summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/andybalholm/brotli/cluster_literal.go
blob: 6ba66f31b2ccf3eca7ae0e09e7a25e90d1d8fee6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
package brotli

import "math"

/* Copyright 2013 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

/* Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
   it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue. */
func compareAndPushToQueueLiteral(out []histogramLiteral, cluster_size []uint32, idx1 uint32, idx2 uint32, max_num_pairs uint, pairs []histogramPair, num_pairs *uint) {
	var is_good_pair bool = false
	var p histogramPair
	p.idx2 = 0
	p.idx1 = p.idx2
	p.cost_combo = 0
	p.cost_diff = p.cost_combo
	if idx1 == idx2 {
		return
	}

	if idx2 < idx1 {
		var t uint32 = idx2
		idx2 = idx1
		idx1 = t
	}

	p.idx1 = idx1
	p.idx2 = idx2
	p.cost_diff = 0.5 * clusterCostDiff(uint(cluster_size[idx1]), uint(cluster_size[idx2]))
	p.cost_diff -= out[idx1].bit_cost_
	p.cost_diff -= out[idx2].bit_cost_

	if out[idx1].total_count_ == 0 {
		p.cost_combo = out[idx2].bit_cost_
		is_good_pair = true
	} else if out[idx2].total_count_ == 0 {
		p.cost_combo = out[idx1].bit_cost_
		is_good_pair = true
	} else {
		var threshold float64
		if *num_pairs == 0 {
			threshold = 1e99
		} else {
			threshold = brotli_max_double(0.0, pairs[0].cost_diff)
		}
		var combo histogramLiteral = out[idx1]
		var cost_combo float64
		histogramAddHistogramLiteral(&combo, &out[idx2])
		cost_combo = populationCostLiteral(&combo)
		if cost_combo < threshold-p.cost_diff {
			p.cost_combo = cost_combo
			is_good_pair = true
		}
	}

	if is_good_pair {
		p.cost_diff += p.cost_combo
		if *num_pairs > 0 && histogramPairIsLess(&pairs[0], &p) {
			/* Replace the top of the queue if needed. */
			if *num_pairs < max_num_pairs {
				pairs[*num_pairs] = pairs[0]
				(*num_pairs)++
			}

			pairs[0] = p
		} else if *num_pairs < max_num_pairs {
			pairs[*num_pairs] = p
			(*num_pairs)++
		}
	}
}

func histogramCombineLiteral(out []histogramLiteral, cluster_size []uint32, symbols []uint32, clusters []uint32, pairs []histogramPair, num_clusters uint, symbols_size uint, max_clusters uint, max_num_pairs uint) uint {
	var cost_diff_threshold float64 = 0.0
	var min_cluster_size uint = 1
	var num_pairs uint = 0
	{
		/* We maintain a vector of histogram pairs, with the property that the pair
		   with the maximum bit cost reduction is the first. */
		var idx1 uint
		for idx1 = 0; idx1 < num_clusters; idx1++ {
			var idx2 uint
			for idx2 = idx1 + 1; idx2 < num_clusters; idx2++ {
				compareAndPushToQueueLiteral(out, cluster_size, clusters[idx1], clusters[idx2], max_num_pairs, pairs[0:], &num_pairs)
			}
		}
	}

	for num_clusters > min_cluster_size {
		var best_idx1 uint32
		var best_idx2 uint32
		var i uint
		if pairs[0].cost_diff >= cost_diff_threshold {
			cost_diff_threshold = 1e99
			min_cluster_size = max_clusters
			continue
		}

		/* Take the best pair from the top of heap. */
		best_idx1 = pairs[0].idx1

		best_idx2 = pairs[0].idx2
		histogramAddHistogramLiteral(&out[best_idx1], &out[best_idx2])
		out[best_idx1].bit_cost_ = pairs[0].cost_combo
		cluster_size[best_idx1] += cluster_size[best_idx2]
		for i = 0; i < symbols_size; i++ {
			if symbols[i] == best_idx2 {
				symbols[i] = best_idx1
			}
		}

		for i = 0; i < num_clusters; i++ {
			if clusters[i] == best_idx2 {
				copy(clusters[i:], clusters[i+1:][:num_clusters-i-1])
				break
			}
		}

		num_clusters--
		{
			/* Remove pairs intersecting the just combined best pair. */
			var copy_to_idx uint = 0
			for i = 0; i < num_pairs; i++ {
				var p *histogramPair = &pairs[i]
				if p.idx1 == best_idx1 || p.idx2 == best_idx1 || p.idx1 == best_idx2 || p.idx2 == best_idx2 {
					/* Remove invalid pair from the queue. */
					continue
				}

				if histogramPairIsLess(&pairs[0], p) {
					/* Replace the top of the queue if needed. */
					var front histogramPair = pairs[0]
					pairs[0] = *p
					pairs[copy_to_idx] = front
				} else {
					pairs[copy_to_idx] = *p
				}

				copy_to_idx++
			}

			num_pairs = copy_to_idx
		}

		/* Push new pairs formed with the combined histogram to the heap. */
		for i = 0; i < num_clusters; i++ {
			compareAndPushToQueueLiteral(out, cluster_size, best_idx1, clusters[i], max_num_pairs, pairs[0:], &num_pairs)
		}
	}

	return num_clusters
}

/* What is the bit cost of moving histogram from cur_symbol to candidate. */
func histogramBitCostDistanceLiteral(histogram *histogramLiteral, candidate *histogramLiteral) float64 {
	if histogram.total_count_ == 0 {
		return 0.0
	} else {
		var tmp histogramLiteral = *histogram
		histogramAddHistogramLiteral(&tmp, candidate)
		return populationCostLiteral(&tmp) - candidate.bit_cost_
	}
}

/* Find the best 'out' histogram for each of the 'in' histograms.
   When called, clusters[0..num_clusters) contains the unique values from
   symbols[0..in_size), but this property is not preserved in this function.
   Note: we assume that out[]->bit_cost_ is already up-to-date. */
func histogramRemapLiteral(in []histogramLiteral, in_size uint, clusters []uint32, num_clusters uint, out []histogramLiteral, symbols []uint32) {
	var i uint
	for i = 0; i < in_size; i++ {
		var best_out uint32
		if i == 0 {
			best_out = symbols[0]
		} else {
			best_out = symbols[i-1]
		}
		var best_bits float64 = histogramBitCostDistanceLiteral(&in[i], &out[best_out])
		var j uint
		for j = 0; j < num_clusters; j++ {
			var cur_bits float64 = histogramBitCostDistanceLiteral(&in[i], &out[clusters[j]])
			if cur_bits < best_bits {
				best_bits = cur_bits
				best_out = clusters[j]
			}
		}

		symbols[i] = best_out
	}

	/* Recompute each out based on raw and symbols. */
	for i = 0; i < num_clusters; i++ {
		histogramClearLiteral(&out[clusters[i]])
	}

	for i = 0; i < in_size; i++ {
		histogramAddHistogramLiteral(&out[symbols[i]], &in[i])
	}
}

/* Reorders elements of the out[0..length) array and changes values in
   symbols[0..length) array in the following way:
     * when called, symbols[] contains indexes into out[], and has N unique
       values (possibly N < length)
     * on return, symbols'[i] = f(symbols[i]) and
                  out'[symbols'[i]] = out[symbols[i]], for each 0 <= i < length,
       where f is a bijection between the range of symbols[] and [0..N), and
       the first occurrences of values in symbols'[i] come in consecutive
       increasing order.
   Returns N, the number of unique values in symbols[]. */

var histogramReindexLiteral_kInvalidIndex uint32 = math.MaxUint32

func histogramReindexLiteral(out []histogramLiteral, symbols []uint32, length uint) uint {
	var new_index []uint32 = make([]uint32, length)
	var next_index uint32
	var tmp []histogramLiteral
	var i uint
	for i = 0; i < length; i++ {
		new_index[i] = histogramReindexLiteral_kInvalidIndex
	}

	next_index = 0
	for i = 0; i < length; i++ {
		if new_index[symbols[i]] == histogramReindexLiteral_kInvalidIndex {
			new_index[symbols[i]] = next_index
			next_index++
		}
	}

	/* TODO: by using idea of "cycle-sort" we can avoid allocation of
	   tmp and reduce the number of copying by the factor of 2. */
	tmp = make([]histogramLiteral, next_index)

	next_index = 0
	for i = 0; i < length; i++ {
		if new_index[symbols[i]] == next_index {
			tmp[next_index] = out[symbols[i]]
			next_index++
		}

		symbols[i] = new_index[symbols[i]]
	}

	new_index = nil
	for i = 0; uint32(i) < next_index; i++ {
		out[i] = tmp[i]
	}

	tmp = nil
	return uint(next_index)
}

func clusterHistogramsLiteral(in []histogramLiteral, in_size uint, max_histograms uint, out []histogramLiteral, out_size *uint, histogram_symbols []uint32) {
	var cluster_size []uint32 = make([]uint32, in_size)
	var clusters []uint32 = make([]uint32, in_size)
	var num_clusters uint = 0
	var max_input_histograms uint = 64
	var pairs_capacity uint = max_input_histograms * max_input_histograms / 2
	var pairs []histogramPair = make([]histogramPair, (pairs_capacity + 1))
	var i uint

	/* For the first pass of clustering, we allow all pairs. */
	for i = 0; i < in_size; i++ {
		cluster_size[i] = 1
	}

	for i = 0; i < in_size; i++ {
		out[i] = in[i]
		out[i].bit_cost_ = populationCostLiteral(&in[i])
		histogram_symbols[i] = uint32(i)
	}

	for i = 0; i < in_size; i += max_input_histograms {
		var num_to_combine uint = brotli_min_size_t(in_size-i, max_input_histograms)
		var num_new_clusters uint
		var j uint
		for j = 0; j < num_to_combine; j++ {
			clusters[num_clusters+j] = uint32(i + j)
		}

		num_new_clusters = histogramCombineLiteral(out, cluster_size, histogram_symbols[i:], clusters[num_clusters:], pairs, num_to_combine, num_to_combine, max_histograms, pairs_capacity)
		num_clusters += num_new_clusters
	}
	{
		/* For the second pass, we limit the total number of histogram pairs.
		   After this limit is reached, we only keep searching for the best pair. */
		var max_num_pairs uint = brotli_min_size_t(64*num_clusters, (num_clusters/2)*num_clusters)
		if pairs_capacity < (max_num_pairs + 1) {
			var _new_size uint
			if pairs_capacity == 0 {
				_new_size = max_num_pairs + 1
			} else {
				_new_size = pairs_capacity
			}
			var new_array []histogramPair
			for _new_size < (max_num_pairs + 1) {
				_new_size *= 2
			}
			new_array = make([]histogramPair, _new_size)
			if pairs_capacity != 0 {
				copy(new_array, pairs[:pairs_capacity])
			}

			pairs = new_array
			pairs_capacity = _new_size
		}

		/* Collapse similar histograms. */
		num_clusters = histogramCombineLiteral(out, cluster_size, histogram_symbols, clusters, pairs, num_clusters, in_size, max_histograms, max_num_pairs)
	}

	pairs = nil
	cluster_size = nil

	/* Find the optimal map from original histograms to the final ones. */
	histogramRemapLiteral(in, in_size, clusters, num_clusters, out, histogram_symbols)

	clusters = nil

	/* Convert the context map to a canonical form. */
	*out_size = histogramReindexLiteral(out, histogram_symbols, in_size)
}