summaryrefslogtreecommitdiffstats
path: root/reftable/merged.c
blob: 128a810c55dd079317107bce90d287679f525394 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
Copyright 2020 Google LLC

Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file or at
https://developers.google.com/open-source/licenses/bsd
*/

#include "merged.h"

#include "constants.h"
#include "iter.h"
#include "pq.h"
#include "reader.h"
#include "record.h"
#include "reftable-merged.h"
#include "reftable-error.h"
#include "system.h"

struct merged_subiter {
	struct reftable_iterator iter;
	struct reftable_record rec;
};

struct merged_iter {
	struct merged_subiter *subiters;
	struct merged_iter_pqueue pq;
	size_t subiters_len;
	int suppress_deletions;
	ssize_t advance_index;
};

static void merged_iter_init(struct merged_iter *mi,
			     struct reftable_merged_table *mt,
			     uint8_t typ)
{
	memset(mi, 0, sizeof(*mi));
	mi->advance_index = -1;
	mi->suppress_deletions = mt->suppress_deletions;

	REFTABLE_CALLOC_ARRAY(mi->subiters, mt->readers_len);
	for (size_t i = 0; i < mt->readers_len; i++) {
		reftable_record_init(&mi->subiters[i].rec, typ);
		reader_init_iter(mt->readers[i], &mi->subiters[i].iter, typ);
	}
	mi->subiters_len = mt->readers_len;
}

static void merged_iter_close(void *p)
{
	struct merged_iter *mi = p;

	merged_iter_pqueue_release(&mi->pq);
	for (size_t i = 0; i < mi->subiters_len; i++) {
		reftable_iterator_destroy(&mi->subiters[i].iter);
		reftable_record_release(&mi->subiters[i].rec);
	}
	reftable_free(mi->subiters);
}

static int merged_iter_advance_subiter(struct merged_iter *mi, size_t idx)
{
	struct pq_entry e = {
		.index = idx,
		.rec = &mi->subiters[idx].rec,
	};
	int err;

	err = iterator_next(&mi->subiters[idx].iter, &mi->subiters[idx].rec);
	if (err)
		return err;

	merged_iter_pqueue_add(&mi->pq, &e);
	return 0;
}

static int merged_iter_seek(struct merged_iter *mi, struct reftable_record *want)
{
	int err;

	mi->advance_index = -1;

	for (size_t i = 0; i < mi->subiters_len; i++) {
		err = iterator_seek(&mi->subiters[i].iter, want);
		if (err < 0)
			return err;
		if (err > 0)
			continue;

		err = merged_iter_advance_subiter(mi, i);
		if (err < 0)
			return err;
	}

	return 0;
}

static int merged_iter_next_entry(struct merged_iter *mi,
				  struct reftable_record *rec)
{
	struct pq_entry entry = { 0 };
	int err = 0, empty;

	empty = merged_iter_pqueue_is_empty(mi->pq);

	if (mi->advance_index >= 0) {
		/*
		 * When there are no pqueue entries then we only have a single
		 * subiter left. There is no need to use the pqueue in that
		 * case anymore as we know that the subiter will return entries
		 * in the correct order already.
		 *
		 * While this may sound like a very specific edge case, it may
		 * happen more frequently than you think. Most repositories
		 * will end up having a single large base table that contains
		 * most of the refs. It's thus likely that we exhaust all
		 * subiters but the one from that base ref.
		 */
		if (empty)
			return iterator_next(&mi->subiters[mi->advance_index].iter,
					     rec);

		err = merged_iter_advance_subiter(mi, mi->advance_index);
		if (err < 0)
			return err;
		if (!err)
			empty = 0;
		mi->advance_index = -1;
	}

	if (empty)
		return 1;

	entry = merged_iter_pqueue_remove(&mi->pq);

	/*
	  One can also use reftable as datacenter-local storage, where the ref
	  database is maintained in globally consistent database (eg.
	  CockroachDB or Spanner). In this scenario, replication delays together
	  with compaction may cause newer tables to contain older entries. In
	  such a deployment, the loop below must be changed to collect all
	  entries for the same key, and return new the newest one.
	*/
	while (!merged_iter_pqueue_is_empty(mi->pq)) {
		struct pq_entry top = merged_iter_pqueue_top(mi->pq);
		int cmp;

		cmp = reftable_record_cmp(top.rec, entry.rec);
		if (cmp > 0)
			break;

		merged_iter_pqueue_remove(&mi->pq);
		err = merged_iter_advance_subiter(mi, top.index);
		if (err < 0)
			return err;
	}

	mi->advance_index = entry.index;
	SWAP(*rec, *entry.rec);
	return 0;
}

static int merged_iter_seek_void(void *it, struct reftable_record *want)
{
	return merged_iter_seek(it, want);
}

static int merged_iter_next_void(void *p, struct reftable_record *rec)
{
	struct merged_iter *mi = p;
	while (1) {
		int err = merged_iter_next_entry(mi, rec);
		if (err)
			return err;
		if (mi->suppress_deletions && reftable_record_is_deletion(rec))
			continue;
		return 0;
	}
}

static struct reftable_iterator_vtable merged_iter_vtable = {
	.seek = merged_iter_seek_void,
	.next = &merged_iter_next_void,
	.close = &merged_iter_close,
};

static void iterator_from_merged_iter(struct reftable_iterator *it,
				      struct merged_iter *mi)
{
	assert(!it->ops);
	it->iter_arg = mi;
	it->ops = &merged_iter_vtable;
}

int reftable_merged_table_new(struct reftable_merged_table **dest,
			      struct reftable_reader **readers, size_t n,
			      uint32_t hash_id)
{
	struct reftable_merged_table *m = NULL;
	uint64_t last_max = 0;
	uint64_t first_min = 0;

	for (size_t i = 0; i < n; i++) {
		uint64_t min = reftable_reader_min_update_index(readers[i]);
		uint64_t max = reftable_reader_max_update_index(readers[i]);

		if (reftable_reader_hash_id(readers[i]) != hash_id) {
			return REFTABLE_FORMAT_ERROR;
		}
		if (i == 0 || min < first_min) {
			first_min = min;
		}
		if (i == 0 || max > last_max) {
			last_max = max;
		}
	}

	REFTABLE_CALLOC_ARRAY(m, 1);
	m->readers = readers;
	m->readers_len = n;
	m->min = first_min;
	m->max = last_max;
	m->hash_id = hash_id;
	*dest = m;
	return 0;
}

void reftable_merged_table_free(struct reftable_merged_table *mt)
{
	if (!mt)
		return;
	reftable_free(mt);
}

uint64_t
reftable_merged_table_max_update_index(struct reftable_merged_table *mt)
{
	return mt->max;
}

uint64_t
reftable_merged_table_min_update_index(struct reftable_merged_table *mt)
{
	return mt->min;
}

void merged_table_init_iter(struct reftable_merged_table *mt,
			    struct reftable_iterator *it,
			    uint8_t typ)
{
	struct merged_iter *mi = reftable_malloc(sizeof(*mi));
	merged_iter_init(mi, mt, typ);
	iterator_from_merged_iter(it, mi);
}

void reftable_merged_table_init_ref_iterator(struct reftable_merged_table *mt,
					     struct reftable_iterator *it)
{
	merged_table_init_iter(mt, it, BLOCK_TYPE_REF);
}

void reftable_merged_table_init_log_iterator(struct reftable_merged_table *mt,
					     struct reftable_iterator *it)
{
	merged_table_init_iter(mt, it, BLOCK_TYPE_LOG);
}

uint32_t reftable_merged_table_hash_id(struct reftable_merged_table *mt)
{
	return mt->hash_id;
}