name)
commands = []
# compat weight-set
if len(plan.compat_ws):
ms_plan = cast(MsPlan, plan)
if not CRUSHMap.have_default_choose_args(ms_plan.initial.crush_dump):
self.log.debug('ceph osd crush weight-set create-compat')
result = CommandResult('')
self.send_command(result, 'mon', '', json.dumps({
'prefix': 'osd crush weight-set create-compat',
'format': 'json',
}), '')
r, outb, outs = result.wait()
if r != 0:
self.log.error('Error creating compat weight-set')
return r, outs
for osd, weight in plan.compat_ws.items():
self.log.info('ceph osd crush weight-set reweight-compat osd.%d %f',
osd, weight)
result = CommandResult('')
self.send_command(result, 'mon', '', json.dumps({
'prefix': 'osd crush weight-set reweight-compat',
'format': 'json',
'item': 'osd.%d' % osd,
'weight': [weight],
}), '')
commands.append(result)
# new_weight
reweightn = {}
for osd, weight in plan.osd_weights.items():
reweightn[str(osd)] = str(int(weight * float(0x10000)))
if len(reweightn):
self.log.info('ceph osd reweightn %s', reweightn)
result = CommandResult('')
self.send_command(result, 'mon', '', json.dumps({
'prefix': 'osd reweightn',
'format': 'json',
'weights': json.dumps(reweightn),
}), '')
commands.append(result)
# upmap
incdump = plan.inc.dump()
for item in incdump.get('new_pg_upmap', []):
self.log.info('ceph osd pg-upmap %s mappings %s', item['pgid'],
item['osds'])
result = CommandResult('foo')
self.send_command(result, 'mon', '', json.dumps({
'prefix': 'osd pg-upmap',
'format': 'json',
'pgid': item['pgid'],
'id': item['osds'],
}), 'foo')
commands.append(result)
for pgid in incdump.get('old_pg_upmap', []):
self.log.info('ceph osd rm-pg-upmap %s', pgid)
result = CommandResult('foo')
self.send_command(result, 'mon', '', json.dumps({
'prefix': 'osd rm-pg-upmap',
'format': 'json',
'pgid': pgid,
}), 'foo')
commands.append(result)
for item in incdump.get('new_pg_upmap_items', []):
self.log.info('ceph osd pg-upmap-items %s mappings %s', item['pgid'],
item['mappings'])
osdlist = []
for m in item['mappings']:
osdlist += [m['from'], m['to']]
result = CommandResult('foo')
self.send_command(result, 'mon', '', json.dumps({
'prefix': 'osd pg-upmap-items',
'format': 'json',
'pgid': item['pgid'],
'id': osdlist,
}), 'foo')
commands.append(result)
for pgid in incdump.get('old_pg_upmap_items', []):
self.log.info('ceph osd rm-pg-upmap-items %s', pgid)
result = CommandResult('foo')
self.send_command(result, 'mon', '', json.dumps({
'prefix': 'osd rm-pg-upmap-items',
'format': 'json',
'pgid': pgid,
}), 'foo')
commands.append(result)
# read
for item in incdump.get('new_pg_upmap_primaries', []):
self.log.info('ceph osd pg-upmap-primary %s primary_osd %s', item['pgid'],
item['primary_osd'])
result = CommandResult('foo')
self.send_command(result, 'mon', '', json.dumps({
'prefix': 'osd pg-upmap-primary',
'format': 'json',
'pgid': item['pgid'],
'id': item['primary_osd'],
}), 'foo')
commands.append(result)
# wait for commands
self.log.debug('commands %s' % commands)
for result in commands:
r, outb, outs = result.wait()
if r != 0:
self.log.error('execute error: r = %d, detail = %s' % (r, outs))
return r, outs
self.log.debug('done')
return 0, ''
def gather_telemetry(self) -> Dict[str, Any]:
return {
'active': self.active,
'mode': self.mode,
}
def update_pg_upmap_activity(self, plan: Plan) -> None:
incdump = plan.inc.dump()
# update pg_upmap_items
self.pg_upmap_items_added = incdump.get('new_pg_upmap_items', [])
self.pg_upmap_items_removed = incdump.get('old_pg_upmap_items', [])
# update pg_upmap_primaries
self.pg_upmap_primaries_added = incdump.get('new_pg_upmap_primaries', [])
self.pg_upmap_primaries_removed = incdump.get('old_pg_upmap_primaries', [])
def self_test(self) -> None:
# turn balancer on
self.on()
# Get min-compat-client
min_compat_client = self.get_osdmap().dump().get('require_min_compat_client', '')
release = CephReleases[min_compat_client]
# Check upmap mode warning
r, _, warn = self.set_mode(Mode.upmap)
if release.value < CephReleases.luminous.value:
if r >= 0:
raise RuntimeError('upmap mode did not properly warn about min_compat_client')
if warn == '':
raise RuntimeError('upmap mode warning is empty when it should not be.')
# Check read mode warning
r, _, warn = self.set_mode(Mode.read)
if release.value < CephReleases.reef.value:
if r >= 0:
raise RuntimeError('read mode did not properly warn about min_compat_client')
if warn == '':
raise RuntimeError('read mode warning is empty when it should not be.')
r, _, warn = self.set_mode(Mode.upmap_read)
# Check upmap-read mode warning
if release.value < CephReleases.reef.value:
if r >= 0:
raise RuntimeError('upmap-read mode did not properly warn about min_compat_client')
if warn == '':
raise RuntimeError('upmap-read mode warning is empty when it should not be.')
# Check status
r, status, _ = self.show_status()
if r < 0:
raise RuntimeError('Balancer status was unsuccessful')
if status == '':
raise RuntimeError('Balancer status was empty')
# Turn off
self.off()
|