1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* PIM for Quagga
* Copyright (C) 2008 Everton da Silva Marques
*/
#include <zebra.h>
#include "log.h"
#include "prefix.h"
#include "plist.h"
#include "plist_int.h"
#include "pimd.h"
#include "pim_instance.h"
#include "pim_util.h"
/*
RFC 3376: 4.1.7. QQIC (Querier's Query Interval Code)
If QQIC < 128, QQI = QQIC
If QQIC >= 128, QQI = (mant | 0x10) << (exp + 3)
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|1| exp | mant |
+-+-+-+-+-+-+-+-+
Since exp=0..7 then (exp+3)=3..10, then QQI has
one of the following bit patterns:
exp=0: QQI = 0000.0000.1MMM.M000
exp=1: QQI = 0000.0001.MMMM.0000
...
exp=6: QQI = 001M.MMM0.0000.0000
exp=7: QQI = 01MM.MM00.0000.0000
--------- ---------
0x4 0x0 0x0 0x0
*/
uint8_t igmp_msg_encode16to8(uint16_t value)
{
uint8_t code;
if (value < 128) {
code = value;
} else {
uint16_t mask = 0x4000;
uint8_t exp;
uint16_t mant;
for (exp = 7; exp > 0; --exp) {
if (mask & value)
break;
mask >>= 1;
}
mant = 0x000F & (value >> (exp + 3));
code = ((uint8_t)1 << 7) | ((uint8_t)exp << 4) | (uint8_t)mant;
}
return code;
}
/*
RFC 3376: 4.1.7. QQIC (Querier's Query Interval Code)
If QQIC < 128, QQI = QQIC
If QQIC >= 128, QQI = (mant | 0x10) << (exp + 3)
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|1| exp | mant |
+-+-+-+-+-+-+-+-+
*/
uint16_t igmp_msg_decode8to16(uint8_t code)
{
uint16_t value;
if (code < 128) {
value = code;
} else {
uint16_t mant = (code & 0x0F);
uint8_t exp = (code & 0x70) >> 4;
value = (mant | 0x10) << (exp + 3);
}
return value;
}
void pim_pkt_dump(const char *label, const uint8_t *buf, int size)
{
zlog_debug("%s: pkt dump size=%d", label, size);
zlog_hexdump(buf, size);
}
int pim_is_group_224_0_0_0_24(struct in_addr group_addr)
{
static int first = 1;
static struct prefix group_224;
struct prefix group;
if (first) {
if (!str2prefix("224.0.0.0/24", &group_224))
return 0;
first = 0;
}
group.family = AF_INET;
group.u.prefix4 = group_addr;
group.prefixlen = IPV4_MAX_BITLEN;
return prefix_match(&group_224, &group);
}
int pim_is_group_224_4(struct in_addr group_addr)
{
static int first = 1;
static struct prefix group_all;
struct prefix group;
if (first) {
if (!str2prefix("224.0.0.0/4", &group_all))
return 0;
first = 0;
}
group.family = AF_INET;
group.u.prefix4 = group_addr;
group.prefixlen = IPV4_MAX_BITLEN;
return prefix_match(&group_all, &group);
}
static bool pim_cisco_match(const struct filter *filter, const struct in_addr *source,
const struct in_addr *group)
{
const struct filter_cisco *cfilter = &filter->u.cfilter;
uint32_t source_addr;
uint32_t group_addr;
group_addr = group->s_addr & ~cfilter->mask_mask.s_addr;
if (cfilter->extended) {
source_addr = source->s_addr & ~cfilter->addr_mask.s_addr;
if (group_addr == cfilter->mask.s_addr && source_addr == cfilter->addr.s_addr)
return true;
} else if (group_addr == cfilter->addr.s_addr)
return true;
return false;
}
enum filter_type pim_access_list_apply(struct access_list *access, const struct in_addr *source,
const struct in_addr *group)
{
struct filter *filter;
struct prefix group_prefix = {};
if (access == NULL)
return FILTER_DENY;
for (filter = access->head; filter; filter = filter->next) {
if (filter->cisco) {
if (pim_cisco_match(filter, source, group))
return filter->type;
}
}
group_prefix.family = AF_INET;
group_prefix.prefixlen = IPV4_MAX_BITLEN;
group_prefix.u.prefix4.s_addr = group->s_addr;
return access_list_apply(access, &group_prefix);
}
bool pim_is_group_filtered(struct pim_interface *pim_ifp, pim_addr *grp, pim_addr *src)
{
bool is_filtered = false;
#if PIM_IPV == 4
struct prefix grp_pfx = {};
pim_addr any_src = PIMADDR_ANY;
if (!pim_ifp->boundary_oil_plist && !pim_ifp->boundary_acl)
return false;
pim_addr_to_prefix(&grp_pfx, *grp);
/* Filter if either group or (S,G) are denied */
if (pim_ifp->boundary_oil_plist) {
is_filtered = prefix_list_apply_ext(pim_ifp->boundary_oil_plist, NULL, &grp_pfx,
true) == PREFIX_DENY;
if (is_filtered && PIM_DEBUG_EVENTS) {
zlog_debug("Filtering group %pI4 per prefix-list %s", grp,
pim_ifp->boundary_oil_plist->name);
}
}
if (!is_filtered && pim_ifp->boundary_acl) {
/* If src not provided, set to "any" (*)? */
if (!src)
src = &any_src;
/* S,G filtering using extended access-list syntax */
is_filtered = pim_access_list_apply(pim_ifp->boundary_acl, src, grp) == FILTER_DENY;
if (is_filtered && PIM_DEBUG_EVENTS) {
if (pim_addr_is_any(*src)) {
zlog_debug("Filtering (S,G)=(*, %pI4) per access-list %s", grp,
pim_ifp->boundary_acl->name);
} else {
zlog_debug("Filtering (S,G)=(%pI4, %pI4) per access-list %s", src,
grp, pim_ifp->boundary_acl->name);
}
}
}
#endif
return is_filtered;
}
/* This function returns all multicast group */
void pim_get_all_mcast_group(struct prefix *prefix)
{
memset(prefix, 0, sizeof(*prefix));
#if PIM_IPV == 4
/* Precomputed version of: `str2prefix("224.0.0.0/4", prefix);` */
prefix->family = AF_INET;
prefix->prefixlen = 4;
prefix->u.prefix4.s_addr = htonl(0xe0000000);
#else
/* Precomputed version of: `str2prefix("FF00::0/8", prefix)` */
prefix->family = AF_INET6;
prefix->prefixlen = 8;
prefix->u.prefix6.s6_addr[0] = 0xff;
#endif
}
bool pim_addr_is_multicast(pim_addr addr)
{
#if PIM_IPV == 4
if (IN_MULTICAST(ntohl(addr.s_addr)))
return true;
#else
if (IN6_IS_ADDR_MULTICAST(&addr))
return true;
#endif
return false;
}
|