1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
#include "gtest/gtest.h"
#include "common/Formatter.h"
#include "common/WeightedPriorityQueue.h"
#include <numeric>
#include <vector>
#include <map>
#include <list>
#include <tuple>
#define CEPH_OP_CLASS_STRICT 0
#define CEPH_OP_CLASS_NORMAL 0
#define CEPH_OP_QUEUE_BACK 0
#define CEPH_OP_QUEUE_FRONT 0
class WeightedPriorityQueueTest : public testing::Test
{
protected:
typedef unsigned Klass;
// tuple<Prio, Klass, OpID> so that we can verfiy the op
typedef std::tuple<unsigned, unsigned, unsigned> Item;
typedef unsigned Prio;
typedef unsigned Kost;
typedef WeightedPriorityQueue<Item, Klass> WQ;
// Simulate queue structure
typedef std::list<std::pair<Kost, Item> > ItemList;
typedef std::map<Klass, ItemList> KlassItem;
typedef std::map<Prio, KlassItem> LQ;
typedef std::list<Item> Removed;
const unsigned max_prios = 5; // (0-4) * 64
const unsigned klasses = 37; // Make prime to help get good coverage
void fill_queue(WQ &wq, LQ &strictq, LQ &normq,
unsigned item_size, bool randomize = false) {
unsigned p, k, c, o, op_queue, fob;
for (unsigned i = 1; i <= item_size; ++i) {
// Choose priority, class, cost and 'op' for this op.
if (randomize) {
p = (rand() % max_prios) * 64;
k = rand() % klasses;
c = rand() % (1<<22); // 4M cost
// Make some of the costs 0, but make sure small costs
// still work ok.
if (c > (1<<19) && c < (1<<20)) {
c = 0;
}
op_queue = rand() % 10;
fob = rand() % 10;
} else {
p = (i % max_prios) * 64;
k = i % klasses;
c = (i % 8 == 0 || i % 16 == 0) ? 0 : 1 << (i % 23);
op_queue = i % 7; // Use prime numbers to
fob = i % 11; // get better coverage
}
o = rand() % (1<<16);
// Choose how to enqueue this op.
switch (op_queue) {
case 6 :
// Strict Queue
if (fob == 4) {
// Queue to the front.
strictq[p][k].push_front(std::make_pair(
c, std::make_tuple(p, k, o)));
wq.enqueue_strict_front(Klass(k), p, std::make_tuple(p, k, o));
} else {
//Queue to the back.
strictq[p][k].push_back(std::make_pair(
c, std::make_tuple(p, k, o)));
wq.enqueue_strict(Klass(k), p, std::make_tuple(p, k, o));
}
break;
default:
// Normal queue
if (fob == 4) {
// Queue to the front.
normq[p][k].push_front(std::make_pair(
c, std::make_tuple(p, k, o)));
wq.enqueue_front(Klass(k), p, c, std::make_tuple(p, k, o));
} else {
//Queue to the back.
normq[p][k].push_back(std::make_pair(
c, std::make_tuple(p, k, o)));
wq.enqueue(Klass(k), p, c, std::make_tuple(p, k, o));
}
break;
}
}
}
void test_queue(unsigned item_size, bool randomize = false) {
// Due to the WRR queue having a lot of probabilistic logic
// we can't determine the exact order OPs will be dequeued.
// However, the queue should not dequeue a priority out of
// order. It should also dequeue the strict priority queue
// first and in order. In both the strict and normal queues
// push front and back should be respected. Here we keep
// track of the ops queued and make sure they dequeue
// correctly.
// Set up local tracking queues
WQ wq(0, 0);
LQ strictq, normq;
fill_queue(wq, strictq, normq, item_size, randomize);
// Test that the queue is dequeuing properly.
typedef std::map<unsigned, unsigned> LastKlass;
LastKlass last_strict, last_norm;
while (!(wq.empty())) {
Item r = wq.dequeue();
if (!(strictq.empty())) {
// Check that there are no higher priorities
// in the strict queue.
LQ::reverse_iterator ri = strictq.rbegin();
EXPECT_EQ(std::get<0>(r), ri->first);
// Check that if there are multiple classes in a priority
// that it is not dequeueing the same class each time.
LastKlass::iterator si = last_strict.find(std::get<0>(r));
if (strictq[std::get<0>(r)].size() > 1 && si != last_strict.end()) {
EXPECT_NE(std::get<1>(r), si->second);
}
last_strict[std::get<0>(r)] = std::get<1>(r);
Item t = strictq[std::get<0>(r)][std::get<1>(r)].front().second;
EXPECT_EQ(std::get<2>(r), std::get<2>(t));
strictq[std::get<0>(r)][std::get<1>(r)].pop_front();
if (strictq[std::get<0>(r)][std::get<1>(r)].empty()) {
strictq[std::get<0>(r)].erase(std::get<1>(r));
}
if (strictq[std::get<0>(r)].empty()) {
strictq.erase(std::get<0>(r));
}
} else {
// Check that if there are multiple classes in a priority
// that it is not dequeueing the same class each time.
LastKlass::iterator si = last_norm.find(std::get<0>(r));
if (normq[std::get<0>(r)].size() > 1 && si != last_norm.end()) {
EXPECT_NE(std::get<1>(r), si->second);
}
last_norm[std::get<0>(r)] = std::get<1>(r);
Item t = normq[std::get<0>(r)][std::get<1>(r)].front().second;
EXPECT_EQ(std::get<2>(r), std::get<2>(t));
normq[std::get<0>(r)][std::get<1>(r)].pop_front();
if (normq[std::get<0>(r)][std::get<1>(r)].empty()) {
normq[std::get<0>(r)].erase(std::get<1>(r));
}
if (normq[std::get<0>(r)].empty()) {
normq.erase(std::get<0>(r));
}
}
}
}
void SetUp() override {
srand(time(0));
}
void TearDown() override {
}
};
TEST_F(WeightedPriorityQueueTest, wpq_size){
WQ wq(0, 0);
EXPECT_TRUE(wq.empty());
EXPECT_EQ(0u, wq.length());
// Test the strict queue size.
for (unsigned i = 1; i < 5; ++i) {
wq.enqueue_strict(Klass(i),i, std::make_tuple(i, i, i));
EXPECT_FALSE(wq.empty());
EXPECT_EQ(i, wq.length());
}
// Test the normal queue size.
for (unsigned i = 5; i < 10; ++i) {
wq.enqueue(Klass(i), i, i, std::make_tuple(i, i, i));
EXPECT_FALSE(wq.empty());
EXPECT_EQ(i, wq.length());
}
// Test that as both queues are emptied
// the size is correct.
for (unsigned i = 8; i >0; --i) {
wq.dequeue();
EXPECT_FALSE(wq.empty());
EXPECT_EQ(i, wq.length());
}
wq.dequeue();
EXPECT_TRUE(wq.empty());
EXPECT_EQ(0u, wq.length());
}
TEST_F(WeightedPriorityQueueTest, wpq_test_static) {
test_queue(1000);
}
TEST_F(WeightedPriorityQueueTest, wpq_test_random) {
test_queue(rand() % 500 + 500, true);
}
TEST_F(WeightedPriorityQueueTest, wpq_test_remove_by_class_null) {
WQ wq(0, 0);
LQ strictq, normq;
unsigned num_items = 10;
fill_queue(wq, strictq, normq, num_items);
Removed wq_removed;
// Pick a klass that was not enqueued
wq.remove_by_class(klasses + 1, &wq_removed);
EXPECT_EQ(0u, wq_removed.size());
}
TEST_F(WeightedPriorityQueueTest, wpq_test_remove_by_class) {
WQ wq(0, 0);
LQ strictq, normq;
unsigned num_items = 1000;
fill_queue(wq, strictq, normq, num_items);
unsigned num_to_remove = 0;
const Klass k = 5;
// Find how many ops are in the class
for (LQ::iterator it = strictq.begin();
it != strictq.end(); ++it) {
num_to_remove += it->second[k].size();
}
for (LQ::iterator it = normq.begin();
it != normq.end(); ++it) {
num_to_remove += it->second[k].size();
}
Removed wq_removed;
wq.remove_by_class(k, &wq_removed);
// Check that the right ops were removed.
EXPECT_EQ(num_to_remove, wq_removed.size());
EXPECT_EQ(num_items - num_to_remove, wq.length());
for (Removed::iterator it = wq_removed.begin();
it != wq_removed.end(); ++it) {
EXPECT_EQ(k, std::get<1>(*it));
}
// Check that none were missed
while (!(wq.empty())) {
EXPECT_NE(k, std::get<1>(wq.dequeue()));
}
}
|