diff options
Diffstat (limited to 'vendor/github.com/nwaples/rardecode/ppm_model.go')
-rw-r--r-- | vendor/github.com/nwaples/rardecode/ppm_model.go | 1096 |
1 files changed, 1096 insertions, 0 deletions
diff --git a/vendor/github.com/nwaples/rardecode/ppm_model.go b/vendor/github.com/nwaples/rardecode/ppm_model.go new file mode 100644 index 0000000000..58a545aa92 --- /dev/null +++ b/vendor/github.com/nwaples/rardecode/ppm_model.go @@ -0,0 +1,1096 @@ +package rardecode + +import ( + "errors" + "io" +) + +const ( + rangeBottom = 1 << 15 + rangeTop = 1 << 24 + + maxFreq = 124 + + intBits = 7 + periodBits = 7 + binScale = 1 << (intBits + periodBits) + + n0 = 1 + n1 = 4 + n2 = 4 + n3 = 4 + n4 = (128 + 3 - 1*n1 - 2*n2 - 3*n3) / 4 + nIndexes = n0 + n1 + n2 + n3 + n4 + + // memory is allocated in units. A unit contains unitSize number of bytes. + // A unit can store one context or two states. + unitSize = 12 + + maxUint16 = 1<<16 - 1 + freeMark = -1 +) + +var ( + errCorruptPPM = errors.New("rardecode: corrupt ppm data") + + expEscape = []byte{25, 14, 9, 7, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2} + initBinEsc = []uint16{0x3CDD, 0x1F3F, 0x59BF, 0x48F3, 0x64A1, 0x5ABC, 0x6632, 0x6051} + + ns2Index [256]byte + ns2BSIndex [256]byte + + // units2Index maps the number of units in a block to a freelist index + units2Index [128 + 1]byte + // index2Units maps a freelist index to the size of the block in units + index2Units [nIndexes]int32 +) + +func init() { + ns2BSIndex[0] = 2 * 0 + ns2BSIndex[1] = 2 * 1 + for i := 2; i < 11; i++ { + ns2BSIndex[i] = 2 * 2 + } + for i := 11; i < 256; i++ { + ns2BSIndex[i] = 2 * 3 + } + + var j, n byte + for i := range ns2Index { + ns2Index[i] = n + if j <= 3 { + n++ + j = n + } else { + j-- + } + } + + var ii byte + var iu, units int32 + for i, n := range []int{n0, n1, n2, n3, n4} { + for j := 0; j < n; j++ { + units += int32(i) + index2Units[ii] = units + for iu <= units { + units2Index[iu] = ii + iu++ + } + ii++ + } + } +} + +type rangeCoder struct { + br io.ByteReader + code uint32 + low uint32 + rnge uint32 +} + +func (r *rangeCoder) init(br io.ByteReader) error { + r.br = br + r.low = 0 + r.rnge = ^uint32(0) + for i := 0; i < 4; i++ { + c, err := r.br.ReadByte() + if err != nil { + return err + } + r.code = r.code<<8 | uint32(c) + } + return nil +} + +func (r *rangeCoder) currentCount(scale uint32) uint32 { + r.rnge /= scale + return (r.code - r.low) / r.rnge +} + +func (r *rangeCoder) normalize() error { + for { + if r.low^(r.low+r.rnge) >= rangeTop { + if r.rnge >= rangeBottom { + return nil + } + r.rnge = -r.low & (rangeBottom - 1) + } + c, err := r.br.ReadByte() + if err != nil { + return err + } + r.code = r.code<<8 | uint32(c) + r.rnge <<= 8 + r.low <<= 8 + } +} + +func (r *rangeCoder) decode(lowCount, highCount uint32) error { + r.low += r.rnge * lowCount + r.rnge *= highCount - lowCount + + return r.normalize() +} + +type see2Context struct { + summ uint16 + shift byte + count byte +} + +func newSee2Context(i uint16) see2Context { + return see2Context{i << (periodBits - 4), (periodBits - 4), 4} +} + +func (s *see2Context) mean() uint32 { + if s == nil { + return 1 + } + n := s.summ >> s.shift + if n == 0 { + return 1 + } + s.summ -= n + return uint32(n) +} + +func (s *see2Context) update() { + if s == nil || s.shift >= periodBits { + return + } + s.count-- + if s.count == 0 { + s.summ += s.summ + s.count = 3 << s.shift + s.shift++ + } +} + +type state struct { + sym byte + freq byte + + // succ can point to a context or byte in memory. + // A context pointer is a positive integer. It is an index into the states + // array that points to the first of two states which the context is + // marshalled into. + // A byte pointer is a negative integer. The magnitude represents the position + // in bytes from the bottom of the memory. As memory is modelled as an array of + // states, this is used to calculate which state, and where in the state the + // byte is stored. + // A zero value represents a nil pointer. + succ int32 +} + +// uint16 return a uint16 stored in the sym and freq fields of a state +func (s state) uint16() uint16 { return uint16(s.sym) | uint16(s.freq)<<8 } + +// setUint16 stores a uint16 in the sym and freq fields of a state +func (s *state) setUint16(n uint16) { s.sym = byte(n); s.freq = byte(n >> 8) } + +// A context is marshalled into a slice of two states. +// The first state contains the number of states, and the suffix pointer. +// If there is only one state, the second state contains that state. +// If there is more than one state, the second state contains the summFreq +// and the index to the slice of states. +type context struct { + i int32 // index into the states array for context + s []state // slice of two states representing context + a *subAllocator +} + +// succPtr returns a pointer value for the context to be stored in a state.succ +func (c *context) succPtr() int32 { return c.i } + +func (c *context) numStates() int { return int(c.s[0].uint16()) } + +func (c *context) setNumStates(n int) { c.s[0].setUint16(uint16(n)) } + +func (c *context) statesIndex() int32 { return c.s[1].succ } + +func (c *context) setStatesIndex(n int32) { c.s[1].succ = n } + +func (c *context) suffix() *context { return c.a.succContext(c.s[0].succ) } + +func (c *context) setSuffix(sc *context) { c.s[0].succ = sc.i } + +func (c *context) summFreq() uint16 { return c.s[1].uint16() } + +func (c *context) setSummFreq(f uint16) { c.s[1].setUint16(f) } + +func (c *context) notEq(ctx *context) bool { return c.i != ctx.i } + +func (c *context) states() []state { + if ns := int32(c.s[0].uint16()); ns != 1 { + i := c.s[1].succ + return c.a.states[i : i+ns] + } + return c.s[1:] +} + +// shrinkStates shrinks the state list down to size states +func (c *context) shrinkStates(states []state, size int) []state { + i1 := units2Index[(len(states)+1)>>1] + i2 := units2Index[(size+1)>>1] + + if size == 1 { + // store state in context, and free states block + n := c.statesIndex() + c.s[1] = states[0] + states = c.s[1:] + c.a.addFreeBlock(n, i1) + } else if i1 != i2 { + if n := c.a.removeFreeBlock(i2); n > 0 { + // allocate new block and copy + copy(c.a.states[n:], states[:size]) + states = c.a.states[n:] + // free old block + c.a.addFreeBlock(c.statesIndex(), i1) + c.setStatesIndex(n) + } else { + // split current block, and free units not needed + n = c.statesIndex() + index2Units[i2]<<1 + u := index2Units[i1] - index2Units[i2] + c.a.freeUnits(n, u) + } + } + c.setNumStates(size) + return states[:size] +} + +// expandStates expands the states list by one +func (c *context) expandStates() []state { + states := c.states() + ns := len(states) + if ns == 1 { + s := states[0] + n := c.a.allocUnits(1) + if n == 0 { + return nil + } + c.setStatesIndex(n) + states = c.a.states[n:] + states[0] = s + } else if ns&0x1 == 0 { + u := ns >> 1 + i1 := units2Index[u] + i2 := units2Index[u+1] + if i1 != i2 { + n := c.a.allocUnits(i2) + if n == 0 { + return nil + } + copy(c.a.states[n:], states) + c.a.addFreeBlock(c.statesIndex(), i1) + c.setStatesIndex(n) + states = c.a.states[n:] + } + } + c.setNumStates(ns + 1) + return states[:ns+1] +} + +type subAllocator struct { + // memory for allocation is split into two heaps + + heap1MaxBytes int32 // maximum bytes available in heap1 + heap1Lo int32 // heap1 bottom in number of bytes + heap1Hi int32 // heap1 top in number of bytes + heap2Lo int32 // heap2 bottom index in states + heap2Hi int32 // heap2 top index in states + glueCount int + + // Each freeList entry contains an index into states for the beginning + // of a free block. The first state in that block may contain an index + // to another free block and so on. The size of the free block in units + // (2 states) for that freeList index can be determined from the + // index2Units array. + freeList [nIndexes]int32 + + // Instead of bytes, memory is represented by a slice of states. + // context's are marshalled to and from a pair of states. + // multiple bytes are stored in a state. + states []state +} + +func (a *subAllocator) init(maxMB int) { + bytes := int32(maxMB) << 20 + heap2Units := bytes / 8 / unitSize * 7 + a.heap1MaxBytes = bytes - heap2Units*unitSize + // Add one for the case when bytes are not a multiple of unitSize + heap1Units := a.heap1MaxBytes/unitSize + 1 + // Calculate total size in state's. Add 1 unit so we can reserve the first unit. + // This will allow us to use the zero index as a nil pointer. + n := int(1+heap1Units+heap2Units) * 2 + if cap(a.states) > n { + a.states = a.states[:n] + } else { + a.states = make([]state, n) + } +} + +func (a *subAllocator) restart() { + // Pad heap1 start by 1 unit and enough bytes so that there is no + // gap between heap1 end and heap2 start. + a.heap1Lo = unitSize + (unitSize - a.heap1MaxBytes%unitSize) + a.heap1Hi = unitSize + (a.heap1MaxBytes/unitSize+1)*unitSize + a.heap2Lo = a.heap1Hi / unitSize * 2 + a.heap2Hi = int32(len(a.states)) + a.glueCount = 0 + for i := range a.freeList { + a.freeList[i] = 0 + } + for i := range a.states { + a.states[i] = state{} + } +} + +// pushByte puts a byte on the heap and returns a state.succ index that +// can be used to retrieve it. +func (a *subAllocator) pushByte(c byte) int32 { + si := a.heap1Lo / 6 // state index + oi := a.heap1Lo % 6 // byte position in state + switch oi { + case 0: + a.states[si].sym = c + case 1: + a.states[si].freq = c + default: + n := (uint(oi) - 2) * 8 + mask := ^(uint32(0xFF) << n) + succ := uint32(a.states[si].succ) & mask + succ |= uint32(c) << n + a.states[si].succ = int32(succ) + } + a.heap1Lo++ + if a.heap1Lo >= a.heap1Hi { + return 0 + } + return -a.heap1Lo +} + +// popByte reverses the previous pushByte +func (a *subAllocator) popByte() { a.heap1Lo-- } + +// succByte returns a byte from the heap given a state.succ index +func (a *subAllocator) succByte(i int32) byte { + i = -i + si := i / 6 + oi := i % 6 + switch oi { + case 0: + return a.states[si].sym + case 1: + return a.states[si].freq + default: + n := (uint(oi) - 2) * 8 + succ := uint32(a.states[si].succ) >> n + return byte(succ & 0xff) + } +} + +// succContext returns a context given a state.succ index +func (a *subAllocator) succContext(i int32) *context { + if i <= 0 { + return nil + } + return &context{i: i, s: a.states[i : i+2 : i+2], a: a} +} + +// succIsNil returns whether a state.succ points to nothing +func (a *subAllocator) succIsNil(i int32) bool { return i == 0 } + +// nextByteAddr takes a state.succ value representing a pointer +// to a byte, and returns the next bytes address +func (a *subAllocator) nextByteAddr(n int32) int32 { return n - 1 } + +func (a *subAllocator) removeFreeBlock(i byte) int32 { + n := a.freeList[i] + if n != 0 { + a.freeList[i] = a.states[n].succ + a.states[n] = state{} + } + return n +} + +func (a *subAllocator) addFreeBlock(n int32, i byte) { + a.states[n].succ = a.freeList[i] + a.freeList[i] = n +} + +func (a *subAllocator) freeUnits(n, u int32) { + i := units2Index[u] + if u != index2Units[i] { + i-- + a.addFreeBlock(n, i) + u -= index2Units[i] + n += index2Units[i] << 1 + i = units2Index[u] + } + a.addFreeBlock(n, i) +} + +func (a *subAllocator) glueFreeBlocks() { + var freeIndex int32 + + for i, n := range a.freeList { + s := state{succ: freeMark} + s.setUint16(uint16(index2Units[i])) + for n != 0 { + states := a.states[n:] + states[1].succ = freeIndex + freeIndex = n + n = states[0].succ + states[0] = s + } + a.freeList[i] = 0 + } + + for i := freeIndex; i != 0; i = a.states[i+1].succ { + if a.states[i].succ != freeMark { + continue + } + u := int32(a.states[i].uint16()) + states := a.states[i+u<<1:] + for len(states) > 0 && states[0].succ == freeMark { + u += int32(states[0].uint16()) + if u > maxUint16 { + break + } + states[0].succ = 0 + a.states[i].setUint16(uint16(u)) + states = a.states[i+u<<1:] + } + } + + for n := freeIndex; n != 0; n = a.states[n+1].succ { + if a.states[n].succ != freeMark { + continue + } + a.states[n].succ = 0 + u := int32(a.states[n].uint16()) + m := n + for u > 128 { + a.addFreeBlock(m, nIndexes-1) + u -= 128 + m += 256 + } + a.freeUnits(m, u) + } +} + +func (a *subAllocator) allocUnitsRare(index byte) int32 { + if a.glueCount == 0 { + a.glueCount = 255 + a.glueFreeBlocks() + if n := a.removeFreeBlock(index); n > 0 { + return n + } + } + // try to find a larger free block and split it + for i := index + 1; i < nIndexes; i++ { + if n := a.removeFreeBlock(i); n > 0 { + u := index2Units[i] - index2Units[index] + a.freeUnits(n+index2Units[index]<<1, u) + return n + } + } + a.glueCount-- + + // try to allocate units from the top of heap1 + n := a.heap1Hi - index2Units[index]*unitSize + if n > a.heap1Lo { + a.heap1Hi = n + return a.heap1Hi / unitSize * 2 + } + return 0 +} + +func (a *subAllocator) allocUnits(i byte) int32 { + // try to allocate a free block + if n := a.removeFreeBlock(i); n > 0 { + return n + } + // try to allocate from the bottom of heap2 + n := index2Units[i] << 1 + if a.heap2Lo+n <= a.heap2Hi { + lo := a.heap2Lo + a.heap2Lo += n + return lo + } + return a.allocUnitsRare(i) +} + +func (a *subAllocator) newContext(s state, suffix *context) *context { + var n int32 + if a.heap2Lo < a.heap2Hi { + // allocate from top of heap2 + a.heap2Hi -= 2 + n = a.heap2Hi + } else if n = a.removeFreeBlock(1); n == 0 { + if n = a.allocUnitsRare(1); n == 0 { + return nil + } + } + c := &context{i: n, s: a.states[n : n+2 : n+2], a: a} + c.s[0] = state{} + c.setNumStates(1) + c.s[1] = s + if suffix != nil { + c.setSuffix(suffix) + } + return c +} + +func (a *subAllocator) newContextSize(ns int) *context { + c := a.newContext(state{}, nil) + c.setNumStates(ns) + i := units2Index[(ns+1)>>1] + n := a.allocUnits(i) + c.setStatesIndex(n) + return c +} + +type model struct { + maxOrder int + orderFall int + initRL int + runLength int + prevSuccess byte + escCount byte + prevSym byte + initEsc byte + minC *context + maxC *context + rc rangeCoder + a subAllocator + charMask [256]byte + binSumm [128][64]uint16 + see2Cont [25][16]see2Context +} + +func (m *model) restart() { + for i := range m.charMask { + m.charMask[i] = 0 + } + m.escCount = 1 + + if m.maxOrder < 12 { + m.initRL = -m.maxOrder - 1 + } else { + m.initRL = -12 - 1 + } + m.orderFall = m.maxOrder + m.runLength = m.initRL + m.prevSuccess = 0 + + m.a.restart() + + c := m.a.newContextSize(256) + c.setSummFreq(257) + states := c.states() + for i := range states { + states[i] = state{sym: byte(i), freq: 1} + } + m.minC = c + m.maxC = c + m.prevSym = 0 + + for i := range m.binSumm { + for j, esc := range initBinEsc { + n := binScale - esc/(uint16(i)+2) + for k := j; k < len(m.binSumm[i]); k += len(initBinEsc) { + m.binSumm[i][k] = n + } + } + } + + for i := range m.see2Cont { + see := newSee2Context(5*uint16(i) + 10) + for j := range m.see2Cont[i] { + m.see2Cont[i][j] = see + } + } +} + +func (m *model) init(br io.ByteReader, reset bool, maxOrder, maxMB int) error { + err := m.rc.init(br) + if err != nil { + return err + } + if !reset { + if m.minC == nil { + return errCorruptPPM + } + return nil + } + + m.a.init(maxMB) + + if maxOrder == 1 { + return errCorruptPPM + } + m.maxOrder = maxOrder + m.restart() + return nil +} + +func (m *model) rescale(s *state) *state { + if s.freq <= maxFreq { + return s + } + c := m.minC + + var summFreq uint16 + + s.freq += 4 + states := c.states() + escFreq := c.summFreq() + 4 + + for i := range states { + f := states[i].freq + escFreq -= uint16(f) + if m.orderFall != 0 { + f++ + } + f >>= 1 + summFreq += uint16(f) + states[i].freq = f + + if i == 0 || f <= states[i-1].freq { + continue + } + j := i - 1 + for j > 0 && f > states[j-1].freq { + j-- + } + t := states[i] + copy(states[j+1:i+1], states[j:i]) + states[j] = t + } + + i := len(states) - 1 + for states[i].freq == 0 { + i-- + escFreq++ + } + if i != len(states)-1 { + states = c.shrinkStates(states, i+1) + } + s = &states[0] + if i == 0 { + for { + s.freq -= s.freq >> 1 + escFreq >>= 1 + if escFreq <= 1 { + return s + } + } + } + summFreq += escFreq - (escFreq >> 1) + c.setSummFreq(summFreq) + return s +} + +func (m *model) decodeBinSymbol() (*state, error) { + c := m.minC + s := &c.states()[0] + + ns := c.suffix().numStates() + i := m.prevSuccess + ns2BSIndex[ns-1] + byte(m.runLength>>26)&0x20 + if m.prevSym >= 64 { + i += 8 + } + if s.sym >= 64 { + i += 2 * 8 + } + bs := &m.binSumm[s.freq-1][i] + mean := (*bs + 1<<(periodBits-2)) >> periodBits + + if m.rc.currentCount(binScale) < uint32(*bs) { + err := m.rc.decode(0, uint32(*bs)) + if s.freq < 128 { + s.freq++ + } + *bs += 1<<intBits - mean + m.prevSuccess = 1 + m.runLength++ + return s, err + } + err := m.rc.decode(uint32(*bs), binScale) + *bs -= mean + m.initEsc = expEscape[*bs>>10] + m.charMask[s.sym] = m.escCount + m.prevSuccess = 0 + return nil, err +} + +func (m *model) decodeSymbol1() (*state, error) { + c := m.minC + states := c.states() + scale := uint32(c.summFreq()) + // protect against divide by zero + // TODO: look at why this happens, may be problem elsewhere + if scale == 0 { + return nil, errCorruptPPM + } + count := m.rc.currentCount(scale) + m.prevSuccess = 0 + + var n uint32 + for i := range states { + s := &states[i] + n += uint32(s.freq) + if n <= count { + continue + } + err := m.rc.decode(n-uint32(s.freq), n) + s.freq += 4 + c.setSummFreq(uint16(scale + 4)) + if i == 0 { + if 2*n > scale { + m.prevSuccess = 1 + m.runLength++ + } + } else { + if s.freq <= states[i-1].freq { + return s, err + } + states[i-1], states[i] = states[i], states[i-1] + s = &states[i-1] + } + return m.rescale(s), err + } + + for _, s := range states { + m.charMask[s.sym] = m.escCount + } + return nil, m.rc.decode(n, scale) +} + +func (m *model) makeEscFreq(c *context, numMasked int) *see2Context { + ns := c.numStates() + if ns == 256 { + return nil + } + diff := ns - numMasked + + var i int + if m.prevSym >= 64 { + i = 8 + } + if diff < c.suffix().numStates()-ns { + i++ + } + if int(c.summFreq()) < 11*ns { + i += 2 + } + if numMasked > diff { + i += 4 + } + return &m.see2Cont[ns2Index[diff-1]][i] +} + +func (m *model) decodeSymbol2(numMasked int) (*state, error) { + c := m.minC + + see := m.makeEscFreq(c, numMasked) + scale := see.mean() + + var i int + var hi uint32 + states := c.states() + sl := make([]*state, len(states)-numMasked) + for j := range sl { + for m.charMask[states[i].sym] == m.escCount { + i++ + } + hi += uint32(states[i].freq) + sl[j] = &states[i] + i++ + } + + scale += hi + count := m.rc.currentCount(scale) + + if count >= scale { + return nil, errCorruptPPM + } + if count >= hi { + err := m.rc.decode(hi, scale) + if see != nil { + see.summ += uint16(scale) + } + for _, s := range sl { + m.charMask[s.sym] = m.escCount + } + return nil, err + } + + hi = uint32(sl[0].freq) + for hi <= count { + sl = sl[1:] + hi += uint32(sl[0].freq) + } + s := sl[0] + + err := m.rc.decode(hi-uint32(s.freq), hi) + + see.update() + + m.escCount++ + m.runLength = m.initRL + + s.freq += 4 + c.setSummFreq(c.summFreq() + 4) + return m.rescale(s), err +} + +func (c *context) findState(sym byte) *state { + var i int + states := c.states() + for i = range states { + if states[i].sym == sym { + break + } + } + return &states[i] +} + +func (m *model) createSuccessors(s, ss *state) *context { + var sl []*state + + if m.orderFall != 0 { + sl = append(sl, s) + } + + c := m.minC + for suff := c.suffix(); suff != nil; suff = c.suffix() { + c = suff + + if ss == nil { + ss = c.findState(s.sym) + } + if ss.succ != s.succ { + c = m.a.succContext(ss.succ) + break + } + sl = append(sl, ss) + ss = nil + } + + if len(sl) == 0 { + return c + } + + var up state + up.sym = m.a.succByte(s.succ) + up.succ = m.a.nextByteAddr(s.succ) + + states := c.states() + if len(states) > 1 { + s = c.findState(up.sym) + + cf := uint16(s.freq) - 1 + s0 := c.summFreq() - uint16(len(states)) - cf + + if 2*cf <= s0 { + if 5*cf > s0 { + up.freq = 2 + } else { + up.freq = 1 + } + } else { + up.freq = byte(1 + (2*cf+3*s0-1)/(2*s0)) + } + } else { + up.freq = states[0].freq + } + + for i := len(sl) - 1; i >= 0; i-- { + c = m.a.newContext(up, c) + if c == nil { + return nil + } + sl[i].succ = c.succPtr() + } + return c +} + +func (m *model) update(s *state) { + if m.orderFall == 0 { + if c := m.a.succContext(s.succ); c != nil { + m.minC = c + m.maxC = c + return + } + } + + if m.escCount == 0 { + m.escCount = 1 + for i := range m.charMask { + m.charMask[i] = 0 + } + } + + var ss *state // matching minC.suffix state + + if s.freq < maxFreq/4 && m.minC.suffix() != nil { + c := m.minC.suffix() + states := c.states() + + var i int + if len(states) > 1 { + for states[i].sym != s.sym { + i++ + } + if i > 0 && states[i].freq >= states[i-1].freq { + states[i-1], states[i] = states[i], states[i-1] + i-- + } + if states[i].freq < maxFreq-9 { + states[i].freq += 2 + c.setSummFreq(c.summFreq() + 2) + } + } else if states[0].freq < 32 { + states[0].freq++ + } + ss = &states[i] // save later for createSuccessors + } + + if m.orderFall == 0 { + c := m.createSuccessors(s, ss) + if c == nil { + m.restart() + } else { + m.minC = c + m.maxC = c + s.succ = c.succPtr() + } + return + } + + succ := m.a.pushByte(s.sym) + if m.a.succIsNil(succ) { + m.restart() + return + } + + var minC *context + if m.a.succIsNil(s.succ) { + s.succ = succ + minC = m.minC + } else { + minC = m.a.succContext(s.succ) + if minC == nil { + minC = m.createSuccessors(s, ss) + if minC == nil { + m.restart() + return + } + } + m.orderFall-- + if m.orderFall == 0 { + succ = minC.succPtr() + if m.maxC.notEq(m.minC) { + m.a.popByte() + } + } + } + + n := m.minC.numStates() + s0 := int(m.minC.summFreq()) - n - int(s.freq-1) + for c := m.maxC; c.notEq(m.minC); c = c.suffix() { + var summFreq uint16 + + states := c.expandStates() + if states == nil { + m.restart() + return + } + if ns := len(states) - 1; ns != 1 { + summFreq = c.summFreq() + if 4*ns <= n && int(summFreq) <= 8*ns { + summFreq += 2 + } + if 2*ns < n { + summFreq++ + } + } else { + p := &states[0] + if p.freq < maxFreq/4-1 { + p.freq += p.freq + } else { + p.freq = maxFreq - 4 + } + summFreq = uint16(p.freq) + uint16(m.initEsc) + if n > 3 { + summFreq++ + } + } + + cf := 2 * int(s.freq) * int(summFreq+6) + sf := s0 + int(summFreq) + var freq byte + if cf >= 6*sf { + switch { + case cf >= 15*sf: + freq = 7 + case cf >= 12*sf: + freq = 6 + case cf >= 9*sf: + freq = 5 + default: + freq = 4 + } + summFreq += uint16(freq) + } else { + switch { + case cf >= 4*sf: + freq = 3 + case cf > sf: + freq = 2 + default: + freq = 1 + } + summFreq += 3 + } + states[len(states)-1] = state{sym: s.sym, freq: freq, succ: succ} + c.setSummFreq(summFreq) + } + m.minC = minC + m.maxC = minC +} + +func (m *model) ReadByte() (byte, error) { + if m.minC == nil { + return 0, errCorruptPPM + } + var s *state + var err error + if m.minC.numStates() == 1 { + s, err = m.decodeBinSymbol() + } else { + s, err = m.decodeSymbol1() + } + for s == nil && err == nil { + n := m.minC.numStates() + for m.minC.numStates() == n { + m.orderFall++ + m.minC = m.minC.suffix() + if m.minC == nil { + return 0, errCorruptPPM + } + } + s, err = m.decodeSymbol2(n) + } + if err != nil { + return 0, err + } + + // save sym so it doesn't get overwritten by a possible restart() + sym := s.sym + m.update(s) + m.prevSym = sym + return sym, nil +} |