1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph distributed storage system
*
* Copyright (C) 2014 Red Hat <contact@redhat.com>
*
* Author: Loic Dachary <loic@dachary.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <stdlib.h>
#include "erasure-code/ErasureCode.h"
#include "global/global_context.h"
#include "common/config.h"
#include "gtest/gtest.h"
#include "test/unit.h"
class ErasureCodeTest : public ErasureCode {
public:
map<int, bufferlist> encode_chunks_encoded;
unsigned int k;
unsigned int m;
unsigned int chunk_size;
ErasureCodeTest(unsigned int _k, unsigned int _m, unsigned int _chunk_size) :
k(_k), m(_m), chunk_size(_chunk_size) {}
virtual ~ErasureCodeTest() {}
virtual int init(ErasureCodeProfile &profile, ostream *ss) {
return 0;
}
virtual unsigned int get_chunk_count() const { return k + m; }
virtual unsigned int get_data_chunk_count() const { return k; }
virtual unsigned int get_chunk_size(unsigned int object_size) const {
return chunk_size;
}
virtual int encode_chunks(const set<int> &want_to_encode,
map<int, bufferlist> *encoded) {
encode_chunks_encoded = *encoded;
return 0;
}
virtual int create_ruleset(const string &name,
CrushWrapper &crush,
ostream *ss) const { return 0; }
};
/*
* If we have a buffer of 5 bytes (X below) and a chunk size of 3
* bytes, for k=3, m=1 an additional 7 bytes (P and C below) will
* need to be allocated for padding (P) and the 3 coding bytes (C).
*
* X -+ +----------+ +-X
* X | | data 0 | | X
* X | +----------+ | X
* X | +----------+ | X -> +-X
* X -+ | data 1 | +-X -> | X
* P -+ +----------+ | P
* P | +----------+ | P
* P | | data 2 | | P
* P | +----------+ | P
* C | +----------+ | C
* C | | coding 3 | | C
* C -+ +----------+ +-C
*
* The data chunks 1 and 2 (data 1 and data 2 above) overflow the
* original buffer because it needs padding. A new buffer will
* be allocated to contain the chunk that overflows and all other
* chunks after it, including the coding chunk(s).
*
* The following test creates a siguation where the buffer provided
* for encoding is not memory aligned. After encoding it asserts that:
*
* a) each chunk is SIMD aligned
* b) the data 1 chunk content is as expected which implies that its
* content has been copied over.
*
* It is possible for a flawed implementation to pas the test because the
* underlying allocation function enforces it.
*/
TEST(ErasureCodeTest, encode_memory_align)
{
int k = 3;
int m = 1;
unsigned chunk_size = ErasureCode::SIMD_ALIGN * 7;
ErasureCodeTest erasure_code(k, m, chunk_size);
set<int> want_to_encode;
for (unsigned int i = 0; i < erasure_code.get_chunk_count(); i++)
want_to_encode.insert(i);
string data(chunk_size + chunk_size / 2, 'X'); // uses 1.5 chunks out of 3
// make sure nothing is memory aligned
bufferptr ptr(buffer::create_aligned(data.length() + 1, ErasureCode::SIMD_ALIGN));
ptr.copy_in(1, data.length(), data.c_str());
ptr.set_offset(1);
ptr.set_length(data.length());
bufferlist in;
in.append(ptr);
map<int, bufferlist> encoded;
ASSERT_FALSE(in.is_aligned(ErasureCode::SIMD_ALIGN));
ASSERT_EQ(0, erasure_code.encode(want_to_encode, in, &encoded));
for (unsigned int i = 0; i < erasure_code.get_chunk_count(); i++)
ASSERT_TRUE(encoded[i].is_aligned(ErasureCode::SIMD_ALIGN));
for (unsigned i = 0; i < chunk_size / 2; i++)
ASSERT_EQ(encoded[1][i], 'X');
ASSERT_NE(encoded[1][chunk_size / 2], 'X');
}
TEST(ErasureCodeTest, encode_misaligned_non_contiguous)
{
int k = 3;
int m = 1;
unsigned chunk_size = ErasureCode::SIMD_ALIGN * 7;
ErasureCodeTest erasure_code(k, m, chunk_size);
set<int> want_to_encode;
for (unsigned int i = 0; i < erasure_code.get_chunk_count(); i++)
want_to_encode.insert(i);
string data(chunk_size, 'X');
// create a non contiguous bufferlist where the frist and the second
// bufferptr are not size aligned although they are memory aligned
bufferlist in;
{
bufferptr ptr(buffer::create_aligned(data.length() - 1, ErasureCode::SIMD_ALIGN));
in.append(ptr);
}
{
bufferptr ptr(buffer::create_aligned(data.length() + 1, ErasureCode::SIMD_ALIGN));
in.append(ptr);
}
map<int, bufferlist> encoded;
ASSERT_FALSE(in.is_contiguous());
ASSERT_TRUE(in.front().is_aligned(ErasureCode::SIMD_ALIGN));
ASSERT_FALSE(in.front().is_n_align_sized(chunk_size));
ASSERT_TRUE(in.back().is_aligned(ErasureCode::SIMD_ALIGN));
ASSERT_FALSE(in.back().is_n_align_sized(chunk_size));
ASSERT_EQ(0, erasure_code.encode(want_to_encode, in, &encoded));
for (unsigned int i = 0; i < erasure_code.get_chunk_count(); i++) {
ASSERT_TRUE(encoded[i].is_aligned(ErasureCode::SIMD_ALIGN));
ASSERT_TRUE(encoded[i].is_n_align_sized(chunk_size));
}
}
/*
* Local Variables:
* compile-command: "cd ../.. ;
* make -j4 unittest_erasure_code &&
* valgrind --tool=memcheck --leak-check=full \
* ./unittest_erasure_code \
* --gtest_filter=*.* --log-to-stderr=true"
* End:
*/
|