1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
/*
* PIM for Quagga
* Copyright (C) 2008 Everton da Silva Marques
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; see the file COPYING; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <zebra.h>
#include "log.h"
#include "prefix.h"
#include "plist.h"
#include "pim_util.h"
/*
RFC 3376: 4.1.7. QQIC (Querier's Query Interval Code)
If QQIC < 128, QQI = QQIC
If QQIC >= 128, QQI = (mant | 0x10) << (exp + 3)
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|1| exp | mant |
+-+-+-+-+-+-+-+-+
Since exp=0..7 then (exp+3)=3..10, then QQI has
one of the following bit patterns:
exp=0: QQI = 0000.0000.1MMM.M000
exp=1: QQI = 0000.0001.MMMM.0000
...
exp=6: QQI = 001M.MMM0.0000.0000
exp=7: QQI = 01MM.MM00.0000.0000
--------- ---------
0x4 0x0 0x0 0x0
*/
uint8_t igmp_msg_encode16to8(uint16_t value)
{
uint8_t code;
if (value < 128) {
code = value;
} else {
uint16_t mask = 0x4000;
uint8_t exp;
uint16_t mant;
for (exp = 7; exp > 0; --exp) {
if (mask & value)
break;
mask >>= 1;
}
mant = 0x000F & (value >> (exp + 3));
code = ((uint8_t)1 << 7) | ((uint8_t)exp << 4) | (uint8_t)mant;
}
return code;
}
/*
RFC 3376: 4.1.7. QQIC (Querier's Query Interval Code)
If QQIC < 128, QQI = QQIC
If QQIC >= 128, QQI = (mant | 0x10) << (exp + 3)
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|1| exp | mant |
+-+-+-+-+-+-+-+-+
*/
uint16_t igmp_msg_decode8to16(uint8_t code)
{
uint16_t value;
if (code < 128) {
value = code;
} else {
uint16_t mant = (code & 0x0F);
uint8_t exp = (code & 0x70) >> 4;
value = (mant | 0x10) << (exp + 3);
}
return value;
}
void pim_pkt_dump(const char *label, const uint8_t *buf, int size)
{
zlog_debug("%s: pkt dump size=%d", label, size);
zlog_hexdump(buf, size);
}
int pim_is_group_224_0_0_0_24(struct in_addr group_addr)
{
static int first = 1;
static struct prefix group_224;
struct prefix group;
if (first) {
if (!str2prefix("224.0.0.0/24", &group_224))
return 0;
first = 0;
}
group.family = AF_INET;
group.u.prefix4 = group_addr;
group.prefixlen = IPV4_MAX_BITLEN;
return prefix_match(&group_224, &group);
}
int pim_is_group_224_4(struct in_addr group_addr)
{
static int first = 1;
static struct prefix group_all;
struct prefix group;
if (first) {
if (!str2prefix("224.0.0.0/4", &group_all))
return 0;
first = 0;
}
group.family = AF_INET;
group.u.prefix4 = group_addr;
group.prefixlen = IPV4_MAX_BITLEN;
return prefix_match(&group_all, &group);
}
bool pim_is_group_filtered(struct pim_interface *pim_ifp, struct in_addr *grp)
{
struct prefix grp_pfx;
struct prefix_list *pl;
if (!pim_ifp->boundary_oil_plist)
return false;
grp_pfx.family = AF_INET;
grp_pfx.prefixlen = IPV4_MAX_BITLEN;
grp_pfx.u.prefix4 = *grp;
pl = prefix_list_lookup(AFI_IP, pim_ifp->boundary_oil_plist);
return pl ? prefix_list_apply(pl, &grp_pfx) == PREFIX_DENY : false;
}
|