summaryrefslogtreecommitdiffstats
path: root/reftable/stack.c
blob: 634f0c54251b3581ca73250aca9f653f4645a569 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
/*
Copyright 2020 Google LLC

Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file or at
https://developers.google.com/open-source/licenses/bsd
*/

#include "stack.h"

#include "system.h"
#include "constants.h"
#include "merged.h"
#include "reader.h"
#include "reftable-error.h"
#include "reftable-record.h"
#include "reftable-merged.h"
#include "writer.h"

static int stack_try_add(struct reftable_stack *st,
			 int (*write_table)(struct reftable_writer *wr,
					    void *arg),
			 void *arg);
static int stack_write_compact(struct reftable_stack *st,
			       struct reftable_writer *wr,
			       size_t first, size_t last,
			       struct reftable_log_expiry_config *config);
static void reftable_addition_close(struct reftable_addition *add);
static int reftable_stack_reload_maybe_reuse(struct reftable_stack *st,
					     int reuse_open);

static int stack_filename(struct reftable_buf *dest, struct reftable_stack *st,
			  const char *name)
{
	int err;
	reftable_buf_reset(dest);
	if ((err = reftable_buf_addstr(dest, st->reftable_dir)) < 0 ||
	    (err = reftable_buf_addstr(dest, "/")) < 0 ||
	    (err = reftable_buf_addstr(dest, name)) < 0)
		return err;
	return 0;
}

static int stack_fsync(const struct reftable_write_options *opts, int fd)
{
	if (opts->fsync)
		return opts->fsync(fd);
	return fsync(fd);
}

struct fd_writer {
	const struct reftable_write_options *opts;
	int fd;
};

static ssize_t fd_writer_write(void *arg, const void *data, size_t sz)
{
	struct fd_writer *writer = arg;
	return write_in_full(writer->fd, data, sz);
}

static int fd_writer_flush(void *arg)
{
	struct fd_writer *writer = arg;
	return stack_fsync(writer->opts, writer->fd);
}

int reftable_new_stack(struct reftable_stack **dest, const char *dir,
		       const struct reftable_write_options *_opts)
{
	struct reftable_buf list_file_name = REFTABLE_BUF_INIT;
	struct reftable_write_options opts = { 0 };
	struct reftable_stack *p;
	int err;

	p = reftable_calloc(1, sizeof(*p));
	if (!p) {
		err = REFTABLE_OUT_OF_MEMORY_ERROR;
		goto out;
	}

	if (_opts)
		opts = *_opts;
	if (opts.hash_id == 0)
		opts.hash_id = REFTABLE_HASH_SHA1;

	*dest = NULL;

	reftable_buf_reset(&list_file_name);
	if ((err = reftable_buf_addstr(&list_file_name, dir)) < 0 ||
	    (err = reftable_buf_addstr(&list_file_name, "/tables.list")) < 0)
		goto out;

	p->list_file = reftable_buf_detach(&list_file_name);
	p->list_fd = -1;
	p->opts = opts;
	p->reftable_dir = reftable_strdup(dir);
	if (!p->reftable_dir) {
		err = REFTABLE_OUT_OF_MEMORY_ERROR;
		goto out;
	}

	err = reftable_stack_reload_maybe_reuse(p, 1);
	if (err < 0)
		goto out;

	*dest = p;
	err = 0;

out:
	if (err < 0)
		reftable_stack_destroy(p);
	return err;
}

static int fd_read_lines(int fd, char ***namesp)
{
	off_t size = lseek(fd, 0, SEEK_END);
	char *buf = NULL;
	int err = 0;
	if (size < 0) {
		err = REFTABLE_IO_ERROR;
		goto done;
	}
	err = lseek(fd, 0, SEEK_SET);
	if (err < 0) {
		err = REFTABLE_IO_ERROR;
		goto done;
	}

	REFTABLE_ALLOC_ARRAY(buf, size + 1);
	if (!buf) {
		err = REFTABLE_OUT_OF_MEMORY_ERROR;
		goto done;
	}

	if (read_in_full(fd, buf, size) != size) {
		err = REFTABLE_IO_ERROR;
		goto done;
	}
	buf[size] = 0;

	*namesp = parse_names(buf, size);
	if (!*namesp) {
		err = REFTABLE_OUT_OF_MEMORY_ERROR;
		goto done;
	}

done:
	reftable_free(buf);
	return err;
}

int read_lines(const char *filename, char ***namesp)
{
	int fd = open(filename, O_RDONLY);
	int err = 0;
	if (fd < 0) {
		if (errno == ENOENT) {
			REFTABLE_CALLOC_ARRAY(*namesp, 1);
			if (!*namesp)
				return REFTABLE_OUT_OF_MEMORY_ERROR;
			return 0;
		}

		return REFTABLE_IO_ERROR;
	}
	err = fd_read_lines(fd, namesp);
	close(fd);
	return err;
}

int reftable_stack_init_ref_iterator(struct reftable_stack *st,
				      struct reftable_iterator *it)
{
	return merged_table_init_iter(reftable_stack_merged_table(st),
				      it, BLOCK_TYPE_REF);
}

int reftable_stack_init_log_iterator(struct reftable_stack *st,
				     struct reftable_iterator *it)
{
	return merged_table_init_iter(reftable_stack_merged_table(st),
				      it, BLOCK_TYPE_LOG);
}

struct reftable_merged_table *
reftable_stack_merged_table(struct reftable_stack *st)
{
	return st->merged;
}

static int has_name(char **names, const char *name)
{
	while (*names) {
		if (!strcmp(*names, name))
			return 1;
		names++;
	}
	return 0;
}

/* Close and free the stack */
void reftable_stack_destroy(struct reftable_stack *st)
{
	char **names = NULL;
	int err = 0;

	if (!st)
		return;

	if (st->merged) {
		reftable_merged_table_free(st->merged);
		st->merged = NULL;
	}

	err = read_lines(st->list_file, &names);
	if (err < 0) {
		REFTABLE_FREE_AND_NULL(names);
	}

	if (st->readers) {
		int i = 0;
		struct reftable_buf filename = REFTABLE_BUF_INIT;
		for (i = 0; i < st->readers_len; i++) {
			const char *name = reader_name(st->readers[i]);
			int try_unlinking = 1;

			reftable_buf_reset(&filename);
			if (names && !has_name(names, name)) {
				if (stack_filename(&filename, st, name) < 0)
					try_unlinking = 0;
			}
			reftable_reader_decref(st->readers[i]);

			if (try_unlinking && filename.len) {
				/* On Windows, can only unlink after closing. */
				unlink(filename.buf);
			}
		}
		reftable_buf_release(&filename);
		st->readers_len = 0;
		REFTABLE_FREE_AND_NULL(st->readers);
	}

	if (st->list_fd >= 0) {
		close(st->list_fd);
		st->list_fd = -1;
	}

	REFTABLE_FREE_AND_NULL(st->list_file);
	REFTABLE_FREE_AND_NULL(st->reftable_dir);
	reftable_free(st);
	free_names(names);
}

static struct reftable_reader **stack_copy_readers(struct reftable_stack *st,
						   size_t cur_len)
{
	struct reftable_reader **cur = reftable_calloc(cur_len, sizeof(*cur));
	if (!cur)
		return NULL;
	for (size_t i = 0; i < cur_len; i++)
		cur[i] = st->readers[i];
	return cur;
}

static int reftable_stack_reload_once(struct reftable_stack *st,
				      const char **names,
				      int reuse_open)
{
	size_t cur_len = !st->merged ? 0 : st->merged->readers_len;
	struct reftable_reader **cur = NULL;
	struct reftable_reader **reused = NULL;
	struct reftable_reader **new_readers = NULL;
	size_t reused_len = 0, reused_alloc = 0, names_len;
	size_t new_readers_len = 0;
	struct reftable_merged_table *new_merged = NULL;
	struct reftable_buf table_path = REFTABLE_BUF_INIT;
	int err = 0;
	size_t i;

	if (cur_len) {
		cur = stack_copy_readers(st, cur_len);
		if (!cur) {
			err = REFTABLE_OUT_OF_MEMORY_ERROR;
			goto done;
		}
	}

	names_len = names_length(names);

	if (names_len) {
		new_readers = reftable_calloc(names_len, sizeof(*new_readers));
		if (!new_readers) {
			err = REFTABLE_OUT_OF_MEMORY_ERROR;
			goto done;
		}
	}

	while (*names) {
		struct reftable_reader *rd = NULL;
		const char *name = *names++;

		/* this is linear; we assume compaction keeps the number of
		   tables under control so this is not quadratic. */
		for (i = 0; reuse_open && i < cur_len; i++) {
			if (cur[i] && 0 == strcmp(cur[i]->name, name)) {
				rd = cur[i];
				cur[i] = NULL;

				/*
				 * When reloading the stack fails, we end up
				 * releasing all new readers. This also
				 * includes the reused readers, even though
				 * they are still in used by the old stack. We
				 * thus need to keep them alive here, which we
				 * do by bumping their refcount.
				 */
				REFTABLE_ALLOC_GROW(reused, reused_len + 1, reused_alloc);
				if (!reused) {
					err = REFTABLE_OUT_OF_MEMORY_ERROR;
					goto done;
				}
				reused[reused_len++] = rd;
				reftable_reader_incref(rd);
				break;
			}
		}

		if (!rd) {
			struct reftable_block_source src = { NULL };

			err = stack_filename(&table_path, st, name);
			if (err < 0)
				goto done;

			err = reftable_block_source_from_file(&src,
							      table_path.buf);
			if (err < 0)
				goto done;

			err = reftable_reader_new(&rd, &src, name);
			if (err < 0)
				goto done;
		}

		new_readers[new_readers_len] = rd;
		new_readers_len++;
	}

	/* success! */
	err = reftable_merged_table_new(&new_merged, new_readers,
					new_readers_len, st->opts.hash_id);
	if (err < 0)
		goto done;

	/*
	 * Close the old, non-reused readers and proactively try to unlink
	 * them. This is done for systems like Windows, where the underlying
	 * file of such an open reader wouldn't have been possible to be
	 * unlinked by the compacting process.
	 */
	for (i = 0; i < cur_len; i++) {
		if (cur[i]) {
			const char *name = reader_name(cur[i]);

			err = stack_filename(&table_path, st, name);
			if (err < 0)
				goto done;

			reftable_reader_decref(cur[i]);
			unlink(table_path.buf);
		}
	}

	/* Update the stack to point to the new tables. */
	if (st->merged)
		reftable_merged_table_free(st->merged);
	new_merged->suppress_deletions = 1;
	st->merged = new_merged;

	if (st->readers)
		reftable_free(st->readers);
	st->readers = new_readers;
	st->readers_len = new_readers_len;
	new_readers = NULL;
	new_readers_len = 0;

	/*
	 * Decrement the refcount of reused readers again. This only needs to
	 * happen on the successful case, because on the unsuccessful one we
	 * decrement their refcount via `new_readers`.
	 */
	for (i = 0; i < reused_len; i++)
		reftable_reader_decref(reused[i]);

done:
	for (i = 0; i < new_readers_len; i++)
		reftable_reader_decref(new_readers[i]);
	reftable_free(new_readers);
	reftable_free(reused);
	reftable_free(cur);
	reftable_buf_release(&table_path);
	return err;
}

/* return negative if a before b. */
static int tv_cmp(struct timeval *a, struct timeval *b)
{
	time_t diff = a->tv_sec - b->tv_sec;
	int udiff = a->tv_usec - b->tv_usec;

	if (diff != 0)
		return diff;

	return udiff;
}

static int reftable_stack_reload_maybe_reuse(struct reftable_stack *st,
					     int reuse_open)
{
	char **names = NULL, **names_after = NULL;
	struct timeval deadline;
	int64_t delay = 0;
	int tries = 0, err;
	int fd = -1;

	err = gettimeofday(&deadline, NULL);
	if (err < 0)
		goto out;
	deadline.tv_sec += 3;

	while (1) {
		struct timeval now;

		err = gettimeofday(&now, NULL);
		if (err < 0)
			goto out;

		/*
		 * Only look at deadlines after the first few times. This
		 * simplifies debugging in GDB.
		 */
		tries++;
		if (tries > 3 && tv_cmp(&now, &deadline) >= 0)
			goto out;

		fd = open(st->list_file, O_RDONLY);
		if (fd < 0) {
			if (errno != ENOENT) {
				err = REFTABLE_IO_ERROR;
				goto out;
			}

			REFTABLE_CALLOC_ARRAY(names, 1);
			if (!names) {
				err = REFTABLE_OUT_OF_MEMORY_ERROR;
				goto out;
			}
		} else {
			err = fd_read_lines(fd, &names);
			if (err < 0)
				goto out;
		}

		err = reftable_stack_reload_once(st, (const char **) names, reuse_open);
		if (!err)
			break;
		if (err != REFTABLE_NOT_EXIST_ERROR)
			goto out;

		/*
		 * REFTABLE_NOT_EXIST_ERROR can be caused by a concurrent
		 * writer. Check if there was one by checking if the name list
		 * changed.
		 */
		err = read_lines(st->list_file, &names_after);
		if (err < 0)
			goto out;
		if (names_equal((const char **) names_after,
				(const char **) names)) {
			err = REFTABLE_NOT_EXIST_ERROR;
			goto out;
		}

		free_names(names);
		names = NULL;
		free_names(names_after);
		names_after = NULL;
		close(fd);
		fd = -1;

		delay = delay + (delay * rand()) / RAND_MAX + 1;
		sleep_millisec(delay);
	}

out:
	/*
	 * Invalidate the stat cache. It is sufficient to only close the file
	 * descriptor and keep the cached stat info because we never use the
	 * latter when the former is negative.
	 */
	if (st->list_fd >= 0) {
		close(st->list_fd);
		st->list_fd = -1;
	}

	/*
	 * Cache stat information in case it provides a useful signal to us.
	 * According to POSIX, "The st_ino and st_dev fields taken together
	 * uniquely identify the file within the system." That being said,
	 * Windows is not POSIX compliant and we do not have these fields
	 * available. So the information we have there is insufficient to
	 * determine whether two file descriptors point to the same file.
	 *
	 * While we could fall back to using other signals like the file's
	 * mtime, those are not sufficient to avoid races. We thus refrain from
	 * using the stat cache on such systems and fall back to the secondary
	 * caching mechanism, which is to check whether contents of the file
	 * have changed.
	 *
	 * On other systems which are POSIX compliant we must keep the file
	 * descriptor open. This is to avoid a race condition where two
	 * processes access the reftable stack at the same point in time:
	 *
	 *   1. A reads the reftable stack and caches its stat info.
	 *
	 *   2. B updates the stack, appending a new table to "tables.list".
	 *      This will both use a new inode and result in a different file
	 *      size, thus invalidating A's cache in theory.
	 *
	 *   3. B decides to auto-compact the stack and merges two tables. The
	 *      file size now matches what A has cached again. Furthermore, the
	 *      filesystem may decide to recycle the inode number of the file
	 *      we have replaced in (2) because it is not in use anymore.
	 *
	 *   4. A reloads the reftable stack. Neither the inode number nor the
	 *      file size changed. If the timestamps did not change either then
	 *      we think the cached copy of our stack is up-to-date.
	 *
	 * By keeping the file descriptor open the inode number cannot be
	 * recycled, mitigating the race.
	 */
	if (!err && fd >= 0 && !fstat(fd, &st->list_st) &&
	    st->list_st.st_dev && st->list_st.st_ino) {
		st->list_fd = fd;
		fd = -1;
	}

	if (fd >= 0)
		close(fd);
	free_names(names);
	free_names(names_after);

	if (st->opts.on_reload)
		st->opts.on_reload(st->opts.on_reload_payload);

	return err;
}

/* -1 = error
 0 = up to date
 1 = changed. */
static int stack_uptodate(struct reftable_stack *st)
{
	char **names = NULL;
	int err;
	int i = 0;

	/*
	 * When we have cached stat information available then we use it to
	 * verify whether the file has been rewritten.
	 *
	 * Note that we explicitly do not want to use `stat_validity_check()`
	 * and friends here because they may end up not comparing the `st_dev`
	 * and `st_ino` fields. These functions thus cannot guarantee that we
	 * indeed still have the same file.
	 */
	if (st->list_fd >= 0) {
		struct stat list_st;

		if (stat(st->list_file, &list_st) < 0) {
			/*
			 * It's fine for "tables.list" to not exist. In that
			 * case, we have to refresh when the loaded stack has
			 * any readers.
			 */
			if (errno == ENOENT)
				return !!st->readers_len;
			return REFTABLE_IO_ERROR;
		}

		/*
		 * When "tables.list" refers to the same file we can assume
		 * that it didn't change. This is because we always use
		 * rename(3P) to update the file and never write to it
		 * directly.
		 */
		if (st->list_st.st_dev == list_st.st_dev &&
		    st->list_st.st_ino == list_st.st_ino)
			return 0;
	}

	err = read_lines(st->list_file, &names);
	if (err < 0)
		return err;

	for (i = 0; i < st->readers_len; i++) {
		if (!names[i]) {
			err = 1;
			goto done;
		}

		if (strcmp(st->readers[i]->name, names[i])) {
			err = 1;
			goto done;
		}
	}

	if (names[st->merged->readers_len]) {
		err = 1;
		goto done;
	}

done:
	free_names(names);
	return err;
}

int reftable_stack_reload(struct reftable_stack *st)
{
	int err = stack_uptodate(st);
	if (err > 0)
		return reftable_stack_reload_maybe_reuse(st, 1);
	return err;
}

int reftable_stack_add(struct reftable_stack *st,
		       int (*write)(struct reftable_writer *wr, void *arg),
		       void *arg)
{
	int err = stack_try_add(st, write, arg);
	if (err < 0) {
		if (err == REFTABLE_OUTDATED_ERROR) {
			/* Ignore error return, we want to propagate
			   REFTABLE_OUTDATED_ERROR.
			*/
			reftable_stack_reload(st);
		}
		return err;
	}

	return 0;
}

static int format_name(struct reftable_buf *dest, uint64_t min, uint64_t max)
{
	char buf[100];
	uint32_t rnd = (uint32_t)git_rand();
	snprintf(buf, sizeof(buf), "0x%012" PRIx64 "-0x%012" PRIx64 "-%08x",
		 min, max, rnd);
	reftable_buf_reset(dest);
	return reftable_buf_addstr(dest, buf);
}

struct reftable_addition {
	struct reftable_flock tables_list_lock;
	struct reftable_stack *stack;

	char **new_tables;
	size_t new_tables_len, new_tables_cap;
	uint64_t next_update_index;
};

#define REFTABLE_ADDITION_INIT {0}

static int reftable_stack_init_addition(struct reftable_addition *add,
					struct reftable_stack *st,
					unsigned int flags)
{
	struct reftable_buf lock_file_name = REFTABLE_BUF_INIT;
	int err;

	add->stack = st;

	err = flock_acquire(&add->tables_list_lock, st->list_file,
			    st->opts.lock_timeout_ms);
	if (err < 0) {
		if (errno == EEXIST) {
			err = REFTABLE_LOCK_ERROR;
		} else {
			err = REFTABLE_IO_ERROR;
		}
		goto done;
	}
	if (st->opts.default_permissions) {
		if (chmod(add->tables_list_lock.path,
			  st->opts.default_permissions) < 0) {
			err = REFTABLE_IO_ERROR;
			goto done;
		}
	}

	err = stack_uptodate(st);
	if (err < 0)
		goto done;
	if (err > 0 && flags & REFTABLE_STACK_NEW_ADDITION_RELOAD) {
		err = reftable_stack_reload_maybe_reuse(add->stack, 1);
		if (err)
			goto done;
	}
	if (err > 0) {
		err = REFTABLE_OUTDATED_ERROR;
		goto done;
	}

	add->next_update_index = reftable_stack_next_update_index(st);
done:
	if (err)
		reftable_addition_close(add);
	reftable_buf_release(&lock_file_name);
	return err;
}

static void reftable_addition_close(struct reftable_addition *add)
{
	struct reftable_buf nm = REFTABLE_BUF_INIT;
	size_t i;

	for (i = 0; i < add->new_tables_len; i++) {
		if (!stack_filename(&nm, add->stack, add->new_tables[i]))
			unlink(nm.buf);
		reftable_free(add->new_tables[i]);
		add->new_tables[i] = NULL;
	}
	reftable_free(add->new_tables);
	add->new_tables = NULL;
	add->new_tables_len = 0;
	add->new_tables_cap = 0;

	flock_release(&add->tables_list_lock);
	reftable_buf_release(&nm);
}

void reftable_addition_destroy(struct reftable_addition *add)
{
	if (!add) {
		return;
	}
	reftable_addition_close(add);
	reftable_free(add);
}

int reftable_addition_commit(struct reftable_addition *add)
{
	struct reftable_buf table_list = REFTABLE_BUF_INIT;
	int err = 0;
	size_t i;

	if (add->new_tables_len == 0)
		goto done;

	for (i = 0; i < add->stack->merged->readers_len; i++) {
		if ((err = reftable_buf_addstr(&table_list, add->stack->readers[i]->name)) < 0 ||
		    (err = reftable_buf_addstr(&table_list, "\n")) < 0)
			goto done;
	}
	for (i = 0; i < add->new_tables_len; i++) {
		if ((err = reftable_buf_addstr(&table_list, add->new_tables[i])) < 0 ||
		    (err = reftable_buf_addstr(&table_list, "\n")) < 0)
			goto done;
	}

	err = write_in_full(add->tables_list_lock.fd, table_list.buf, table_list.len);
	reftable_buf_release(&table_list);
	if (err < 0) {
		err = REFTABLE_IO_ERROR;
		goto done;
	}

	err = stack_fsync(&add->stack->opts, add->tables_list_lock.fd);
	if (err < 0) {
		err = REFTABLE_IO_ERROR;
		goto done;
	}

	err = flock_commit(&add->tables_list_lock);
	if (err < 0) {
		err = REFTABLE_IO_ERROR;
		goto done;
	}

	/* success, no more state to clean up. */
	for (i = 0; i < add->new_tables_len; i++)
		reftable_free(add->new_tables[i]);
	reftable_free(add->new_tables);
	add->new_tables = NULL;
	add->new_tables_len = 0;
	add->new_tables_cap = 0;

	err = reftable_stack_reload_maybe_reuse(add->stack, 1);
	if (err)
		goto done;

	if (!add->stack->opts.disable_auto_compact) {
		/*
		 * Auto-compact the stack to keep the number of tables in
		 * control. It is possible that a concurrent writer is already
		 * trying to compact parts of the stack, which would lead to a
		 * `REFTABLE_LOCK_ERROR` because parts of the stack are locked
		 * already. This is a benign error though, so we ignore it.
		 */
		err = reftable_stack_auto_compact(add->stack);
		if (err < 0 && err != REFTABLE_LOCK_ERROR)
			goto done;
		err = 0;
	}

done:
	reftable_addition_close(add);
	return err;
}

int reftable_stack_new_addition(struct reftable_addition **dest,
				struct reftable_stack *st,
				unsigned int flags)
{
	int err = 0;
	struct reftable_addition empty = REFTABLE_ADDITION_INIT;

	REFTABLE_CALLOC_ARRAY(*dest, 1);
	if (!*dest)
		return REFTABLE_OUT_OF_MEMORY_ERROR;

	**dest = empty;
	err = reftable_stack_init_addition(*dest, st, flags);
	if (err) {
		reftable_free(*dest);
		*dest = NULL;
	}
	return err;
}

static int stack_try_add(struct reftable_stack *st,
			 int (*write_table)(struct reftable_writer *wr,
					    void *arg),
			 void *arg)
{
	struct reftable_addition add = REFTABLE_ADDITION_INIT;
	int err = reftable_stack_init_addition(&add, st, 0);
	if (err < 0)
		goto done;

	err = reftable_addition_add(&add, write_table, arg);
	if (err < 0)
		goto done;

	err = reftable_addition_commit(&add);
done:
	reftable_addition_close(&add);
	return err;
}

int reftable_addition_add(struct reftable_addition *add,
			  int (*write_table)(struct reftable_writer *wr,
					     void *arg),
			  void *arg)
{
	struct reftable_buf temp_tab_file_name = REFTABLE_BUF_INIT;
	struct reftable_buf tab_file_name = REFTABLE_BUF_INIT;
	struct reftable_buf next_name = REFTABLE_BUF_INIT;
	struct reftable_writer *wr = NULL;
	struct reftable_tmpfile tab_file = REFTABLE_TMPFILE_INIT;
	struct fd_writer writer = {
		.opts = &add->stack->opts,
	};
	int err = 0;

	reftable_buf_reset(&next_name);

	err = format_name(&next_name, add->next_update_index, add->next_update_index);
	if (err < 0)
		goto done;

	err = stack_filename(&temp_tab_file_name, add->stack, next_name.buf);
	if (err < 0)
		goto done;

	err = reftable_buf_addstr(&temp_tab_file_name, ".temp.XXXXXX");
	if (err < 0)
		goto done;

	err = tmpfile_from_pattern(&tab_file, temp_tab_file_name.buf);
	if (err < 0)
		goto done;
	if (add->stack->opts.default_permissions) {
		if (chmod(tab_file.path,
			  add->stack->opts.default_permissions)) {
			err = REFTABLE_IO_ERROR;
			goto done;
		}
	}

	writer.fd = tab_file.fd;
	err = reftable_writer_new(&wr, fd_writer_write, fd_writer_flush,
				  &writer, &add->stack->opts);
	if (err < 0)
		goto done;

	err = write_table(wr, arg);
	if (err < 0)
		goto done;

	err = reftable_writer_close(wr);
	if (err == REFTABLE_EMPTY_TABLE_ERROR) {
		err = 0;
		goto done;
	}
	if (err < 0)
		goto done;

	err = tmpfile_close(&tab_file);
	if (err < 0)
		goto done;

	if (wr->min_update_index < add->next_update_index) {
		err = REFTABLE_API_ERROR;
		goto done;
	}

	err = format_name(&next_name, wr->min_update_index, wr->max_update_index);
	if (err < 0)
		goto done;

	err = reftable_buf_addstr(&next_name, ".ref");
	if (err < 0)
		goto done;

	err = stack_filename(&tab_file_name, add->stack, next_name.buf);
	if (err < 0)
		goto done;

	/*
	  On windows, this relies on rand() picking a unique destination name.
	  Maybe we should do retry loop as well?
	 */
	err = tmpfile_rename(&tab_file, tab_file_name.buf);
	if (err < 0)
		goto done;

	REFTABLE_ALLOC_GROW(add->new_tables, add->new_tables_len + 1,
			    add->new_tables_cap);
	if (!add->new_tables) {
		err = REFTABLE_OUT_OF_MEMORY_ERROR;
		goto done;
	}
	add->new_tables[add->new_tables_len++] = reftable_buf_detach(&next_name);

done:
	tmpfile_delete(&tab_file);
	reftable_buf_release(&temp_tab_file_name);
	reftable_buf_release(&tab_file_name);
	reftable_buf_release(&next_name);
	reftable_writer_free(wr);
	return err;
}

uint64_t reftable_stack_next_update_index(struct reftable_stack *st)
{
	int sz = st->merged->readers_len;
	if (sz > 0)
		return reftable_reader_max_update_index(st->readers[sz - 1]) +
		       1;
	return 1;
}

static int stack_compact_locked(struct reftable_stack *st,
				size_t first, size_t last,
				struct reftable_log_expiry_config *config,
				struct reftable_tmpfile *tab_file_out)
{
	struct reftable_buf next_name = REFTABLE_BUF_INIT;
	struct reftable_buf tab_file_path = REFTABLE_BUF_INIT;
	struct reftable_writer *wr = NULL;
	struct fd_writer writer=  {
		.opts = &st->opts,
	};
	struct reftable_tmpfile tab_file = REFTABLE_TMPFILE_INIT;
	int err = 0;

	err = format_name(&next_name, reftable_reader_min_update_index(st->readers[first]),
			  reftable_reader_max_update_index(st->readers[last]));
	if (err < 0)
		goto done;

	err = stack_filename(&tab_file_path, st, next_name.buf);
	if (err < 0)
		goto done;

	err = reftable_buf_addstr(&tab_file_path, ".temp.XXXXXX");
	if (err < 0)
		goto done;

	err = tmpfile_from_pattern(&tab_file, tab_file_path.buf);
	if (err < 0)
		goto done;

	if (st->opts.default_permissions &&
	    chmod(tab_file.path, st->opts.default_permissions) < 0) {
		err = REFTABLE_IO_ERROR;
		goto done;
	}

	writer.fd = tab_file.fd;
	err = reftable_writer_new(&wr, fd_writer_write, fd_writer_flush,
				  &writer, &st->opts);
	if (err < 0)
		goto done;

	err = stack_write_compact(st, wr, first, last, config);
	if (err < 0)
		goto done;

	err = reftable_writer_close(wr);
	if (err < 0)
		goto done;

	err = tmpfile_close(&tab_file);
	if (err < 0)
		goto done;

	*tab_file_out = tab_file;
	tab_file = REFTABLE_TMPFILE_INIT;

done:
	tmpfile_delete(&tab_file);
	reftable_writer_free(wr);
	reftable_buf_release(&next_name);
	reftable_buf_release(&tab_file_path);
	return err;
}

static int stack_write_compact(struct reftable_stack *st,
			       struct reftable_writer *wr,
			       size_t first, size_t last,
			       struct reftable_log_expiry_config *config)
{
	struct reftable_merged_table *mt = NULL;
	struct reftable_iterator it = { NULL };
	struct reftable_ref_record ref = { NULL };
	struct reftable_log_record log = { NULL };
	size_t subtabs_len = last - first + 1;
	uint64_t entries = 0;
	int err = 0;

	for (size_t i = first; i <= last; i++)
		st->stats.bytes += st->readers[i]->size;
	reftable_writer_set_limits(wr, st->readers[first]->min_update_index,
				   st->readers[last]->max_update_index);

	err = reftable_merged_table_new(&mt, st->readers + first, subtabs_len,
					st->opts.hash_id);
	if (err < 0)
		goto done;

	err = merged_table_init_iter(mt, &it, BLOCK_TYPE_REF);
	if (err < 0)
		goto done;

	err = reftable_iterator_seek_ref(&it, "");
	if (err < 0)
		goto done;

	while (1) {
		err = reftable_iterator_next_ref(&it, &ref);
		if (err > 0) {
			err = 0;
			break;
		}
		if (err < 0)
			goto done;

		if (first == 0 && reftable_ref_record_is_deletion(&ref)) {
			continue;
		}

		err = reftable_writer_add_ref(wr, &ref);
		if (err < 0)
			goto done;
		entries++;
	}
	reftable_iterator_destroy(&it);

	err = merged_table_init_iter(mt, &it, BLOCK_TYPE_LOG);
	if (err < 0)
		goto done;

	err = reftable_iterator_seek_log(&it, "");
	if (err < 0)
		goto done;

	while (1) {
		err = reftable_iterator_next_log(&it, &log);
		if (err > 0) {
			err = 0;
			break;
		}
		if (err < 0)
			goto done;
		if (first == 0 && reftable_log_record_is_deletion(&log)) {
			continue;
		}

		if (config && config->min_update_index > 0 &&
		    log.update_index < config->min_update_index) {
			continue;
		}

		if (config && config->time > 0 &&
		    log.value.update.time < config->time) {
			continue;
		}

		err = reftable_writer_add_log(wr, &log);
		if (err < 0)
			goto done;
		entries++;
	}

done:
	reftable_iterator_destroy(&it);
	if (mt)
		reftable_merged_table_free(mt);
	reftable_ref_record_release(&ref);
	reftable_log_record_release(&log);
	st->stats.entries_written += entries;
	return err;
}

enum stack_compact_range_flags {
	/*
	 * Perform a best-effort compaction. That is, even if we cannot lock
	 * all tables in the specified range, we will try to compact the
	 * remaining slice.
	 */
	STACK_COMPACT_RANGE_BEST_EFFORT = (1 << 0),
};

/*
 * Compact all tables in the range `[first, last)` into a single new table.
 *
 * This function returns `0` on success or a code `< 0` on failure. When the
 * stack or any of the tables in the specified range are already locked then
 * this function returns `REFTABLE_LOCK_ERROR`. This is a benign error that
 * callers can either ignore, or they may choose to retry compaction after some
 * amount of time.
 */
static int stack_compact_range(struct reftable_stack *st,
			       size_t first, size_t last,
			       struct reftable_log_expiry_config *expiry,
			       unsigned int flags)
{
	struct reftable_buf tables_list_buf = REFTABLE_BUF_INIT;
	struct reftable_buf new_table_name = REFTABLE_BUF_INIT;
	struct reftable_buf new_table_path = REFTABLE_BUF_INIT;
	struct reftable_buf table_name = REFTABLE_BUF_INIT;
	struct reftable_flock tables_list_lock = REFTABLE_FLOCK_INIT;
	struct reftable_flock *table_locks = NULL;
	struct reftable_tmpfile new_table = REFTABLE_TMPFILE_INIT;
	int is_empty_table = 0, err = 0;
	size_t first_to_replace, last_to_replace;
	size_t i, nlocks = 0;
	char **names = NULL;

	if (first > last || (!expiry && first == last)) {
		err = 0;
		goto done;
	}

	st->stats.attempts++;

	/*
	 * Hold the lock so that we can read "tables.list" and lock all tables
	 * which are part of the user-specified range.
	 */
	err = flock_acquire(&tables_list_lock, st->list_file, st->opts.lock_timeout_ms);
	if (err < 0) {
		if (errno == EEXIST)
			err = REFTABLE_LOCK_ERROR;
		else
			err = REFTABLE_IO_ERROR;
		goto done;
	}

	err = stack_uptodate(st);
	if (err)
		goto done;

	/*
	 * Lock all tables in the user-provided range. This is the slice of our
	 * stack which we'll compact.
	 *
	 * Note that we lock tables in reverse order from last to first. The
	 * intent behind this is to allow a newer process to perform best
	 * effort compaction of tables that it has added in the case where an
	 * older process is still busy compacting tables which are preexisting
	 * from the point of view of the newer process.
	 */
	REFTABLE_ALLOC_ARRAY(table_locks, last - first + 1);
	if (!table_locks) {
		err = REFTABLE_OUT_OF_MEMORY_ERROR;
		goto done;
	}
	for (i = 0; i < last - first + 1; i++)
		table_locks[i] = REFTABLE_FLOCK_INIT;

	for (i = last + 1; i > first; i--) {
		err = stack_filename(&table_name, st, reader_name(st->readers[i - 1]));
		if (err < 0)
			goto done;

		err = flock_acquire(&table_locks[nlocks], table_name.buf, 0);
		if (err < 0) {
			/*
			 * When the table is locked already we may do a
			 * best-effort compaction and compact only the tables
			 * that we have managed to lock so far. This of course
			 * requires that we have been able to lock at least two
			 * tables, otherwise there would be nothing to compact.
			 * In that case, we return a lock error to our caller.
			 */
			if (errno == EEXIST && last - (i - 1) >= 2 &&
			    flags & STACK_COMPACT_RANGE_BEST_EFFORT) {
				err = 0;
				/*
				 * The subtraction is to offset the index, the
				 * addition is to only compact up to the table
				 * of the preceding iteration. They obviously
				 * cancel each other out, but that may be
				 * non-obvious when it was omitted.
				 */
				first = (i - 1) + 1;
				break;
			} else if (errno == EEXIST) {
				err = REFTABLE_LOCK_ERROR;
				goto done;
			} else {
				err = REFTABLE_IO_ERROR;
				goto done;
			}
		}

		/*
		 * We need to close the lockfiles as we might otherwise easily
		 * run into file descriptor exhaustion when we compress a lot
		 * of tables.
		 */
		err = flock_close(&table_locks[nlocks++]);
		if (err < 0) {
			err = REFTABLE_IO_ERROR;
			goto done;
		}
	}

	/*
	 * We have locked all tables in our range and can thus release the
	 * "tables.list" lock while compacting the locked tables. This allows
	 * concurrent updates to the stack to proceed.
	 */
	err = flock_release(&tables_list_lock);
	if (err < 0) {
		err = REFTABLE_IO_ERROR;
		goto done;
	}

	/*
	 * Compact the now-locked tables into a new table. Note that compacting
	 * these tables may end up with an empty new table in case tombstones
	 * end up cancelling out all refs in that range.
	 */
	err = stack_compact_locked(st, first, last, expiry, &new_table);
	if (err < 0) {
		if (err != REFTABLE_EMPTY_TABLE_ERROR)
			goto done;
		is_empty_table = 1;
	}

	/*
	 * Now that we have written the new, compacted table we need to re-lock
	 * "tables.list". We'll then replace the compacted range of tables with
	 * the new table.
	 */
	err = flock_acquire(&tables_list_lock, st->list_file, st->opts.lock_timeout_ms);
	if (err < 0) {
		if (errno == EEXIST)
			err = REFTABLE_LOCK_ERROR;
		else
			err = REFTABLE_IO_ERROR;
		goto done;
	}

	if (st->opts.default_permissions) {
		if (chmod(tables_list_lock.path,
			  st->opts.default_permissions) < 0) {
			err = REFTABLE_IO_ERROR;
			goto done;
		}
	}

	/*
	 * As we have unlocked the stack while compacting our slice of tables
	 * it may have happened that a concurrently running process has updated
	 * the stack while we were compacting. In that case, we need to check
	 * whether the tables that we have just compacted still exist in the
	 * stack in the exact same order as we have compacted them.
	 *
	 * If they do exist, then it is fine to continue and replace those
	 * tables with our compacted version. If they don't, then we need to
	 * abort.
	 */
	err = stack_uptodate(st);
	if (err < 0)
		goto done;
	if (err > 0) {
		ssize_t new_offset = -1;
		int fd;

		fd = open(st->list_file, O_RDONLY);
		if (fd < 0) {
			err = REFTABLE_IO_ERROR;
			goto done;
		}

		err = fd_read_lines(fd, &names);
		close(fd);
		if (err < 0)
			goto done;

		/*
		 * Search for the offset of the first table that we have
		 * compacted in the updated "tables.list" file.
		 */
		for (size_t i = 0; names[i]; i++) {
			if (strcmp(names[i], st->readers[first]->name))
				continue;

			/*
			 * We have found the first entry. Verify that all the
			 * subsequent tables we have compacted still exist in
			 * the modified stack in the exact same order as we
			 * have compacted them.
			 */
			for (size_t j = 1; j < last - first + 1; j++) {
				const char *old = first + j < st->merged->readers_len ?
					st->readers[first + j]->name : NULL;
				const char *new = names[i + j];

				/*
				 * If some entries are missing or in case the tables
				 * have changed then we need to bail out. Again, this
				 * shouldn't ever happen because we have locked the
				 * tables we are compacting.
				 */
				if (!old || !new || strcmp(old, new)) {
					err = REFTABLE_OUTDATED_ERROR;
					goto done;
				}
			}

			new_offset = i;
			break;
		}

		/*
		 * In case we didn't find our compacted tables in the stack we
		 * need to bail out. In theory, this should have never happened
		 * because we locked the tables we are compacting.
		 */
		if (new_offset < 0) {
			err = REFTABLE_OUTDATED_ERROR;
			goto done;
		}

		/*
		 * We have found the new range that we want to replace, so
		 * let's update the range of tables that we want to replace.
		 */
		first_to_replace = new_offset;
		last_to_replace = last + (new_offset - first);
	} else {
		/*
		 * `fd_read_lines()` uses a `NULL` sentinel to indicate that
		 * the array is at its end. As we use `free_names()` to free
		 * the array, we need to include this sentinel value here and
		 * thus have to allocate `readers_len + 1` many entries.
		 */
		REFTABLE_CALLOC_ARRAY(names, st->merged->readers_len + 1);
		if (!names) {
			err = REFTABLE_OUT_OF_MEMORY_ERROR;
			goto done;
		}

		for (size_t i = 0; i < st->merged->readers_len; i++) {
			names[i] = reftable_strdup(st->readers[i]->name);
			if (!names[i]) {
				err = REFTABLE_OUT_OF_MEMORY_ERROR;
				goto done;
			}
		}
		first_to_replace = first;
		last_to_replace = last;
	}

	/*
	 * If the resulting compacted table is not empty, then we need to move
	 * it into place now.
	 */
	if (!is_empty_table) {
		err = format_name(&new_table_name, st->readers[first]->min_update_index,
				  st->readers[last]->max_update_index);
		if (err < 0)
			goto done;

		err = reftable_buf_addstr(&new_table_name, ".ref");
		if (err < 0)
			goto done;

		err = stack_filename(&new_table_path, st, new_table_name.buf);
		if (err < 0)
			goto done;

		err = tmpfile_rename(&new_table, new_table_path.buf);
		if (err < 0)
			goto done;
	}

	/*
	 * Write the new "tables.list" contents with the compacted table we
	 * have just written. In case the compacted table became empty we
	 * simply skip writing it.
	 */
	for (i = 0; i < first_to_replace; i++) {
		if ((err = reftable_buf_addstr(&tables_list_buf, names[i])) < 0 ||
		    (err = reftable_buf_addstr(&tables_list_buf, "\n")) < 0)
		      goto done;
	}
	if (!is_empty_table) {
		if ((err = reftable_buf_addstr(&tables_list_buf, new_table_name.buf)) < 0 ||
		    (err = reftable_buf_addstr(&tables_list_buf, "\n")) < 0)
			goto done;
	}
	for (i = last_to_replace + 1; names[i]; i++) {
		if ((err = reftable_buf_addstr(&tables_list_buf, names[i])) < 0 ||
		    (err = reftable_buf_addstr(&tables_list_buf, "\n")) < 0)
			goto done;
	}

	err = write_in_full(tables_list_lock.fd,
			    tables_list_buf.buf, tables_list_buf.len);
	if (err < 0) {
		err = REFTABLE_IO_ERROR;
		unlink(new_table_path.buf);
		goto done;
	}

	err = stack_fsync(&st->opts, tables_list_lock.fd);
	if (err < 0) {
		err = REFTABLE_IO_ERROR;
		unlink(new_table_path.buf);
		goto done;
	}

	err = flock_commit(&tables_list_lock);
	if (err < 0) {
		err = REFTABLE_IO_ERROR;
		unlink(new_table_path.buf);
		goto done;
	}

	/*
	 * Reload the stack before deleting the compacted tables. We can only
	 * delete the files after we closed them on Windows, so this needs to
	 * happen first.
	 */
	err = reftable_stack_reload_maybe_reuse(st, first < last);
	if (err < 0)
		goto done;

	/*
	 * Delete the old tables. They may still be in use by concurrent
	 * readers, so it is expected that unlinking tables may fail.
	 */
	for (i = 0; i < nlocks; i++) {
		struct reftable_flock *table_lock = &table_locks[i];

		reftable_buf_reset(&table_name);
		err = reftable_buf_add(&table_name, table_lock->path,
				       strlen(table_lock->path) - strlen(".lock"));
		if (err)
			continue;

		unlink(table_name.buf);
	}

done:
	flock_release(&tables_list_lock);
	for (i = 0; table_locks && i < nlocks; i++)
		flock_release(&table_locks[i]);
	reftable_free(table_locks);

	tmpfile_delete(&new_table);
	reftable_buf_release(&new_table_name);
	reftable_buf_release(&new_table_path);
	reftable_buf_release(&tables_list_buf);
	reftable_buf_release(&table_name);
	free_names(names);

	if (err == REFTABLE_LOCK_ERROR)
		st->stats.failures++;

	return err;
}

int reftable_stack_compact_all(struct reftable_stack *st,
			       struct reftable_log_expiry_config *config)
{
	size_t last = st->merged->readers_len ? st->merged->readers_len - 1 : 0;
	return stack_compact_range(st, 0, last, config, 0);
}

static int segment_size(struct segment *s)
{
	return s->end - s->start;
}

struct segment suggest_compaction_segment(uint64_t *sizes, size_t n,
					  uint8_t factor)
{
	struct segment seg = { 0 };
	uint64_t bytes;
	size_t i;

	if (!factor)
		factor = DEFAULT_GEOMETRIC_FACTOR;

	/*
	 * If there are no tables or only a single one then we don't have to
	 * compact anything. The sequence is geometric by definition already.
	 */
	if (n <= 1)
		return seg;

	/*
	 * Find the ending table of the compaction segment needed to restore the
	 * geometric sequence. Note that the segment end is exclusive.
	 *
	 * To do so, we iterate backwards starting from the most recent table
	 * until a valid segment end is found. If the preceding table is smaller
	 * than the current table multiplied by the geometric factor (2), the
	 * compaction segment end has been identified.
	 *
	 * Tables after the ending point are not added to the byte count because
	 * they are already valid members of the geometric sequence. Due to the
	 * properties of a geometric sequence, it is not possible for the sum of
	 * these tables to exceed the value of the ending point table.
	 *
	 * Example table size sequence requiring no compaction:
	 * 	64, 32, 16, 8, 4, 2, 1
	 *
	 * Example table size sequence where compaction segment end is set to
	 * the last table. Since the segment end is exclusive, the last table is
	 * excluded during subsequent compaction and the table with size 3 is
	 * the final table included:
	 * 	64, 32, 16, 8, 4, 3, 1
	 */
	for (i = n - 1; i > 0; i--) {
		if (sizes[i - 1] < sizes[i] * factor) {
			seg.end = i + 1;
			bytes = sizes[i];
			break;
		}
	}

	/*
	 * Find the starting table of the compaction segment by iterating
	 * through the remaining tables and keeping track of the accumulated
	 * size of all tables seen from the segment end table. The previous
	 * table is compared to the accumulated size because the tables from the
	 * segment end are merged backwards recursively.
	 *
	 * Note that we keep iterating even after we have found the first
	 * starting point. This is because there may be tables in the stack
	 * preceding that first starting point which violate the geometric
	 * sequence.
	 *
	 * Example compaction segment start set to table with size 32:
	 * 	128, 32, 16, 8, 4, 3, 1
	 */
	for (; i > 0; i--) {
		uint64_t curr = bytes;
		bytes += sizes[i - 1];

		if (sizes[i - 1] < curr * factor) {
			seg.start = i - 1;
			seg.bytes = bytes;
		}
	}

	return seg;
}

static uint64_t *stack_table_sizes_for_compaction(struct reftable_stack *st)
{
	int version = (st->opts.hash_id == REFTABLE_HASH_SHA1) ? 1 : 2;
	int overhead = header_size(version) - 1;
	uint64_t *sizes;

	REFTABLE_CALLOC_ARRAY(sizes, st->merged->readers_len);
	if (!sizes)
		return NULL;

	for (size_t i = 0; i < st->merged->readers_len; i++)
		sizes[i] = st->readers[i]->size - overhead;

	return sizes;
}

int reftable_stack_auto_compact(struct reftable_stack *st)
{
	struct segment seg;
	uint64_t *sizes;

	if (st->merged->readers_len < 2)
		return 0;

	sizes = stack_table_sizes_for_compaction(st);
	if (!sizes)
		return REFTABLE_OUT_OF_MEMORY_ERROR;

	seg = suggest_compaction_segment(sizes, st->merged->readers_len,
					 st->opts.auto_compaction_factor);
	reftable_free(sizes);

	if (segment_size(&seg) > 0)
		return stack_compact_range(st, seg.start, seg.end - 1,
					   NULL, STACK_COMPACT_RANGE_BEST_EFFORT);

	return 0;
}

struct reftable_compaction_stats *
reftable_stack_compaction_stats(struct reftable_stack *st)
{
	return &st->stats;
}

int reftable_stack_read_ref(struct reftable_stack *st, const char *refname,
			    struct reftable_ref_record *ref)
{
	struct reftable_iterator it = { 0 };
	int ret;

	ret = reftable_merged_table_init_ref_iterator(st->merged, &it);
	if (ret)
		goto out;

	ret = reftable_iterator_seek_ref(&it, refname);
	if (ret)
		goto out;

	ret = reftable_iterator_next_ref(&it, ref);
	if (ret)
		goto out;

	if (strcmp(ref->refname, refname) ||
	    reftable_ref_record_is_deletion(ref)) {
		reftable_ref_record_release(ref);
		ret = 1;
		goto out;
	}

out:
	reftable_iterator_destroy(&it);
	return ret;
}

int reftable_stack_read_log(struct reftable_stack *st, const char *refname,
			    struct reftable_log_record *log)
{
	struct reftable_iterator it = {0};
	int err;

	err = reftable_stack_init_log_iterator(st, &it);
	if (err)
		goto done;

	err = reftable_iterator_seek_log(&it, refname);
	if (err)
		goto done;

	err = reftable_iterator_next_log(&it, log);
	if (err)
		goto done;

	if (strcmp(log->refname, refname) ||
	    reftable_log_record_is_deletion(log)) {
		err = 1;
		goto done;
	}

done:
	if (err) {
		reftable_log_record_release(log);
	}
	reftable_iterator_destroy(&it);
	return err;
}

static int is_table_name(const char *s)
{
	const char *dot = strrchr(s, '.');
	return dot && !strcmp(dot, ".ref");
}

static void remove_maybe_stale_table(struct reftable_stack *st, uint64_t max,
				     const char *name)
{
	int err = 0;
	uint64_t update_idx = 0;
	struct reftable_block_source src = { NULL };
	struct reftable_reader *rd = NULL;
	struct reftable_buf table_path = REFTABLE_BUF_INIT;

	err = stack_filename(&table_path, st, name);
	if (err < 0)
		goto done;

	err = reftable_block_source_from_file(&src, table_path.buf);
	if (err < 0)
		goto done;

	err = reftable_reader_new(&rd, &src, name);
	if (err < 0)
		goto done;

	update_idx = reftable_reader_max_update_index(rd);
	reftable_reader_decref(rd);

	if (update_idx <= max) {
		unlink(table_path.buf);
	}
done:
	reftable_buf_release(&table_path);
}

static int reftable_stack_clean_locked(struct reftable_stack *st)
{
	uint64_t max = reftable_merged_table_max_update_index(
		reftable_stack_merged_table(st));
	DIR *dir = opendir(st->reftable_dir);
	struct dirent *d = NULL;
	if (!dir) {
		return REFTABLE_IO_ERROR;
	}

	while ((d = readdir(dir))) {
		int i = 0;
		int found = 0;
		if (!is_table_name(d->d_name))
			continue;

		for (i = 0; !found && i < st->readers_len; i++) {
			found = !strcmp(reader_name(st->readers[i]), d->d_name);
		}
		if (found)
			continue;

		remove_maybe_stale_table(st, max, d->d_name);
	}

	closedir(dir);
	return 0;
}

int reftable_stack_clean(struct reftable_stack *st)
{
	struct reftable_addition *add = NULL;
	int err = reftable_stack_new_addition(&add, st, 0);
	if (err < 0) {
		goto done;
	}

	err = reftable_stack_reload(st);
	if (err < 0) {
		goto done;
	}

	err = reftable_stack_clean_locked(st);

done:
	reftable_addition_destroy(add);
	return err;
}

enum reftable_hash reftable_stack_hash_id(struct reftable_stack *st)
{
	return reftable_merged_table_hash_id(st->merged);
}