1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* In memory space allocator test cases.
* Author: Ramesh Chander, Ramesh.Chander@sandisk.com
*/
#include <iostream>
#include <boost/scoped_ptr.hpp>
#include <gtest/gtest.h>
#include "common/Cond.h"
#include "common/errno.h"
#include "include/stringify.h"
#include "include/Context.h"
#include "os/bluestore/Allocator.h"
using namespace std;
typedef boost::mt11213b gen_type;
class AllocTest : public ::testing::TestWithParam<const char*> {
public:
boost::scoped_ptr<Allocator> alloc;
AllocTest(): alloc(0) { }
void init_alloc(int64_t size, uint64_t min_alloc_size) {
std::cout << "Creating alloc type " << string(GetParam()) << " \n";
alloc.reset(Allocator::create(g_ceph_context, GetParam(), size,
min_alloc_size));
}
void init_close() {
alloc.reset(0);
}
void dump_alloc() {
alloc->dump();
}
};
TEST_P(AllocTest, test_alloc_init)
{
int64_t blocks = 64;
init_alloc(blocks, 1);
ASSERT_EQ(0U, alloc->get_free());
alloc->shutdown();
blocks = 1024 * 2 + 16;
init_alloc(blocks, 1);
ASSERT_EQ(0U, alloc->get_free());
alloc->shutdown();
blocks = 1024 * 2;
init_alloc(blocks, 1);
ASSERT_EQ(alloc->get_free(), (uint64_t) 0);
}
TEST_P(AllocTest, test_init_add_free)
{
int64_t block_size = 1024;
int64_t capacity = 4 * 1024 * block_size;
{
init_alloc(capacity, block_size);
auto free = alloc->get_free();
alloc->init_add_free(block_size, 0);
ASSERT_EQ(free, alloc->get_free());
alloc->init_rm_free(block_size, 0);
ASSERT_EQ(free, alloc->get_free());
}
}
TEST_P(AllocTest, test_alloc_min_alloc)
{
int64_t block_size = 4096;
int64_t capacity = 1024 * block_size;
{
init_alloc(capacity, block_size);
alloc->init_add_free(block_size, block_size);
dump_alloc();
PExtentVector extents;
EXPECT_EQ(block_size, alloc->allocate(block_size, block_size,
0, (int64_t) 0, &extents));
}
/*
* Allocate extent and make sure all comes in single extent.
*/
{
init_alloc(capacity, block_size);
alloc->init_add_free(0, block_size * 4);
PExtentVector extents;
EXPECT_EQ(4*block_size,
alloc->allocate(4 * (uint64_t)block_size, (uint64_t) block_size,
0, (int64_t) 0, &extents));
EXPECT_EQ(1u, extents.size());
EXPECT_EQ(extents[0].length, 4 * block_size);
}
/*
* Allocate extent and make sure we get two different extents.
*/
{
init_alloc(capacity, block_size);
alloc->init_add_free(0, block_size * 2);
alloc->init_add_free(3 * block_size, block_size * 2);
PExtentVector extents;
EXPECT_EQ(4*block_size,
alloc->allocate(4 * (uint64_t)block_size, (uint64_t) block_size,
0, (int64_t) 0, &extents));
EXPECT_EQ(2u, extents.size());
EXPECT_EQ(extents[0].length, 2 * block_size);
EXPECT_EQ(extents[1].length, 2 * block_size);
}
alloc->shutdown();
}
TEST_P(AllocTest, test_alloc_min_max_alloc)
{
int64_t block_size = 4096;
int64_t capacity = 1024 * block_size;
init_alloc(capacity, block_size);
/*
* Make sure we get all extents different when
* min_alloc_size == max_alloc_size
*/
{
init_alloc(capacity, block_size);
alloc->init_add_free(0, block_size * 4);
PExtentVector extents;
EXPECT_EQ(4*block_size,
alloc->allocate(4 * (uint64_t)block_size, (uint64_t) block_size,
block_size, (int64_t) 0, &extents));
for (auto e : extents) {
EXPECT_EQ(e.length, block_size);
}
EXPECT_EQ(4u, extents.size());
}
/*
* Make sure we get extents of length max_alloc size
* when max alloc size > min_alloc size
*/
{
init_alloc(capacity, block_size);
alloc->init_add_free(0, block_size * 4);
PExtentVector extents;
EXPECT_EQ(4*block_size,
alloc->allocate(4 * (uint64_t)block_size, (uint64_t) block_size,
2 * block_size, (int64_t) 0, &extents));
EXPECT_EQ(2u, extents.size());
for (auto& e : extents) {
EXPECT_EQ(e.length, block_size * 2);
}
}
/*
* Make sure allocations are of min_alloc_size when min_alloc_size > block_size.
*/
{
init_alloc(capacity, block_size);
alloc->init_add_free(0, block_size * 1024);
PExtentVector extents;
EXPECT_EQ(1024 * block_size,
alloc->allocate(1024 * (uint64_t)block_size,
(uint64_t) block_size * 4,
block_size * 4, (int64_t) 0, &extents));
for (auto& e : extents) {
EXPECT_EQ(e.length, block_size * 4);
}
EXPECT_EQ(1024u/4, extents.size());
}
/*
* Allocate and free.
*/
{
init_alloc(capacity, block_size);
alloc->init_add_free(0, block_size * 16);
PExtentVector extents;
EXPECT_EQ(16 * block_size,
alloc->allocate(16 * (uint64_t)block_size, (uint64_t) block_size,
2 * block_size, (int64_t) 0, &extents));
EXPECT_EQ(extents.size(), 8u);
for (auto& e : extents) {
EXPECT_EQ(e.length, 2 * block_size);
}
}
}
TEST_P(AllocTest, test_alloc_failure)
{
if (!(GetParam() == string("stupid") ||
GetParam() == string("avl") ||
GetParam() == string("bitmap") ||
GetParam() == string("hybrid"))) {
// new generation allocator(s) don't care about other-than-4K alignment
// hence the test case is not applicable
GTEST_SKIP() << "skipping for 'unaligned' allocators";
}
int64_t block_size = 4096;
int64_t capacity = 1024 * block_size;
{
init_alloc(capacity, block_size);
alloc->init_add_free(0, block_size * 256);
alloc->init_add_free(block_size * 512, block_size * 256);
PExtentVector extents;
EXPECT_EQ(512 * block_size,
alloc->allocate(512 * (uint64_t)block_size,
(uint64_t) block_size * 256,
block_size * 256, (int64_t) 0, &extents));
alloc->init_add_free(0, block_size * 256);
alloc->init_add_free(block_size * 512, block_size * 256);
extents.clear();
EXPECT_EQ(-ENOSPC,
alloc->allocate(512 * (uint64_t)block_size,
(uint64_t) block_size * 512,
block_size * 512, (int64_t) 0, &extents));
}
}
TEST_P(AllocTest, test_alloc_big)
{
int64_t block_size = 4096;
int64_t blocks = 104857600;
int64_t mas = 4096;
init_alloc(blocks*block_size, block_size);
alloc->init_add_free(2*block_size, (blocks-2)*block_size);
for (int64_t big = mas; big < 1048576*128; big*=2) {
cout << big << std::endl;
PExtentVector extents;
EXPECT_EQ(big,
alloc->allocate(big, mas, 0, &extents));
}
}
TEST_P(AllocTest, test_alloc_non_aligned_len)
{
int64_t block_size = 1 << 12;
int64_t blocks = (1 << 20) * 100;
int64_t want_size = 1 << 22;
int64_t alloc_unit = 1 << 20;
init_alloc(blocks*block_size, block_size);
alloc->init_add_free(0, 2097152);
alloc->init_add_free(2097152, 1064960);
alloc->init_add_free(3670016, 2097152);
PExtentVector extents;
EXPECT_EQ(want_size, alloc->allocate(want_size, alloc_unit, 0, &extents));
}
TEST_P(AllocTest, test_alloc_39334)
{
uint64_t block = 0x4000;
uint64_t size = 0x5d00000000;
init_alloc(size, block);
alloc->init_add_free(0x4000, 0x5cffffc000);
EXPECT_EQ(size - block, alloc->get_free());
}
TEST_P(AllocTest, test_alloc_fragmentation)
{
uint64_t capacity = 4 * 1024 * 1024;
uint64_t alloc_unit = 4096;
uint64_t want_size = alloc_unit;
PExtentVector allocated, tmp;
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0, capacity);
bool bitmap_alloc = GetParam() == std::string("bitmap");
EXPECT_EQ(0.0, alloc->get_fragmentation());
for (size_t i = 0; i < capacity / alloc_unit; ++i)
{
tmp.clear();
EXPECT_EQ(static_cast<int64_t>(want_size),
alloc->allocate(want_size, alloc_unit, 0, 0, &tmp));
allocated.insert(allocated.end(), tmp.begin(), tmp.end());
// bitmap fragmentation calculation doesn't provide such constant
// estimate
if (!bitmap_alloc) {
EXPECT_EQ(0.0, alloc->get_fragmentation());
}
}
tmp.clear();
EXPECT_EQ(-ENOSPC, alloc->allocate(want_size, alloc_unit, 0, 0, &tmp));
if (!(GetParam() == string("stupid") || GetParam() == string("bitmap"))) {
GTEST_SKIP() << "skipping for specific allocators";
}
for (size_t i = 0; i < allocated.size(); i += 2)
{
interval_set<uint64_t> release_set;
release_set.insert(allocated[i].offset, allocated[i].length);
alloc->release(release_set);
}
EXPECT_EQ(1.0, alloc->get_fragmentation());
for (size_t i = 1; i < allocated.size() / 2; i += 2)
{
interval_set<uint64_t> release_set;
release_set.insert(allocated[i].offset, allocated[i].length);
alloc->release(release_set);
}
if (bitmap_alloc) {
// fragmentation = one l1 slot is free + one l1 slot is partial
EXPECT_EQ(50U, uint64_t(alloc->get_fragmentation() * 100));
} else {
// fragmentation approx = 257 intervals / 768 max intervals
EXPECT_EQ(33u, uint64_t(alloc->get_fragmentation() * 100));
}
for (size_t i = allocated.size() / 2 + 1; i < allocated.size(); i += 2)
{
interval_set<uint64_t> release_set;
release_set.insert(allocated[i].offset, allocated[i].length);
alloc->release(release_set);
}
// doing some rounding trick as stupid allocator doesn't merge all the
// extents that causes some minor fragmentation (minor bug or by-design behavior?).
// Hence leaving just two
// digits after decimal point due to this.
EXPECT_EQ(0u, uint64_t(alloc->get_fragmentation() * 100));
}
TEST_P(AllocTest, test_fragmentation_score_0)
{
uint64_t capacity = 16LL * 1024 * 1024 * 1024; //16 GB, very small
uint64_t alloc_unit = 4096;
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0, capacity);
EXPECT_EQ(0, alloc->get_fragmentation_score());
// alloc every 100M, should get very small score
for (uint64_t pos = 0; pos < capacity; pos += 100 * 1024 * 1024) {
alloc->init_rm_free(pos, alloc_unit);
}
EXPECT_LT(alloc->get_fragmentation_score(), 0.0001); // frag < 0.01%
for (uint64_t pos = 0; pos < capacity; pos += 100 * 1024 * 1024) {
// put back
alloc->init_add_free(pos, alloc_unit);
}
// 10% space is trashed, rest is free, small score
for (uint64_t pos = 0; pos < capacity / 10; pos += 3 * alloc_unit) {
alloc->init_rm_free(pos, alloc_unit);
}
EXPECT_LT(0.01, alloc->get_fragmentation_score()); // 1% < frag < 10%
EXPECT_LT(alloc->get_fragmentation_score(), 0.1);
}
TEST_P(AllocTest, test_fragmentation_score_some)
{
uint64_t capacity = 1024 * 1024 * 1024; //1 GB, very small
uint64_t alloc_unit = 4096;
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0, capacity);
// half (in 16 chunks) is completely free,
// other half completely fragmented, expect less than 50% fragmentation score
for (uint64_t chunk = 0; chunk < capacity; chunk += capacity / 16) {
for (uint64_t pos = 0; pos < capacity / 32; pos += alloc_unit * 3) {
alloc->init_rm_free(chunk + pos, alloc_unit);
}
}
EXPECT_LT(alloc->get_fragmentation_score(), 0.5); // f < 50%
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0, capacity);
// half (in 16 chunks) is completely full,
// other half completely fragmented, expect really high fragmentation score
for (uint64_t chunk = 0; chunk < capacity; chunk += capacity / 16) {
alloc->init_rm_free(chunk + capacity / 32, capacity / 32);
for (uint64_t pos = 0; pos < capacity / 32; pos += alloc_unit * 3) {
alloc->init_rm_free(chunk + pos, alloc_unit);
}
}
EXPECT_LT(0.9, alloc->get_fragmentation_score()); // 50% < f
}
TEST_P(AllocTest, test_fragmentation_score_1)
{
uint64_t capacity = 1024 * 1024 * 1024; //1 GB, very small
uint64_t alloc_unit = 4096;
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0, capacity);
// alloc every second AU, max fragmentation
for (uint64_t pos = 0; pos < capacity; pos += alloc_unit * 2) {
alloc->init_rm_free(pos, alloc_unit);
}
EXPECT_LT(0.99, alloc->get_fragmentation_score()); // 99% < f
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0, capacity);
// 1 allocated, 4 empty; expect very high score
for (uint64_t pos = 0; pos < capacity; pos += alloc_unit * 5) {
alloc->init_rm_free(pos, alloc_unit);
}
EXPECT_LT(0.90, alloc->get_fragmentation_score()); // 90% < f
}
TEST_P(AllocTest, test_dump_fragmentation_score)
{
uint64_t capacity = 1024 * 1024 * 1024;
uint64_t one_alloc_max = 2 * 1024 * 1024;
uint64_t alloc_unit = 4096;
uint64_t want_size = alloc_unit;
uint64_t rounds = 10;
uint64_t actions_per_round = 1000;
PExtentVector allocated, tmp;
gen_type rng;
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0, capacity);
EXPECT_EQ(0.0, alloc->get_fragmentation());
EXPECT_EQ(0.0, alloc->get_fragmentation_score());
uint64_t allocated_cnt = 0;
for (size_t round = 0; round < rounds ; round++) {
for (size_t j = 0; j < actions_per_round ; j++) {
//free or allocate ?
if ( rng() % capacity >= allocated_cnt ) {
//allocate
want_size = ( rng() % one_alloc_max ) / alloc_unit * alloc_unit + alloc_unit;
tmp.clear();
int64_t r = alloc->allocate(want_size, alloc_unit, 0, 0, &tmp);
if (r > 0) {
for (auto& t: tmp) {
if (t.length > 0)
allocated.push_back(t);
}
allocated_cnt += r;
}
} else {
//free
ceph_assert(allocated.size() > 0);
size_t item = rng() % allocated.size();
ceph_assert(allocated[item].length > 0);
allocated_cnt -= allocated[item].length;
interval_set<uint64_t> release_set;
release_set.insert(allocated[item].offset, allocated[item].length);
alloc->release(release_set);
std::swap(allocated[item], allocated[allocated.size() - 1]);
allocated.resize(allocated.size() - 1);
}
}
size_t free_sum = 0;
auto iterated_allocation = [&](size_t off, size_t len) {
ceph_assert(len > 0);
free_sum += len;
};
alloc->foreach(iterated_allocation);
EXPECT_GT(1, alloc->get_fragmentation_score());
EXPECT_EQ(capacity, free_sum + allocated_cnt);
}
for (size_t i = 0; i < allocated.size(); i ++)
{
interval_set<uint64_t> release_set;
release_set.insert(allocated[i].offset, allocated[i].length);
alloc->release(release_set);
}
}
TEST_P(AllocTest, test_alloc_bug_24598)
{
if (string(GetParam()) != "bitmap")
return;
uint64_t capacity = 0x2625a0000ull;
uint64_t alloc_unit = 0x4000;
uint64_t want_size = 0x200000;
PExtentVector allocated, tmp;
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0x4800000, 0x100000);
alloc->init_add_free(0x4a00000, 0x100000);
alloc->init_rm_free(0x4800000, 0x100000);
alloc->init_rm_free(0x4a00000, 0x100000);
alloc->init_add_free(0x3f00000, 0x500000);
alloc->init_add_free(0x4500000, 0x100000);
alloc->init_add_free(0x4700000, 0x100000);
alloc->init_add_free(0x4900000, 0x100000);
alloc->init_add_free(0x4b00000, 0x200000);
EXPECT_EQ(static_cast<int64_t>(want_size),
alloc->allocate(want_size, 0x100000, 0, 0, &tmp));
EXPECT_EQ(1u, tmp.size());
EXPECT_EQ(0x4b00000u, tmp[0].offset);
EXPECT_EQ(0x200000u, tmp[0].length);
}
//Verifies issue from
//http://tracker.ceph.com/issues/40703
//
TEST_P(AllocTest, test_alloc_big2)
{
int64_t block_size = 4096;
int64_t blocks = 1048576 * 2;
int64_t mas = 1024*1024;
init_alloc(blocks*block_size, block_size);
alloc->init_add_free(0, blocks * block_size);
PExtentVector extents;
uint64_t need = block_size * blocks / 4; // 2GB
EXPECT_EQ(need,
alloc->allocate(need, mas, 0, &extents));
need = block_size * blocks / 4; // 2GB
extents.clear();
EXPECT_EQ(need,
alloc->allocate(need, mas, 0, &extents));
EXPECT_TRUE(extents[0].length > 0);
}
//Verifies stuck 4GB chunk allocation
//in StupidAllocator
//
TEST_P(AllocTest, test_alloc_big3)
{
int64_t block_size = 4096;
int64_t blocks = 1048576 * 2;
int64_t mas = 1024*1024;
init_alloc(blocks*block_size, block_size);
alloc->init_add_free(0, blocks * block_size);
PExtentVector extents;
uint64_t need = block_size * blocks / 2; // 4GB
EXPECT_EQ(need,
alloc->allocate(need, mas, 0, &extents));
EXPECT_TRUE(extents[0].length > 0);
}
TEST_P(AllocTest, test_alloc_contiguous)
{
int64_t block_size = 0x1000;
int64_t capacity = block_size * 1024 * 1024;
{
init_alloc(capacity, block_size);
alloc->init_add_free(0, capacity);
PExtentVector extents;
uint64_t need = 4 * block_size;
EXPECT_EQ(need,
alloc->allocate(need, need,
0, (int64_t)0, &extents));
EXPECT_EQ(1u, extents.size());
EXPECT_EQ(extents[0].offset, 0);
EXPECT_EQ(extents[0].length, 4 * block_size);
extents.clear();
EXPECT_EQ(need,
alloc->allocate(need, need,
0, (int64_t)0, &extents));
EXPECT_EQ(1u, extents.size());
EXPECT_EQ(extents[0].offset, 4 * block_size);
EXPECT_EQ(extents[0].length, 4 * block_size);
}
alloc->shutdown();
}
TEST_P(AllocTest, test_alloc_47883)
{
if (!(GetParam() == string("stupid") ||
GetParam() == string("avl") ||
GetParam() == string("bitmap") ||
GetParam() == string("hybrid"))) {
// new generation allocator(s) don't care about other-than-4K alignment
// hence the test case is not applicable
GTEST_SKIP() << "skipping for 'unaligned' allocators";
}
uint64_t block = 0x1000;
uint64_t size = 1599858540544ul;
init_alloc(size, block);
alloc->init_add_free(0x1b970000, 0x26000);
alloc->init_add_free(0x1747e9d5000, 0x493000);
alloc->init_add_free(0x1747ee6a000, 0x196000);
PExtentVector extents;
auto need = 0x3f980000;
auto got = alloc->allocate(need, 0x10000, 0, (int64_t)0, &extents);
EXPECT_GE(got, 0x630000);
}
TEST_P(AllocTest, test_alloc_50656_best_fit)
{
uint64_t block = 0x1000;
uint64_t size = 0x3b9e400000;
init_alloc(size, block);
// too few free extents - causes best fit mode for avls
for (size_t i = 0; i < 0x10; i++) {
alloc->init_add_free(i * 2 * 0x100000, 0x100000);
}
alloc->init_add_free(0x1e1bd13000, 0x404000);
PExtentVector extents;
auto need = 0x400000;
auto got = alloc->allocate(need, 0x10000, 0, (int64_t)0, &extents);
EXPECT_GT(got, 0);
EXPECT_EQ(got, 0x400000);
}
TEST_P(AllocTest, test_alloc_50656_first_fit)
{
uint64_t block = 0x1000;
uint64_t size = 0x3b9e400000;
init_alloc(size, block);
for (size_t i = 0; i < 0x10000; i += 2) {
alloc->init_add_free(i * 0x100000, 0x100000);
}
alloc->init_add_free(0x1e1bd13000, 0x404000);
PExtentVector extents;
auto need = 0x400000;
auto got = alloc->allocate(need, 0x10000, 0, (int64_t)0, &extents);
EXPECT_GT(got, 0);
EXPECT_EQ(got, 0x400000);
}
TEST_P(AllocTest, test_init_rm_free_unbound)
{
int64_t block_size = 1024;
int64_t capacity = 4 * 1024 * block_size;
{
init_alloc(capacity, block_size);
alloc->init_add_free(0, block_size * 2);
alloc->init_add_free(block_size * 3, block_size * 3);
alloc->init_add_free(block_size * 7, block_size * 2);
alloc->init_rm_free(block_size * 4, block_size);
ASSERT_EQ(alloc->get_free(), block_size * 6);
auto cb = [&](size_t off, size_t len) {
cout << std::hex << "0x" << off << "~" << len << std::dec << std::endl;
};
alloc->foreach(cb);
}
}
INSTANTIATE_TEST_SUITE_P(
Allocator,
AllocTest,
::testing::Values("stupid", "bitmap", "avl", "hybrid", "btree", "hybrid_btree2"));
|