1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
|
// Copyright (C) 2011-2024 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <config.h>
#include <asiolink/io_address.h>
#include <dhcp/testutils/pkt_captures.h>
#include <dhcp/dhcp6.h>
#include <dhcp/option.h>
#include <dhcp/option_custom.h>
#include <dhcp/option6_ia.h>
#include <dhcp/option6_iaaddr.h>
#include <dhcp/option6_iaprefix.h>
#include <dhcp/option_int.h>
#include <dhcp/option_int_array.h>
#include <dhcp/option_string.h>
#include <dhcp/option_vendor.h>
#include <dhcp/iface_mgr.h>
#include <dhcp/pkt6.h>
#include <dhcp/hwaddr.h>
#include <dhcp/docsis3_option_defs.h>
#include <testutils/gtest_utils.h>
#include <util/range_utilities.h>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/pointer_cast.hpp>
#include <util/encode/encode.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <utility>
#include <arpa/inet.h>
using namespace std;
using namespace isc;
using namespace isc::asiolink;
using namespace isc::dhcp;
using namespace isc::dhcp::test;
using boost::scoped_ptr;
namespace {
class NakedPkt6 : public Pkt6 {
public:
/// @brief Constructor, used in replying to a message
///
/// @param msg_type type of message (SOLICIT=1, ADVERTISE=2, ...)
/// @param transid transaction-id
/// @param proto protocol (TCP or UDP)
NakedPkt6(const uint8_t msg_type, const uint32_t transid,
const DHCPv6Proto& proto = UDP)
: Pkt6(msg_type, transid, proto) {
}
/// @brief Constructor, used in message transmission
///
/// Creates new message. Transaction-id will randomized.
///
/// @param buf pointer to a buffer of received packet content
/// @param len size of buffer of received packet content
/// @param proto protocol (usually UDP, but TCP will be supported eventually)
NakedPkt6(const uint8_t* buf, const uint32_t len,
const DHCPv6Proto& proto = UDP)
: Pkt6(buf, len, proto) {
}
using Pkt::getNonCopiedOptions;
using Pkt6::getNonCopiedRelayOption;
using Pkt6::getNonCopiedRelayOptions;
using Pkt6::getNonCopiedAnyRelayOption;
using Pkt6::getNonCopiedAllRelayOptions;
};
typedef boost::shared_ptr<NakedPkt6> NakedPkt6Ptr;
class Pkt6Test : public ::testing::Test {
public:
Pkt6Test() {
}
/// @brief generates an option with given code (and length) and
/// random content
///
/// @param code option code
/// @param len data length (data will be randomized)
///
/// @return pointer to the new option
OptionPtr generateRandomOption(uint16_t code, size_t len = 10) {
OptionBuffer data(len);
util::fillRandom(data.begin(), data.end());
return OptionPtr(new Option(Option::V6, code, data));
}
/// @brief Create a wire representation of the test packet and clone it.
///
/// The purpose of this function is to create a packet to be used to
/// check that packet parsing works correctly. The unpack() function
/// requires that the data_ field of the object holds the data to be
/// parsed. This function creates an on-wire representation of the
/// packet by calling pack(). But, the pack() function stores the
/// on-wire representation into the output buffer (not the data_ field).
/// For this reason, it is not enough to return the packet on which
/// pack() is called. This function returns a clone of this packet
/// which is created using a constructor taking a buffer and buffer
/// length as an input. This constructor is normally used to parse
/// received packets. It stores the packet in a data_ field and
/// therefore unpack() can be called to parse it.
///
/// @param parent Packet from which the new packet should be created.
Pkt6Ptr packAndClone(Pkt6Ptr& parent) {
OptionPtr opt1(new Option(Option::V6, 1));
OptionPtr opt2(new Option(Option::V6, 2));
OptionPtr opt3(new Option(Option::V6, 100));
// Let's not use zero-length option type 3 as it is IA_NA
parent->addOption(opt1);
parent->addOption(opt2);
parent->addOption(opt3);
EXPECT_NO_THROW(parent->pack());
// Create second packet,based on assembled data from the first one
Pkt6Ptr clone(new Pkt6(static_cast<const uint8_t*>
(parent->getBuffer().getData()),
parent->getBuffer().getLength()));
return (clone);
}
};
TEST_F(Pkt6Test, constructor) {
uint8_t data[] = { 0, 1, 2, 3, 4, 5 };
scoped_ptr<Pkt6> pkt1(new Pkt6(data, sizeof(data)));
EXPECT_EQ(6, pkt1->data_.size());
EXPECT_EQ(0, memcmp( &pkt1->data_[0], data, sizeof(data)));
}
/// @brief returns captured actual SOLICIT packet
///
/// Captured SOLICIT packet with transid=0x3d79fb and options: client-id,
/// in_na, dns-server, elapsed-time, option-request
/// This code was autogenerated (see src/bin/dhcp6/tests/iface_mgr_unittest.c),
/// but we spent some time to make is less ugly than it used to be.
///
/// @return pointer to Pkt6 that represents received SOLICIT
Pkt6Ptr capture1() {
uint8_t data[98];
data[0] = 1;
data[1] = 1; data[2] = 2; data[3] = 3; data[4] = 0;
data[5] = 1; data[6] = 0; data[7] = 14; data[8] = 0;
data[9] = 1; data[10] = 0; data[11] = 1; data[12] = 21;
data[13] = 158; data[14] = 60; data[15] = 22; data[16] = 0;
data[17] = 30; data[18] = 140; data[19] = 155; data[20] = 115;
data[21] = 73; data[22] = 0; data[23] = 3; data[24] = 0;
data[25] = 40; data[26] = 0; data[27] = 0; data[28] = 0;
data[29] = 1; data[30] = 255; data[31] = 255; data[32] = 255;
data[33] = 255; data[34] = 255; data[35] = 255; data[36] = 255;
data[37] = 255; data[38] = 0; data[39] = 5; data[40] = 0;
data[41] = 24; data[42] = 32; data[43] = 1; data[44] = 13;
data[45] = 184; data[46] = 0; data[47] = 1; data[48] = 0;
data[49] = 0; data[50] = 0; data[51] = 0; data[52] = 0;
data[53] = 0; data[54] = 0; data[55] = 0; data[56] = 18;
data[57] = 52; data[58] = 255; data[59] = 255; data[60] = 255;
data[61] = 255; data[62] = 255; data[63] = 255; data[64] = 255;
data[65] = 255; data[66] = 0; data[67] = 23; data[68] = 0;
data[69] = 16; data[70] = 32; data[71] = 1; data[72] = 13;
data[73] = 184; data[74] = 0; data[75] = 1; data[76] = 0;
data[77] = 0; data[78] = 0; data[79] = 0; data[80] = 0;
data[81] = 0; data[82] = 0; data[83] = 0; data[84] = 221;
data[85] = 221; data[86] = 0; data[87] = 8; data[88] = 0;
data[89] = 2; data[90] = 0; data[91] = 100; data[92] = 0;
data[93] = 6; data[94] = 0; data[95] = 2; data[96] = 0;
data[97] = 23;
Pkt6Ptr pkt(new Pkt6(data, sizeof(data)));
pkt->setRemotePort(546);
pkt->setRemoteAddr(IOAddress("fe80::21e:8cff:fe9b:7349"));
pkt->setLocalPort(0);
pkt->setLocalAddr(IOAddress("ff02::1:2"));
pkt->setIndex(2);
pkt->setIface("eth0");
return (pkt);
}
/// @brief creates doubly relayed solicit message
///
/// This is a traffic capture exported from wireshark. It includes a SOLICIT
/// message that passed through two relays. Each relay include interface-id,
/// remote-id and relay-forw encapsulation. It is especially interesting,
/// because of the following properties:
/// - double encapsulation
/// - first relay inserts relay-msg before extra options
/// - second relay inserts relay-msg after extra options
/// - both relays are from different vendors
/// - interface-id are different for each relay
/// - first relay inserts valid remote-id
/// - second relay inserts remote-id with empty vendor data
/// - the solicit message requests for custom options in ORO
/// - there are option types in RELAY-FORW that do not appear in SOLICIT
/// - there are option types in SOLICT that do not appear in RELAY-FORW
///
/// RELAY-FORW
/// - relay message option
/// - RELAY-FORW
/// - interface-id option
/// - remote-id option
/// - RELAY-FORW
/// SOLICIT
/// - client-id option
/// - ia_na option
/// - elapsed time
/// - ORO
/// - interface-id option
/// - remote-id option
///
/// The original capture was posted to dibbler users mailing list.
///
/// @return created double relayed SOLICIT message
Pkt6Ptr capture2() {
// string exported from Wireshark
string hex_string =
"0c01200108880db800010000000000000000fe80000000000000020021fffe5c"
"18a90009007d0c0000000000000000000000000000000000fe80000000000000"
"020021fffe5c18a9001200154953414d3134342065746820312f312f30352f30"
"310025000400000de900090036016b4fe20001000e0001000118b03341000021"
"5c18a90003000c00000001ffffffffffffffff00080002000000060006001700"
"f200f30012001c4953414d3134347c3239397c697076367c6e743a76703a313a"
"313130002500120000197f0001000118b033410000215c18a9";
std::vector<uint8_t> bin;
// Decode the hex string and store it in bin (which happens
// to be OptionBuffer format)
isc::util::encode::decodeHex(hex_string, bin);
NakedPkt6Ptr pkt(new NakedPkt6(&bin[0], bin.size()));
pkt->setRemotePort(547);
pkt->setRemoteAddr(IOAddress("fe80::1234"));
pkt->setLocalPort(547);
pkt->setLocalAddr(IOAddress("ff05::1:3"));
pkt->setIndex(2);
pkt->setIface("eth0");
return (boost::dynamic_pointer_cast<Pkt6>(pkt));
}
TEST_F(Pkt6Test, unpack_solicit1) {
Pkt6Ptr sol(capture1());
ASSERT_NO_THROW(sol->unpack());
// Check for length
EXPECT_EQ(98, sol->len() );
// Check for type
EXPECT_EQ(DHCPV6_SOLICIT, sol->getType() );
// Check that all present options are returned
EXPECT_TRUE(sol->getOption(D6O_CLIENTID)); // client-id is present
EXPECT_TRUE(sol->getOption(D6O_IA_NA)); // IA_NA is present
EXPECT_TRUE(sol->getOption(D6O_ELAPSED_TIME)); // elapsed is present
EXPECT_TRUE(sol->getOption(D6O_NAME_SERVERS));
EXPECT_TRUE(sol->getOption(D6O_ORO));
// Let's check that non-present options are not returned
EXPECT_FALSE(sol->getOption(D6O_SERVERID)); // server-id is missing
EXPECT_FALSE(sol->getOption(D6O_IA_TA));
EXPECT_FALSE(sol->getOption(D6O_IAADDR));
}
TEST_F(Pkt6Test, packUnpack) {
// Create an on-wire representation of the test packet and clone it.
Pkt6Ptr pkt(new Pkt6(DHCPV6_SOLICIT, 0x020304));
Pkt6Ptr clone = packAndClone(pkt);
// Now recreate options list
ASSERT_NO_THROW(clone->unpack());
// transid, message-type should be the same as before
EXPECT_EQ(0x020304, clone->getTransid());
EXPECT_EQ(DHCPV6_SOLICIT, clone->getType());
EXPECT_TRUE(clone->getOption(1));
EXPECT_TRUE(clone->getOption(2));
EXPECT_TRUE(clone->getOption(100));
EXPECT_FALSE(clone->getOption(4));
}
// Checks if the code is able to handle malformed packet
TEST_F(Pkt6Test, unpackMalformed) {
// Get a packet. We're really interested in its on-wire
// representation only.
Pkt6Ptr donor(capture1());
// That's our original content. It should be sane.
OptionBuffer orig = donor->data_;
Pkt6Ptr success(new Pkt6(&orig[0], orig.size()));
EXPECT_NO_THROW(success->unpack());
// Insert trailing garbage.
OptionBuffer malform1 = orig;
malform1.push_back(123);
// Let's check a truncated packet. Moderately sane DHCPv6 packet should at
// least have four bytes header. Zero bytes is definitely not a valid one.
OptionBuffer empty(1); // Let's allocate one byte, so we won't be
// dereferencing an empty buffer.
Pkt6Ptr empty_pkt(new Pkt6(&empty[0], 0));
EXPECT_THROW(empty_pkt->unpack(), isc::BadValue);
// Neither is 3 bytes long.
OptionBuffer shorty;
shorty.push_back(DHCPV6_SOLICIT);
shorty.push_back(1);
shorty.push_back(2);
Pkt6Ptr too_short_pkt(new Pkt6(&shorty[0], shorty.size()));
EXPECT_THROW(too_short_pkt->unpack(), isc::BadValue);
// The code should complain about remaining bytes that can't be parsed
// but doesn't do so yet.
Pkt6Ptr trailing_garbage(new Pkt6(&malform1[0], malform1.size()));
EXPECT_NO_THROW(trailing_garbage->unpack());
// A strict approach would assume the code will reject the whole packet,
// but we decided to follow Jon Postel's law and be silent about
// received malformed or truncated options.
// Add an option that is truncated
OptionBuffer malform2 = orig;
malform2.push_back(0);
malform2.push_back(123); // 0, 123 - option code = 123
malform2.push_back(0);
malform2.push_back(1); // 0, 1 - option length = 1
// Option content would go here, but it's missing
Pkt6Ptr trunc_option(new Pkt6(&malform2[0], malform2.size()));
// The unpack() operation should succeed...
EXPECT_NO_THROW(trunc_option->unpack());
// ... but there should be no option 123 as it was malformed.
EXPECT_FALSE(trunc_option->getOption(123));
// Check with truncated length field
Pkt6Ptr trunc_length(new Pkt6(&malform2[0], malform2.size() - 1));
EXPECT_NO_THROW(trunc_length->unpack());
EXPECT_FALSE(trunc_length->getOption(123));
// Check with missing length field
Pkt6Ptr no_length(new Pkt6(&malform2[0], malform2.size() - 2));
EXPECT_NO_THROW(no_length->unpack());
EXPECT_FALSE(no_length->getOption(123));
// Check with truncated type field
Pkt6Ptr trunc_type(new Pkt6(&malform2[0], malform2.size() - 3));
EXPECT_NO_THROW(trunc_type->unpack());
EXPECT_FALSE(trunc_type->getOption(123));
}
// Checks if the code is able to handle a malformed vendor option
TEST_F(Pkt6Test, unpackVendorMalformed) {
// Get a packet. We're really interested in its on-wire
// representation only.
Pkt6Ptr donor(capture1());
// Add a vendor option
OptionBuffer orig = donor->data_;
orig.push_back(0); // vendor options
orig.push_back(17);
orig.push_back(0);
size_t len_index = orig.size();
orig.push_back(18); // length=18
orig.push_back(1); // vendor_id=0x1020304
orig.push_back(2);
orig.push_back(3);
orig.push_back(4);
orig.push_back(1); // suboption type=0x101
orig.push_back(1);
orig.push_back(0); // suboption length=3
orig.push_back(3);
orig.push_back(102); // data="foo"
orig.push_back(111);
orig.push_back(111);
orig.push_back(1); // suboption type=0x102
orig.push_back(2);
orig.push_back(0); // suboption length=3
orig.push_back(3);
orig.push_back(99); // data="bar'
orig.push_back(98);
orig.push_back(114);
Pkt6Ptr success(new Pkt6(&orig[0], orig.size()));
EXPECT_NO_THROW(success->unpack());
// Truncated vendor option is not accepted but doesn't throw
vector<uint8_t> shortv = orig;
shortv[len_index] = 20;
Pkt6Ptr too_short_vendor_pkt(new Pkt6(&shortv[0], shortv.size()));
EXPECT_NO_THROW(too_short_vendor_pkt->unpack());
// Truncated option header is not accepted
vector<uint8_t> shorth = orig;
shorth.resize(orig.size() - 4);
shorth[len_index] = 12;
Pkt6Ptr too_short_header_pkt(new Pkt6(&shorth[0], shorth.size()));
EXPECT_THROW(too_short_header_pkt->unpack(), SkipRemainingOptionsError);
// Truncated option data is not accepted
vector<uint8_t> shorto = orig;
shorto.resize(orig.size() - 2);
shorto[len_index] = 16;
Pkt6Ptr too_short_option_pkt(new Pkt6(&shorto[0], shorto.size()));
EXPECT_THROW(too_short_option_pkt->unpack(), SkipRemainingOptionsError);
}
// This test verifies that options can be added (addOption()), retrieved
// (getOption(), getOptions()) and deleted (delOption()).
TEST_F(Pkt6Test, addGetDelOptions) {
scoped_ptr<Pkt6> parent(new Pkt6(DHCPV6_SOLICIT, random()));
OptionPtr opt1(new Option(Option::V6, 1));
OptionPtr opt2(new Option(Option::V6, 2));
OptionPtr opt3(new Option(Option::V6, 2));
parent->addOption(opt1);
parent->addOption(opt2);
// getOption() test
EXPECT_EQ(opt1, parent->getOption(1));
EXPECT_EQ(opt2, parent->getOption(2));
// Expect NULL
EXPECT_EQ(OptionPtr(), parent->getOption(4));
// Now there are 2 options of type 2
parent->addOption(opt3);
OptionCollection options = parent->getOptions(2);
EXPECT_EQ(2, options.size()); // there should be 2 instances
// Both options must be of type 2 and there must not be
// any other type returned
for (auto const& x : options) {
EXPECT_EQ(2, x.second->getType());
}
// Try to get a single option. Normally for singular options
// it is better to use getOption(), but getOptions() must work
// as well
options = parent->getOptions(1);
ASSERT_EQ(1, options.size());
EXPECT_EQ(1, (*options.begin()).second->getType());
EXPECT_EQ(opt1, options.begin()->second);
// Let's delete one of them
EXPECT_EQ(true, parent->delOption(2));
// There still should be the other option 2
EXPECT_NE(OptionPtr(), parent->getOption(2));
// Let's delete the other option 2
EXPECT_EQ(true, parent->delOption(2));
// No more options with type=2
EXPECT_EQ(OptionPtr(), parent->getOption(2));
// Let's try to delete - should fail
EXPECT_TRUE(false == parent->delOption(2));
// Finally try to get a non-existent option
options = parent->getOptions(1234);
EXPECT_EQ(0, options.size());
}
// Check that multiple options of the same type may be retrieved by using
// getOptions or getNonCopiedOptions. In the former case, also check
// that retrieved options are copied when setCopyRetrievedOptions is
// enabled.
TEST_F(Pkt6Test, getOptions) {
NakedPkt6 pkt(DHCPV6_SOLICIT, 1234);
OptionPtr opt1(new Option(Option::V6, 1));
OptionPtr opt2(new Option(Option::V6, 1));
OptionPtr opt3(new Option(Option::V6, 2));
OptionPtr opt4(new Option(Option::V6, 2));
pkt.addOption(opt1);
pkt.addOption(opt2);
pkt.addOption(opt3);
pkt.addOption(opt4);
// Retrieve options with option code 1.
OptionCollection options = pkt.getOptions(1);
ASSERT_EQ(2, options.size());
OptionCollection::const_iterator opt_it;
// Make sure that the first option is returned. We're using the pointer
// to opt1 to find the option.
opt_it = std::find(options.begin(), options.end(),
std::pair<const unsigned int, OptionPtr>(1, opt1));
EXPECT_TRUE(opt_it != options.end());
// Make sure that the second option is returned.
opt_it = std::find(options.begin(), options.end(),
std::pair<const unsigned int, OptionPtr>(1, opt2));
EXPECT_TRUE(opt_it != options.end());
// Retrieve options with option code 2.
options = pkt.getOptions(2);
// opt3 and opt4 should exist.
opt_it = std::find(options.begin(), options.end(),
std::pair<const unsigned int, OptionPtr>(2, opt3));
EXPECT_TRUE(opt_it != options.end());
opt_it = std::find(options.begin(), options.end(),
std::pair<const unsigned int, OptionPtr>(2, opt4));
EXPECT_TRUE(opt_it != options.end());
// Enable copying options when they are retrieved.
pkt.setCopyRetrievedOptions(true);
options = pkt.getOptions(1);
ASSERT_EQ(2, options.size());
// Both retrieved options should be copied so an attempt to find them
// using option pointer should fail. Original pointers should have
// been replaced with new instances.
opt_it = std::find(options.begin(), options.end(),
std::pair<const unsigned int, OptionPtr>(1, opt1));
EXPECT_TRUE(opt_it == options.end());
opt_it = std::find(options.begin(), options.end(),
std::pair<const unsigned int, OptionPtr>(1, opt2));
EXPECT_TRUE(opt_it == options.end());
// Return instances of options with the option code 1 and make sure
// that copies of the options were used to replace original options
// in the packet.
OptionCollection options_modified = pkt.getNonCopiedOptions(1);
for (auto const& opt_it_modified : options_modified) {
opt_it = std::find(options.begin(), options.end(), opt_it_modified);
ASSERT_TRUE(opt_it != options.end());
}
// Let's check that remaining two options haven't been affected by
// retrieving the options with option code 1.
options = pkt.getNonCopiedOptions(2);
ASSERT_EQ(2, options.size());
opt_it = std::find(options.begin(), options.end(),
std::pair<const unsigned int, OptionPtr>(2, opt3));
EXPECT_TRUE(opt_it != options.end());
opt_it = std::find(options.begin(), options.end(),
std::pair<const unsigned int, OptionPtr>(2, opt4));
EXPECT_TRUE(opt_it != options.end());
}
TEST_F(Pkt6Test, Timestamp) {
boost::scoped_ptr<Pkt6> pkt(new Pkt6(DHCPV6_SOLICIT, 0x020304));
// Just after construction timestamp is invalid
ASSERT_TRUE(pkt->getTimestamp().is_not_a_date_time());
// Update packet time.
pkt->updateTimestamp();
// Get updated packet time.
boost::posix_time::ptime ts_packet = pkt->getTimestamp();
// After timestamp is updated it should be date-time.
ASSERT_FALSE(ts_packet.is_not_a_date_time());
// Check current time.
boost::posix_time::ptime ts_now =
boost::posix_time::microsec_clock::universal_time();
// Calculate period between packet time and now.
boost::posix_time::time_period ts_period(ts_packet, ts_now);
// Duration should be positive or zero.
EXPECT_TRUE(ts_period.length().total_microseconds() >= 0);
}
// This test verifies that getName() method returns proper
// packet type names.
TEST_F(Pkt6Test, getName) {
// Check all possible packet types
for (unsigned itype = 0; itype < 256; ++itype) {
uint8_t type = itype;
switch (type) {
case DHCPV6_ADVERTISE:
EXPECT_STREQ("ADVERTISE", Pkt6::getName(type));
break;
case DHCPV6_CONFIRM:
EXPECT_STREQ("CONFIRM", Pkt6::getName(type));
break;
case DHCPV6_DECLINE:
EXPECT_STREQ("DECLINE", Pkt6::getName(type));
break;
case DHCPV6_DHCPV4_QUERY:
EXPECT_STREQ("DHCPV4_QUERY", Pkt6::getName(type));
break;
case DHCPV6_DHCPV4_RESPONSE:
EXPECT_STREQ("DHCPV4_RESPONSE", Pkt6::getName(type));
break;
case DHCPV6_INFORMATION_REQUEST:
EXPECT_STREQ("INFORMATION_REQUEST",
Pkt6::getName(type));
break;
case DHCPV6_LEASEQUERY:
EXPECT_STREQ("LEASEQUERY", Pkt6::getName(type));
break;
case DHCPV6_LEASEQUERY_DATA:
EXPECT_STREQ("LEASEQUERY_DATA", Pkt6::getName(type));
break;
case DHCPV6_LEASEQUERY_DONE:
EXPECT_STREQ("LEASEQUERY_DONE", Pkt6::getName(type));
break;
case DHCPV6_LEASEQUERY_REPLY:
EXPECT_STREQ("LEASEQUERY_REPLY", Pkt6::getName(type));
break;
case DHCPV6_REBIND:
EXPECT_STREQ("REBIND", Pkt6::getName(type));
break;
case DHCPV6_RECONFIGURE:
EXPECT_STREQ("RECONFIGURE", Pkt6::getName(type));
break;
case DHCPV6_RELAY_FORW:
EXPECT_STREQ("RELAY_FORWARD", Pkt6::getName(type));
break;
case DHCPV6_RELAY_REPL:
EXPECT_STREQ("RELAY_REPLY", Pkt6::getName(type));
break;
case DHCPV6_RELEASE:
EXPECT_STREQ("RELEASE", Pkt6::getName(type));
break;
case DHCPV6_RENEW:
EXPECT_STREQ("RENEW", Pkt6::getName(type));
break;
case DHCPV6_REPLY:
EXPECT_STREQ("REPLY", Pkt6::getName(type));
break;
case DHCPV6_REQUEST:
EXPECT_STREQ("REQUEST", Pkt6::getName(type));
break;
case DHCPV6_SOLICIT:
EXPECT_STREQ("SOLICIT", Pkt6::getName(type));
break;
default:
EXPECT_STREQ("UNKNOWN", Pkt6::getName(type));
}
}
}
// This test verifies that a fancy solicit that passed through two
// relays can be parsed properly. See capture2() method description
// for details regarding the packet.
TEST_F(Pkt6Test, relayUnpack) {
Pkt6Ptr msg(capture2());
EXPECT_NO_THROW(msg->unpack());
EXPECT_EQ(DHCPV6_SOLICIT, msg->getType());
EXPECT_EQ(217, msg->len());
ASSERT_EQ(2, msg->relay_info_.size());
OptionPtr opt;
// Part 1: Check options inserted by the first relay
// There should be 2 options in first relay
EXPECT_EQ(2, msg->relay_info_[0].options_.size());
// There should be interface-id option
EXPECT_EQ(1, msg->getRelayOptions(D6O_INTERFACE_ID, 0).size());
ASSERT_TRUE(opt = msg->getRelayOption(D6O_INTERFACE_ID, 0));
OptionBuffer data = opt->getData();
EXPECT_EQ(32, opt->len()); // 28 bytes of data + 4 bytes header
EXPECT_EQ(data.size(), 28);
// That's a strange interface-id, but this is a real life example
EXPECT_TRUE(0 == memcmp("ISAM144|299|ipv6|nt:vp:1:110", &data[0], 28));
// Get the remote-id option
EXPECT_EQ(1, msg->getRelayOptions(D6O_REMOTE_ID, 0).size());
ASSERT_TRUE(opt = msg->getRelayOption(D6O_REMOTE_ID, 0));
EXPECT_EQ(22, opt->len()); // 18 bytes of data + 4 bytes header
boost::shared_ptr<OptionCustom> custom = boost::dynamic_pointer_cast<OptionCustom>(opt);
uint32_t vendor_id = custom->readInteger<uint32_t>(0);
EXPECT_EQ(6527, vendor_id); // 6527 = Panthera Networks
uint8_t expected_remote_id[] = { 0x00, 0x01, 0x00, 0x01, 0x18, 0xb0,
0x33, 0x41, 0x00, 0x00, 0x21, 0x5c,
0x18, 0xa9 };
OptionBuffer remote_id = custom->readBinary(1);
ASSERT_EQ(sizeof(expected_remote_id), remote_id.size());
ASSERT_EQ(0, memcmp(expected_remote_id, &remote_id[0], remote_id.size()));
// Part 2: Check options inserted by the second relay
// Get the interface-id from the second relay
EXPECT_EQ(1, msg->getRelayOptions(D6O_INTERFACE_ID, 1).size());
ASSERT_TRUE(opt = msg->getRelayOption(D6O_INTERFACE_ID, 1));
data = opt->getData();
EXPECT_EQ(25, opt->len()); // 21 bytes + 4 bytes header
EXPECT_EQ(data.size(), 21);
EXPECT_TRUE(0 == memcmp("ISAM144 eth 1/1/05/01", &data[0], 21));
// Get the remote-id option
EXPECT_EQ(1, msg->getRelayOptions(D6O_REMOTE_ID, 1).size());
ASSERT_TRUE(opt = msg->getRelayOption(D6O_REMOTE_ID, 1));
EXPECT_EQ(8, opt->len());
custom = boost::dynamic_pointer_cast<OptionCustom>(opt);
vendor_id = custom->readInteger<uint32_t>(0);
EXPECT_EQ(3561, vendor_id); // 3561 = Broadband Forum
// @todo: See if we can validate empty remote-id field
// Let's check if there is no leak between options stored in
// the SOLICIT message and the relay.
EXPECT_TRUE(msg->getRelayOptions(D6O_IA_NA, 1).empty());
EXPECT_FALSE(opt = msg->getRelayOption(D6O_IA_NA, 1));
// Part 3: Let's check options in the message itself
// This is not redundant compared to other direct messages tests,
// as we parsed it differently
EXPECT_EQ(DHCPV6_SOLICIT, msg->getType());
EXPECT_EQ(0x6b4fe2, msg->getTransid());
ASSERT_TRUE(opt = msg->getOption(D6O_CLIENTID));
EXPECT_EQ(18, opt->len()); // 14 bytes of data + 4 bytes of header
uint8_t expected_client_id[] = { 0x00, 0x01, 0x00, 0x01, 0x18, 0xb0,
0x33, 0x41, 0x00, 0x00, 0x21, 0x5c,
0x18, 0xa9 };
data = opt->getData();
ASSERT_EQ(data.size(), sizeof(expected_client_id));
ASSERT_EQ(0, memcmp(&data[0], expected_client_id, data.size()));
ASSERT_TRUE(opt = msg->getOption(D6O_IA_NA));
boost::shared_ptr<Option6IA> ia =
boost::dynamic_pointer_cast<Option6IA>(opt);
ASSERT_TRUE(ia);
EXPECT_EQ(1, ia->getIAID());
EXPECT_EQ(0xffffffff, ia->getT1());
EXPECT_EQ(0xffffffff, ia->getT2());
ASSERT_TRUE(opt = msg->getOption(D6O_ELAPSED_TIME));
EXPECT_EQ(6, opt->len()); // 2 bytes of data + 4 bytes of header
boost::shared_ptr<OptionInt<uint16_t> > elapsed =
boost::dynamic_pointer_cast<OptionInt<uint16_t> > (opt);
ASSERT_TRUE(elapsed);
EXPECT_EQ(0, elapsed->getValue());
ASSERT_TRUE(opt = msg->getOption(D6O_ORO));
boost::shared_ptr<OptionIntArray<uint16_t> > oro =
boost::dynamic_pointer_cast<OptionIntArray<uint16_t> > (opt);
const std::vector<uint16_t> oro_list = oro->getValues();
EXPECT_EQ(3, oro_list.size());
EXPECT_EQ(23, oro_list[0]);
EXPECT_EQ(242, oro_list[1]);
EXPECT_EQ(243, oro_list[2]);
}
// This test verified that message with relay information can be
// packed and then unpacked.
TEST_F(Pkt6Test, relayPack) {
scoped_ptr<Pkt6> parent(new Pkt6(DHCPV6_ADVERTISE, 0x020304));
Pkt6::RelayInfo relay1;
relay1.msg_type_ = DHCPV6_RELAY_REPL;
relay1.hop_count_ = 17; // not very meaningful, but useful for testing
relay1.linkaddr_ = IOAddress("2001:db8::1");
relay1.peeraddr_ = IOAddress("fe80::abcd");
uint8_t relay_opt_data[] = { 1, 2, 3, 4, 5, 6, 7, 8};
vector<uint8_t> relay_data(relay_opt_data,
relay_opt_data + sizeof(relay_opt_data));
OptionPtr optRelay1(new Option(Option::V6, 200, relay_data));
relay1.options_.insert(make_pair(optRelay1->getType(), optRelay1));
OptionPtr opt1(new Option(Option::V6, 100));
OptionPtr opt2(new Option(Option::V6, 101));
OptionPtr opt3(new Option(Option::V6, 102));
// Let's not use zero-length option type 3 as it is IA_NA
parent->addRelayInfo(relay1);
parent->addOption(opt1);
parent->addOption(opt2);
parent->addOption(opt3);
EXPECT_EQ(DHCPV6_ADVERTISE, parent->getType());
EXPECT_NO_THROW(parent->pack());
EXPECT_EQ(Pkt6::DHCPV6_PKT_HDR_LEN
+ 3 * Option::OPTION6_HDR_LEN // ADVERTISE
+ Pkt6::DHCPV6_RELAY_HDR_LEN // Relay header
+ Option::OPTION6_HDR_LEN // Relay-msg
+ optRelay1->len(),
parent->len());
// Create second packet,based on assembled data from the first one
scoped_ptr<Pkt6> clone(new Pkt6(static_cast<const uint8_t*>(
parent->getBuffer().getData()),
parent->getBuffer().getLength()));
// Now recreate options list
EXPECT_NO_THROW( clone->unpack() );
// transid, message-type should be the same as before
EXPECT_EQ(parent->getTransid(), parent->getTransid());
EXPECT_EQ(DHCPV6_ADVERTISE, clone->getType());
EXPECT_TRUE( clone->getOption(100));
EXPECT_TRUE( clone->getOption(101));
EXPECT_TRUE( clone->getOption(102));
EXPECT_FALSE(clone->getOption(103));
// Now check relay info
ASSERT_EQ(1, clone->relay_info_.size());
EXPECT_EQ(DHCPV6_RELAY_REPL, clone->relay_info_[0].msg_type_);
EXPECT_EQ(17, clone->relay_info_[0].hop_count_);
EXPECT_EQ("2001:db8::1", clone->relay_info_[0].linkaddr_.toText());
EXPECT_EQ("fe80::abcd", clone->relay_info_[0].peeraddr_.toText());
// There should be exactly one option
EXPECT_EQ(1, clone->relay_info_[0].options_.size());
EXPECT_EQ(1, clone->getRelayOptions(200, 0).size());
OptionPtr opt = clone->getRelayOption(200, 0);
EXPECT_TRUE(opt);
EXPECT_EQ(opt->getType() , optRelay1->getType());
EXPECT_EQ(opt->len(), optRelay1->len());
OptionBuffer data = opt->getData();
ASSERT_EQ(data.size(), sizeof(relay_opt_data));
EXPECT_EQ(0, memcmp(&data[0], relay_opt_data, sizeof(relay_opt_data)));
// As we have a nicely built relay packet we can check
// that the functions to get the peer and link addresses work
EXPECT_EQ("2001:db8::1", clone->getRelay6LinkAddress(0).toText());
EXPECT_EQ("fe80::abcd", clone->getRelay6PeerAddress(0).toText());
vector<uint8_t>binary = clone->getRelay6LinkAddress(0).toBytes();
uint8_t expected0[] = {0x20, 1, 0x0d, 0xb8, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1};
EXPECT_EQ(0, memcmp(expected0, &binary[0], 16));
}
TEST_F(Pkt6Test, getRelayOption) {
NakedPkt6Ptr msg(boost::dynamic_pointer_cast<NakedPkt6>(capture2()));
ASSERT_TRUE(msg);
ASSERT_NO_THROW(msg->unpack());
ASSERT_EQ(2, msg->relay_info_.size());
OptionPtr opt_iface_id = msg->getNonCopiedRelayOption(D6O_INTERFACE_ID, 0);
ASSERT_TRUE(opt_iface_id);
OptionPtr opt_iface_id_returned = msg->getRelayOption(D6O_INTERFACE_ID, 0);
ASSERT_TRUE(opt_iface_id_returned);
EXPECT_TRUE(opt_iface_id == opt_iface_id_returned);
msg->setCopyRetrievedOptions(true);
opt_iface_id_returned = msg->getRelayOption(D6O_INTERFACE_ID, 0);
EXPECT_FALSE(opt_iface_id == opt_iface_id_returned);
opt_iface_id = msg->getNonCopiedRelayOption(D6O_INTERFACE_ID, 0);
EXPECT_TRUE(opt_iface_id == opt_iface_id_returned);
}
TEST_F(Pkt6Test, getRelayOptions) {
NakedPkt6Ptr msg(boost::dynamic_pointer_cast<NakedPkt6>(capture2()));
ASSERT_TRUE(msg);
ASSERT_NO_THROW(msg->unpack());
ASSERT_EQ(2, msg->relay_info_.size());
OptionCollection opts_iface_id =
msg->getNonCopiedRelayOptions(D6O_INTERFACE_ID, 0);
ASSERT_EQ(1, opts_iface_id.size());
OptionPtr opt_iface_id = msg->getNonCopiedRelayOption(D6O_INTERFACE_ID, 0);
ASSERT_TRUE(opt_iface_id);
OptionCollection opts_iface_id_returned =
msg->getRelayOptions(D6O_INTERFACE_ID, 0);
ASSERT_EQ(1, opts_iface_id_returned.size());
OptionPtr opt_iface_id_returned = msg->getRelayOption(D6O_INTERFACE_ID, 0);
ASSERT_TRUE(opt_iface_id_returned);
EXPECT_TRUE(opt_iface_id == opt_iface_id_returned);
EXPECT_TRUE(opts_iface_id == opts_iface_id_returned);
EXPECT_TRUE(opts_iface_id.begin()->second == opt_iface_id);
EXPECT_TRUE(opts_iface_id_returned.begin()->second == opt_iface_id_returned);
msg->setCopyRetrievedOptions(true);
opts_iface_id_returned = msg->getRelayOptions(D6O_INTERFACE_ID, 0);
ASSERT_EQ(1, opts_iface_id_returned.size());
opt_iface_id_returned = msg->getRelayOption(D6O_INTERFACE_ID, 0);
EXPECT_FALSE(opt_iface_id == opt_iface_id_returned);
EXPECT_FALSE(opts_iface_id.begin()->second == opt_iface_id_returned);
EXPECT_FALSE(opts_iface_id_returned.begin()->second == opt_iface_id);
EXPECT_FALSE(opts_iface_id_returned.begin()->second == opt_iface_id_returned);
opt_iface_id = msg->getNonCopiedRelayOption(D6O_INTERFACE_ID, 0);
EXPECT_TRUE(opt_iface_id == opt_iface_id_returned);
opts_iface_id_returned = msg->getNonCopiedRelayOptions(D6O_INTERFACE_ID, 0);
opts_iface_id = msg->getNonCopiedRelayOptions(D6O_INTERFACE_ID, 0);
EXPECT_TRUE(opts_iface_id == opts_iface_id_returned);
}
// This test verifies that options added by relays to the message can be
// accessed and retrieved properly
TEST_F(Pkt6Test, getAnyRelayOption) {
boost::scoped_ptr<NakedPkt6> msg(new NakedPkt6(DHCPV6_ADVERTISE, 0x020304));
msg->addOption(generateRandomOption(300));
// generate options for relay1
Pkt6::RelayInfo relay1;
// generate 3 options with code 200,201,202 and random content
OptionPtr relay1_opt1(generateRandomOption(200));
OptionPtr relay1_opt2(generateRandomOption(201));
OptionPtr relay1_opt3(generateRandomOption(202));
relay1.options_.insert(make_pair(200, relay1_opt1));
relay1.options_.insert(make_pair(201, relay1_opt2));
relay1.options_.insert(make_pair(202, relay1_opt3));
msg->addRelayInfo(relay1);
// generate options for relay2
Pkt6::RelayInfo relay2;
OptionPtr relay2_opt1(new Option(Option::V6, 100));
OptionPtr relay2_opt2(new Option(Option::V6, 101));
OptionPtr relay2_opt3(new Option(Option::V6, 102));
OptionPtr relay2_opt4(new Option(Option::V6, 200));
// the same code as relay1_opt3
relay2.options_.insert(make_pair(100, relay2_opt1));
relay2.options_.insert(make_pair(101, relay2_opt2));
relay2.options_.insert(make_pair(102, relay2_opt3));
relay2.options_.insert(make_pair(200, relay2_opt4));
msg->addRelayInfo(relay2);
// generate options for relay3
Pkt6::RelayInfo relay3;
OptionPtr relay3_opt1(generateRandomOption(200, 7));
relay3.options_.insert(make_pair(200, relay3_opt1));
msg->addRelayInfo(relay3);
// Ok, so we now have a packet that traversed the following network:
// client---relay3---relay2---relay1---server
// First check that the getAnyRelayOption does not confuse client options
// and relay options
// 300 is a client option, present in the message itself.
OptionPtr opt =
msg->getAnyRelayOption(300, Pkt6::RELAY_SEARCH_FROM_CLIENT);
EXPECT_FALSE(opt);
opt = msg->getAnyRelayOption(300, Pkt6::RELAY_SEARCH_FROM_SERVER);
EXPECT_FALSE(opt);
opt = msg->getAnyRelayOption(300, Pkt6::RELAY_GET_FIRST);
EXPECT_FALSE(opt);
opt = msg->getAnyRelayOption(300, Pkt6::RELAY_GET_LAST);
EXPECT_FALSE(opt);
EXPECT_TRUE(msg->getAllRelayOptions(300, Pkt6::RELAY_SEARCH_FROM_CLIENT).empty());
EXPECT_TRUE(msg->getAllRelayOptions(300, Pkt6::RELAY_SEARCH_FROM_SERVER).empty());
EXPECT_TRUE(msg->getAllRelayOptions(300, Pkt6::RELAY_GET_FIRST).empty());
EXPECT_TRUE(msg->getAllRelayOptions(300, Pkt6::RELAY_GET_LAST).empty());
// Option 200 is added in every relay.
// We want to get that one inserted by relay3 (first match, starting from
// closest to the client.
opt = msg->getAnyRelayOption(200, Pkt6::RELAY_SEARCH_FROM_CLIENT);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(relay3_opt1));
EXPECT_TRUE(opt == relay3_opt1);
// Check collections.
OptionCollection opts0 =
msg->getNonCopiedAllRelayOptions(200, Pkt6::RELAY_SEARCH_FROM_CLIENT);
EXPECT_EQ(3, opts0.size());
vector<OptionPtr> lopts0;
for (auto const& it : opts0) {
lopts0.push_back(it.second);
}
ASSERT_EQ(3, lopts0.size());
EXPECT_TRUE(lopts0[0] == opt);
EXPECT_TRUE(lopts0[0] == relay3_opt1);
EXPECT_TRUE(lopts0[1] == relay2_opt4);
EXPECT_TRUE(lopts0[2] == relay1_opt1);
OptionCollection opts =
msg->getAllRelayOptions(200, Pkt6::RELAY_SEARCH_FROM_CLIENT);
EXPECT_TRUE(opts == opts0);
// We want to get that one inserted by relay1 (first match, starting from
// closest to the server.
opt = msg->getAnyRelayOption(200, Pkt6::RELAY_SEARCH_FROM_SERVER);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(relay1_opt1));
EXPECT_TRUE(opt == relay1_opt1);
// Check collections.
opts = msg->getNonCopiedAllRelayOptions(200, Pkt6::RELAY_SEARCH_FROM_SERVER);
EXPECT_EQ(3, opts.size());
vector<OptionPtr> lopts;
for (auto const& it : opts) {
lopts.push_back(it.second);
}
ASSERT_EQ(3, lopts.size());
EXPECT_TRUE(lopts[0] == opt);
EXPECT_TRUE(lopts[0] == relay1_opt1);
EXPECT_TRUE(lopts[1] == relay2_opt4);
EXPECT_TRUE(lopts[2] == relay3_opt1);
EXPECT_TRUE(opts == msg->getAllRelayOptions(200, Pkt6::RELAY_SEARCH_FROM_SERVER));
// Check reverse order.
vector<OptionPtr> ropts;
for (auto const& it : boost::adaptors::reverse(opts)) {
ropts.push_back(it.second);
}
EXPECT_TRUE(lopts0 == ropts);
// We just want option from the first relay (closest to the client)
opt = msg->getAnyRelayOption(200, Pkt6::RELAY_GET_FIRST);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(relay3_opt1));
EXPECT_TRUE(opt == relay3_opt1);
opts = msg->getNonCopiedAllRelayOptions(200, Pkt6::RELAY_GET_FIRST);
EXPECT_EQ(1, opts.size());
EXPECT_TRUE(opt == opts.begin()->second);
opts = msg->getAllRelayOptions(200, Pkt6::RELAY_GET_FIRST);
EXPECT_EQ(1, opts.size());
EXPECT_TRUE(opts.begin()->second == relay3_opt1);
// We just want option from the last relay (closest to the server)
opt = msg->getAnyRelayOption(200, Pkt6::RELAY_GET_LAST);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(relay1_opt1));
EXPECT_TRUE(opt == relay1_opt1);
opts = msg->getNonCopiedAllRelayOptions(200, Pkt6::RELAY_GET_LAST);
EXPECT_EQ(1, opts.size());
EXPECT_TRUE(opt == opts.begin()->second);
opts = msg->getAllRelayOptions(200, Pkt6::RELAY_GET_LAST);
EXPECT_EQ(1, opts.size());
EXPECT_TRUE(opts.begin()->second == relay1_opt1);
// Enable copying options when they are retrieved and redo the tests
// but expect that options are still equal but different pointers
// are returned.
msg->setCopyRetrievedOptions(true);
// From client.
opt = msg->getAnyRelayOption(200, Pkt6::RELAY_SEARCH_FROM_CLIENT);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(relay3_opt1));
EXPECT_FALSE(opt == relay3_opt1);
// Test that option copy has replaced the original option within the
// packet. We achieve that by calling a variant of the method which
// retrieved non-copied option.
relay3_opt1 = msg->getNonCopiedAnyRelayOption(200, Pkt6::RELAY_SEARCH_FROM_CLIENT);
ASSERT_TRUE(relay3_opt1);
EXPECT_TRUE(opt == relay3_opt1);
// Check collections.
opts = msg->getNonCopiedAllRelayOptions(200, Pkt6::RELAY_SEARCH_FROM_CLIENT);
lopts0.clear();
for (auto const& it : opts) {
lopts0.push_back(it.second);
}
ASSERT_EQ(3, lopts0.size());
EXPECT_TRUE(lopts0[0] == opt);
EXPECT_TRUE(lopts0[0] == relay3_opt1);
EXPECT_TRUE(lopts0[1] == relay2_opt4);
EXPECT_TRUE(lopts0[2] == relay1_opt1);
opts = msg->getAllRelayOptions(200, Pkt6::RELAY_SEARCH_FROM_CLIENT);
lopts.clear();
for (auto const& it : opts) {
lopts.push_back(it.second);
}
ASSERT_EQ(3, lopts.size());
EXPECT_TRUE(relay3_opt1->equals(lopts[0]));
EXPECT_FALSE(lopts[0] == lopts0[0]);
EXPECT_TRUE(relay2_opt4->equals(lopts[1]));
EXPECT_FALSE(lopts[1] == lopts0[1]);
EXPECT_TRUE(relay1_opt1->equals(lopts[2]));
EXPECT_FALSE(lopts[2] == lopts0[2]);
// Get current values for next tests.
relay3_opt1 = lopts[0];
relay2_opt4 = lopts[1];
relay1_opt1 = lopts[2];
// From server.
opt = msg->getAnyRelayOption(200, Pkt6::RELAY_SEARCH_FROM_SERVER);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(relay1_opt1));
EXPECT_FALSE(opt == relay1_opt1);
relay1_opt1 = msg->getNonCopiedAnyRelayOption(200, Pkt6::RELAY_SEARCH_FROM_SERVER);
ASSERT_TRUE(relay1_opt1);
EXPECT_TRUE(opt == relay1_opt1);
// Check collections.
opts = msg->getNonCopiedAllRelayOptions(200, Pkt6::RELAY_SEARCH_FROM_SERVER);
lopts0.clear();
for (auto const& it : opts) {
lopts0.push_back(it.second);
}
ASSERT_EQ(3, lopts0.size());
EXPECT_TRUE(lopts0[0] == opt);
EXPECT_TRUE(lopts0[0] == relay1_opt1);
EXPECT_TRUE(lopts0[1] == relay2_opt4);
EXPECT_TRUE(lopts0[2] == relay3_opt1);
opts = msg->getAllRelayOptions(200, Pkt6::RELAY_SEARCH_FROM_SERVER);
lopts.clear();
for (auto const& it : opts) {
lopts.push_back(it.second);
}
ASSERT_EQ(3, lopts.size());
EXPECT_TRUE(relay1_opt1->equals(lopts[0]));
EXPECT_FALSE(lopts[0] == lopts0[0]);
EXPECT_TRUE(relay2_opt4->equals(lopts[1]));
EXPECT_FALSE(lopts[1] == lopts0[1]);
EXPECT_TRUE(relay3_opt1->equals(lopts[2]));
EXPECT_FALSE(lopts[2] == lopts0[2]);
// First.
opt = msg->getAnyRelayOption(200, Pkt6::RELAY_GET_FIRST);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(relay3_opt1));
EXPECT_FALSE(opt == relay3_opt1);
relay3_opt1 = msg->getNonCopiedAnyRelayOption(200, Pkt6::RELAY_GET_FIRST);
ASSERT_TRUE(relay3_opt1);
EXPECT_TRUE(opt == relay3_opt1);
opts = msg->getNonCopiedAllRelayOptions(200, Pkt6::RELAY_GET_FIRST);
EXPECT_EQ(1, opts.size());
EXPECT_TRUE(opt == opts.begin()->second);
opts = msg->getAllRelayOptions(200, Pkt6::RELAY_GET_FIRST);
EXPECT_EQ(1, opts.size());
EXPECT_FALSE(opts.begin()->second == relay3_opt1);
relay3_opt1 = msg->getNonCopiedAnyRelayOption(200, Pkt6::RELAY_GET_FIRST);
EXPECT_TRUE(opts.begin()->second == relay3_opt1);
// Last.
opt = msg->getAnyRelayOption(200, Pkt6::RELAY_GET_LAST);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(relay1_opt1));
EXPECT_FALSE(opt == relay1_opt1);
relay1_opt1 = msg->getNonCopiedAnyRelayOption(200, Pkt6::RELAY_GET_LAST);
ASSERT_TRUE(relay1_opt1);
EXPECT_TRUE(opt == relay1_opt1);
opts = msg->getNonCopiedAllRelayOptions(200, Pkt6::RELAY_GET_LAST);
EXPECT_EQ(1, opts.size());
EXPECT_TRUE(opt == opts.begin()->second);
opts = msg->getAllRelayOptions(200, Pkt6::RELAY_GET_LAST);
EXPECT_EQ(1, opts.size());
EXPECT_FALSE(opts.begin()->second == relay1_opt1);
relay1_opt1 = msg->getNonCopiedAnyRelayOption(200, Pkt6::RELAY_GET_LAST);
EXPECT_TRUE(opts.begin()->second == relay1_opt1);
// Disable copying options and continue with other tests.
msg->setCopyRetrievedOptions(false);
// Let's try to ask for something that is inserted by the middle relay
// only.
opt = msg->getAnyRelayOption(100, Pkt6::RELAY_SEARCH_FROM_SERVER);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(relay2_opt1));
opts = msg->getNonCopiedAllRelayOptions(100, Pkt6::RELAY_SEARCH_FROM_SERVER);
EXPECT_EQ(1, opts.size());
EXPECT_TRUE(opts.begin()->second == relay2_opt1);
opts = msg->getAllRelayOptions(100, Pkt6::RELAY_SEARCH_FROM_SERVER);
EXPECT_EQ(1, opts.size());
EXPECT_TRUE(relay2_opt1->equals(opts.begin()->second));
opt = msg->getAnyRelayOption(100, Pkt6::RELAY_SEARCH_FROM_CLIENT);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(relay2_opt1));
opts = msg->getNonCopiedAllRelayOptions(100, Pkt6::RELAY_SEARCH_FROM_CLIENT);
EXPECT_EQ(1, opts.size());
EXPECT_TRUE(opts.begin()->second == relay2_opt1);
opts = msg->getAllRelayOptions(100, Pkt6::RELAY_SEARCH_FROM_SERVER);
EXPECT_EQ(1, opts.size());
EXPECT_TRUE(relay2_opt1->equals(opts.begin()->second));
opt = msg->getAnyRelayOption(100, Pkt6::RELAY_GET_FIRST);
EXPECT_FALSE(opt);
opts = msg->getNonCopiedAllRelayOptions(100, Pkt6::RELAY_GET_FIRST);
EXPECT_TRUE(opts.empty());
opts = msg->getAllRelayOptions(100, Pkt6::RELAY_GET_FIRST);
EXPECT_TRUE(opts.empty());
opt = msg->getAnyRelayOption(100, Pkt6::RELAY_GET_LAST);
EXPECT_FALSE(opt);
opts = msg->getNonCopiedAllRelayOptions(100, Pkt6::RELAY_GET_LAST);
EXPECT_TRUE(opts.empty());
opts = msg->getAllRelayOptions(100, Pkt6::RELAY_GET_LAST);
EXPECT_TRUE(opts.empty());
// Finally, try to get an option that does not exist
opt = msg->getAnyRelayOption(500, Pkt6::RELAY_GET_FIRST);
EXPECT_FALSE(opt);
opts = msg->getNonCopiedAllRelayOptions(500, Pkt6::RELAY_GET_FIRST);
EXPECT_TRUE(opts.empty());
opts = msg->getAllRelayOptions(500, Pkt6::RELAY_GET_FIRST);
EXPECT_TRUE(opts.empty());
opt = msg->getAnyRelayOption(500, Pkt6::RELAY_GET_LAST);
EXPECT_FALSE(opt);
opts = msg->getNonCopiedAllRelayOptions(500, Pkt6::RELAY_GET_LAST);
EXPECT_TRUE(opts.empty());
opts = msg->getAllRelayOptions(500, Pkt6::RELAY_GET_LAST);
EXPECT_TRUE(opts.empty());
opt = msg->getAnyRelayOption(500, Pkt6::RELAY_SEARCH_FROM_SERVER);
EXPECT_FALSE(opt);
opts = msg->getNonCopiedAllRelayOptions(500, Pkt6::RELAY_SEARCH_FROM_SERVER);
EXPECT_TRUE(opts.empty());
opts = msg->getAllRelayOptions(500, Pkt6::RELAY_SEARCH_FROM_SERVER);
EXPECT_TRUE(opts.empty());
opt = msg->getAnyRelayOption(500, Pkt6::RELAY_SEARCH_FROM_CLIENT);
EXPECT_FALSE(opt);
opts = msg->getNonCopiedAllRelayOptions(500, Pkt6::RELAY_SEARCH_FROM_CLIENT);
EXPECT_TRUE(opts.empty());
opts = msg->getAllRelayOptions(500, Pkt6::RELAY_SEARCH_FROM_CLIENT);
EXPECT_TRUE(opts.empty());
}
// Tests whether Pkt6::toText() properly prints out all parameters, including
// relay options: remote-id, interface-id.
TEST_F(Pkt6Test, toText) {
// This packet contains doubly relayed solicit. The inner-most
// relay-forward contains interface-id and remote-id. We will
// check that these are printed correctly.
Pkt6Ptr msg(capture2());
EXPECT_NO_THROW(msg->unpack());
ASSERT_EQ(2, msg->relay_info_.size());
string expected =
"local_address=[ff05::1:3]:547, remote_address=[fe80::1234]:547,\n"
"msg_type=SOLICIT (1), trans_id=0x6b4fe2,\n"
"options:\n"
" type=00001, len=00014: 00:01:00:01:18:b0:33:41:00:00:21:5c:18:a9\n"
" type=00003(IA_NA), len=00012: iaid=1, t1=4294967295, t2=4294967295\n"
" type=00006, len=00006: 23(uint16) 242(uint16) 243(uint16)\n"
" type=00008, len=00002: 0 (uint16)\n"
"2 relay(s):\n"
"relay[0]: msg-type=12(RELAY_FORWARD), hop-count=1,\n"
"link-address=2001:888:db8:1::, peer-address=fe80::200:21ff:fe5c:18a9, 2 option(s)\n"
"type=00018, len=00028: 49:53:41:4d:31:34:34:7c:32:39:39:7c:69:70:76:36:7c:6e:74:3a:76:70:3a:31:3a:31:31:30 'ISAM144|299|ipv6|nt:vp:1:110'\n"
"type=00037, len=00018: 6527 (uint32) 0001000118B033410000215C18A9 (binary)\n"
"relay[1]: msg-type=12(RELAY_FORWARD), hop-count=0,\n"
"link-address=::, peer-address=fe80::200:21ff:fe5c:18a9, 2 option(s)\n"
"type=00018, len=00021: 49:53:41:4d:31:34:34:20:65:74:68:20:31:2f:31:2f:30:35:2f:30:31 'ISAM144 eth 1/1/05/01'\n"
"type=00037, len=00004: 3561 (uint32) '' (binary)\n";
EXPECT_EQ(expected, msg->toText());
}
// Tests whether a packet can be assigned to a class and later
// checked if it belongs to a given class
TEST_F(Pkt6Test, clientClasses) {
Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
// Default values (do not belong to any class)
EXPECT_FALSE(pkt.inClass(DOCSIS3_CLASS_EROUTER));
EXPECT_FALSE(pkt.inClass(DOCSIS3_CLASS_MODEM));
EXPECT_TRUE(pkt.getClasses().empty());
// Add to the first class
pkt.addClass(DOCSIS3_CLASS_EROUTER);
EXPECT_TRUE(pkt.inClass(DOCSIS3_CLASS_EROUTER));
EXPECT_FALSE(pkt.inClass(DOCSIS3_CLASS_MODEM));
ASSERT_FALSE(pkt.getClasses().empty());
// Add to a second class
pkt.addClass(DOCSIS3_CLASS_MODEM);
EXPECT_TRUE(pkt.inClass(DOCSIS3_CLASS_EROUTER));
EXPECT_TRUE(pkt.inClass(DOCSIS3_CLASS_MODEM));
// Check that it's ok to add to the same class repeatedly
EXPECT_NO_THROW(pkt.addClass("foo"));
EXPECT_NO_THROW(pkt.addClass("foo"));
EXPECT_NO_THROW(pkt.addClass("foo"));
// Check that the packet belongs to 'foo'
EXPECT_TRUE(pkt.inClass("foo"));
}
// Tests operations on additional classes list.
TEST_F(Pkt6Test, additionalClientClasses) {
Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
// Default values (do not belong to any class)
EXPECT_TRUE(pkt.getAdditionalClasses().empty());
// Add to the first class
pkt.addAdditionalClass(DOCSIS3_CLASS_EROUTER);
EXPECT_EQ(1, pkt.getAdditionalClasses().size());
// Add to a second class
pkt.addAdditionalClass(DOCSIS3_CLASS_MODEM);
EXPECT_EQ(2, pkt.getAdditionalClasses().size());
EXPECT_TRUE(pkt.getAdditionalClasses().contains(DOCSIS3_CLASS_EROUTER));
EXPECT_TRUE(pkt.getAdditionalClasses().contains(DOCSIS3_CLASS_MODEM));
EXPECT_FALSE(pkt.getAdditionalClasses().contains("foo"));
// Check that it's ok to add to the same class repeatedly
EXPECT_NO_THROW(pkt.addAdditionalClass("foo"));
EXPECT_NO_THROW(pkt.addAdditionalClass("foo"));
EXPECT_NO_THROW(pkt.addAdditionalClass("foo"));
// Check that the packet belongs to 'foo'
EXPECT_TRUE(pkt.getAdditionalClasses().contains("foo"));
}
// Tests whether a packet can be assigned to a subclass and later
// checked if it belongs to a given subclass
TEST_F(Pkt6Test, templateClasses) {
Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
// Default values (do not belong to any subclass)
EXPECT_FALSE(pkt.inClass("SPAWN_template-interface-name_eth0"));
EXPECT_FALSE(pkt.inClass("SPAWN_template-interface-id_interface-id0"));
EXPECT_TRUE(pkt.getClasses().empty());
// Add to the first subclass
pkt.addSubClass("template-interface-name", "SPAWN_template-interface-name_eth0");
EXPECT_TRUE(pkt.inClass("SPAWN_template-interface-name_eth0"));
EXPECT_FALSE(pkt.inClass("SPAWN_template-interface-id_interface-id0"));
ASSERT_FALSE(pkt.getClasses().empty());
// Add to a second subclass
pkt.addSubClass("template-interface-id", "SPAWN_template-interface-id_interface-id0");
EXPECT_TRUE(pkt.inClass("SPAWN_template-interface-name_eth0"));
EXPECT_TRUE(pkt.inClass("SPAWN_template-interface-id_interface-id0"));
// Verify the order is as expected.
const ClientClasses& classes = pkt.getClasses();
auto cclass = classes.cbegin();
ASSERT_NE(cclass, classes.cend());
EXPECT_EQ("SPAWN_template-interface-name_eth0", (*cclass));
++cclass;
ASSERT_NE(cclass, classes.cend());
EXPECT_EQ("template-interface-name", (*cclass));
++cclass;
ASSERT_NE(cclass, classes.cend());
EXPECT_EQ("SPAWN_template-interface-id_interface-id0", (*cclass));
++cclass;
ASSERT_NE(cclass, classes.cend());
EXPECT_EQ("template-interface-id", (*cclass));
// Check that it's ok to add to the same subclass repeatedly
EXPECT_NO_THROW(pkt.addSubClass("template-foo", "SPAWN_template-foo_bar"));
EXPECT_NO_THROW(pkt.addSubClass("template-foo", "SPAWN_template-foo_bar"));
EXPECT_NO_THROW(pkt.addSubClass("template-bar", "SPAWN_template-bar_bar"));
// Check that the packet belongs to 'SPAWN_template-foo_bar'
EXPECT_TRUE(pkt.inClass("SPAWN_template-foo_bar"));
// Check that the packet belongs to 'SPAWN_template-bar_bar'
EXPECT_TRUE(pkt.inClass("SPAWN_template-bar_bar"));
}
// Tests whether MAC can be obtained and that MAC sources are not
// confused.
TEST_F(Pkt6Test, getMAC) {
Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
// DHCPv6 packet by default doesn't have MAC address specified.
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_ANY));
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_RAW));
// We haven't specified source IPv6 address, so this method should
// fail, too
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL));
// Let's check if setting IPv6 address improves the situation.
IOAddress linklocal_eui64("fe80::204:06ff:fe08:0a0c");
pkt.setRemoteAddr(linklocal_eui64);
HWAddrPtr mac;
ASSERT_TRUE(mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_ANY));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL, mac->source_);
ASSERT_TRUE(mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL, mac->source_);
ASSERT_TRUE(mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL |
HWAddr::HWADDR_SOURCE_RAW));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL, mac->source_);
pkt.setRemoteAddr(IOAddress("::"));
// Let's invent a MAC
const uint8_t hw[] = { 2, 4, 6, 8, 10, 12 }; // MAC
const uint8_t hw_type = 123; // hardware type
HWAddrPtr dummy_hwaddr(new HWAddr(hw, sizeof(hw), hw_type));
// Now let's pretend that we obtained it from raw sockets
pkt.setRemoteHWAddr(dummy_hwaddr);
// Now we should be able to get something
ASSERT_TRUE(mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_ANY));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_RAW, mac->source_);
ASSERT_TRUE(pkt.getMAC(HWAddr::HWADDR_SOURCE_RAW));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_RAW, mac->source_);
EXPECT_TRUE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL |
HWAddr::HWADDR_SOURCE_RAW));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_RAW, mac->source_);
// Check that the returned MAC is indeed the expected one
ASSERT_TRUE(*dummy_hwaddr == *pkt.getMAC(HWAddr::HWADDR_SOURCE_ANY));
ASSERT_TRUE(*dummy_hwaddr == *pkt.getMAC(HWAddr::HWADDR_SOURCE_RAW));
}
// Test checks whether getMACFromIPv6LinkLocal() returns the hardware (MAC)
// address properly (for direct message).
TEST_F(Pkt6Test, getMACFromIPv6LinkLocal_direct) {
Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
// Let's get the first interface
IfacePtr iface = IfaceMgr::instance().getIface(1);
ASSERT_TRUE(iface);
// and set source interface data properly. getMACFromIPv6LinkLocal attempts
// to use source interface to obtain hardware type
pkt.setIface(iface->getName());
pkt.setIndex(iface->getIndex());
// Note that u and g bits (the least significant ones of the most
// significant byte) have special meaning and must not be set in MAC.
// u bit is always set in EUI-64. g is always cleared.
IOAddress global("2001:db8::204:06ff:fe08:0a:0c");
IOAddress linklocal_eui64("fe80::f204:06ff:fe08:0a0c");
IOAddress linklocal_noneui64("fe80::f204:0608:0a0c:0e10");
// If received from a global address, this method should fail
pkt.setRemoteAddr(global);
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL));
// If received from link-local that is EUI-64 based, it should succeed
pkt.setRemoteAddr(linklocal_eui64);
HWAddrPtr found = pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL);
ASSERT_TRUE(found);
EXPECT_EQ(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL, found->source_);
stringstream tmp;
tmp << "hwtype=" << (int)iface->getHWType() << " f0:04:06:08:0a:0c";
EXPECT_EQ(tmp.str(), found->toText(true));
}
// Test checks whether getMACFromIPv6LinkLocal() returns the hardware (MAC)
// address properly (for relayed message).
TEST_F(Pkt6Test, getMACFromIPv6LinkLocal_singleRelay) {
// Let's create a Solicit first...
Pkt6 pkt(DHCPV6_SOLICIT, 1234);
// ... and pretend it was relayed by a single relay.
Pkt6::RelayInfo info;
pkt.addRelayInfo(info);
ASSERT_EQ(1, pkt.relay_info_.size());
// Let's get the first interface
IfacePtr iface = IfaceMgr::instance().getIface(1);
ASSERT_TRUE(iface);
// and set source interface data properly. getMACFromIPv6LinkLocal attempts
// to use source interface to obtain hardware type
pkt.setIface(iface->getName());
pkt.setIndex(iface->getIndex());
IOAddress global("2001:db8::204:06ff:fe08:0a:0c"); // global address
IOAddress linklocal_noneui64("fe80::f204:0608:0a0c:0e10"); // no fffe
IOAddress linklocal_eui64("fe80::f204:06ff:fe08:0a0c"); // valid EUI-64
// If received from a global address, this method should fail
pkt.relay_info_[0].peeraddr_ = global;
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL));
// If received from a link-local that does not use EUI-64, it should fail
pkt.relay_info_[0].peeraddr_ = linklocal_noneui64;
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL));
// If received from link-local that is EUI-64 based, it should succeed
pkt.relay_info_[0].peeraddr_ = linklocal_eui64;
HWAddrPtr found = pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL);
ASSERT_TRUE(found);
stringstream tmp;
tmp << "hwtype=" << (int)iface->getHWType() << " f0:04:06:08:0a:0c";
EXPECT_EQ(tmp.str(), found->toText(true));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL, found->source_);
}
// Test checks whether getMACFromIPv6LinkLocal() returns the hardware (MAC)
// address properly (for a message relayed multiple times).
TEST_F(Pkt6Test, getMACFromIPv6LinkLocal_multiRelay) {
// Let's create a Solicit first...
Pkt6 pkt(DHCPV6_SOLICIT, 1234);
// ... and pretend it was relayed via 3 relays. Keep in mind that
// the relays are stored in relay_info_ in the encapsulation order
// rather than in traverse order. The following simulates:
// client --- relay1 --- relay2 --- relay3 --- server
IOAddress linklocal1("fe80::200:ff:fe00:1"); // valid EUI-64
IOAddress linklocal2("fe80::200:ff:fe00:2"); // valid EUI-64
IOAddress linklocal3("fe80::200:ff:fe00:3"); // valid EUI-64
// Let's add info about relay3. This was the last relay, so it added the
// outermost encapsulation layer, so it was parsed first during reception.
// Its peer-addr field contains an address of relay2, so it's useless for
// this method.
Pkt6::RelayInfo info;
info.peeraddr_ = linklocal3;
pkt.addRelayInfo(info);
// Now add info about relay2. Its peer-addr contains an address of the
// previous relay (relay1). Still useless for us.
info.peeraddr_ = linklocal2;
pkt.addRelayInfo(info);
// Finally add the first relay. This is the relay that received the packet
// from the client directly, so its peer-addr field contains an address of
// the client. The method should get that address and build MAC from it.
info.peeraddr_ = linklocal1;
pkt.addRelayInfo(info);
ASSERT_EQ(3, pkt.relay_info_.size());
// Let's get the first interface
IfacePtr iface = IfaceMgr::instance().getIface(1);
ASSERT_TRUE(iface);
// and set source interface data properly. getMACFromIPv6LinkLocal attempts
// to use source interface to obtain hardware type
pkt.setIface(iface->getName());
pkt.setIndex(iface->getIndex());
// The method should return MAC based on the first relay that was closest
HWAddrPtr found = pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL);
ASSERT_TRUE(found);
// Let's check the info now.
stringstream tmp;
tmp << "hwtype=" << iface->getHWType() << " 00:00:00:00:00:01";
EXPECT_EQ(tmp.str(), found->toText(true));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL, found->source_);
}
// Test checks whether getMACFromIPv6RelayOpt() returns the hardware (MAC)
// address properly from a single relayed message.
TEST_F(Pkt6Test, getMACFromIPv6RelayOpt_singleRelay) {
// Let's create a Solicit first...
Pkt6 pkt(DHCPV6_SOLICIT, 1234);
// Packets that are not relayed should fail
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION));
// Now pretend it was relayed by a single relay.
Pkt6::RelayInfo info;
// generate options with code 79 and client link layer address
const uint8_t opt_data[] = {
0x00, 0x01, // Ethertype
0x0a, 0x1b, 0x0b, 0x01, 0xca, 0xfe // MAC
};
OptionPtr relay_opt(new Option(Option::V6, 79,
OptionBuffer(opt_data, opt_data + sizeof(opt_data))));
info.options_.insert(make_pair(relay_opt->getType(), relay_opt));
pkt.addRelayInfo(info);
ASSERT_EQ(1, pkt.relay_info_.size());
HWAddrPtr found = pkt.getMAC(HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION);
ASSERT_TRUE(found);
stringstream tmp;
tmp << "hwtype=1 0a:1b:0b:01:ca:fe";
EXPECT_EQ(tmp.str(), found->toText(true));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION, found->source_);
}
// Test checks whether getMACFromIPv6RelayOpt() returns the hardware (MAC)
// address properly from a message relayed by multiple servers.
TEST_F(Pkt6Test, getMACFromIPv6RelayOpt_multipleRelay) {
// Let's create a Solicit first...
Pkt6 pkt(DHCPV6_SOLICIT, 1234);
// Now pretend it was relayed two times. The relay closest to the server
// adds link-layer-address information against the RFC, the process fails.
Pkt6::RelayInfo info1;
uint8_t opt_data[] = {
0x00, 0x01, // Ethertype
0x1a, 0x30, 0x0b, 0xfa, 0xc0, 0xfe // MAC
};
OptionPtr relay_opt1(new Option(Option::V6, D6O_CLIENT_LINKLAYER_ADDR,
OptionBuffer(opt_data, opt_data + sizeof(opt_data))));
info1.options_.insert(make_pair(relay_opt1->getType(), relay_opt1));
pkt.addRelayInfo(info1);
// Second relay, closest to the client has not implemented RFC6939
Pkt6::RelayInfo info2;
pkt.addRelayInfo(info2);
ASSERT_EQ(2, pkt.relay_info_.size());
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION));
// Let's envolve the packet with a third relay (now the closest to the client)
// that inserts the correct client_linklayer_addr option.
Pkt6::RelayInfo info3;
// We reuse the option and modify the MAC to be sure we get the right address
opt_data[2] = 0xfa;
OptionPtr relay_opt3(new Option(Option::V6, D6O_CLIENT_LINKLAYER_ADDR,
OptionBuffer(opt_data, opt_data + sizeof(opt_data))));
info3.options_.insert(make_pair(relay_opt3->getType(), relay_opt3));
pkt.addRelayInfo(info3);
ASSERT_EQ(3, pkt.relay_info_.size());
// Now extract the MAC address from the relayed option
HWAddrPtr found = pkt.getMAC(HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION);
ASSERT_TRUE(found);
stringstream tmp;
tmp << "hwtype=1 fa:30:0b:fa:c0:fe";
EXPECT_EQ(tmp.str(), found->toText(true));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION,found->source_);
}
TEST_F(Pkt6Test, getMACFromDUID) {
Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
// Although MACs are typically 6 bytes long, let's make this test a bit
// more challenging and use odd MAC lengths.
uint8_t duid_llt[] = { 0, 1, // type (DUID-LLT)
0, 7, // hwtype (7 - just a randomly picked value)
1, 2, 3, 4, // timestamp
0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0x10 // MAC address (7 bytes)
};
uint8_t duid_ll[] = { 0, 3, // type (DUID-LL)
0, 11, // hwtype (11 - just a randomly picked value)
0xa, 0xb, 0xc, 0xd, 0xe // MAC address (5 bytes)
};
uint8_t duid_en[] = { 0, 2, // type (DUID-EN)
1, 2, 3, 4, // enterprise-id
0xa, 0xb, 0xc // opaque data
};
OptionPtr clientid1(new Option(Option::V6, D6O_CLIENTID, OptionBuffer(
duid_llt, duid_llt + sizeof(duid_llt))));
OptionPtr clientid2(new Option(Option::V6, D6O_CLIENTID, OptionBuffer(
duid_ll, duid_ll + sizeof(duid_ll))));
OptionPtr clientid3(new Option(Option::V6, D6O_CLIENTID, OptionBuffer(
duid_en, duid_en + sizeof(duid_en))));
// Packet does not have any client-id, this call should fail
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_DUID));
// Let's test DUID-LLT. This should work.
pkt.addOption(clientid1);
HWAddrPtr mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_DUID);
ASSERT_TRUE(mac);
EXPECT_EQ("hwtype=7 0a:0b:0c:0d:0e:0f:10", mac->toText(true));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_DUID, mac->source_);
// Let's test DUID-LL. This should work.
ASSERT_TRUE(pkt.delOption(D6O_CLIENTID));
pkt.addOption(clientid2);
mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_DUID);
ASSERT_TRUE(mac);
EXPECT_EQ("hwtype=11 0a:0b:0c:0d:0e", mac->toText(true));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_DUID, mac->source_);
// Finally, let's try DUID-EN. This should fail, as EN type does not
// contain any MAC address information.
ASSERT_TRUE(pkt.delOption(D6O_CLIENTID));
pkt.addOption(clientid3);
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_DUID));
}
// Test checks whether getMAC(DOCSIS_MODEM) is working properly.
// We only have a small number of actual traffic captures from
// cable networks, so the scope of unit-tests is somewhat limited.
TEST_F(Pkt6Test, getMAC_DOCSIS_Modem) {
// Let's use a captured traffic. The one we have comes from a
// modem with MAC address 10:0d:7f:00:07:88.
Pkt6Ptr pkt = PktCaptures::captureDocsisRelayedSolicit();
ASSERT_NO_THROW(pkt->unpack());
// The method should return MAC based on the vendor-specific info,
// suboption 36, which is inserted by the modem itself.
HWAddrPtr found = pkt->getMAC(HWAddr::HWADDR_SOURCE_DOCSIS_MODEM);
ASSERT_TRUE(found);
// Let's check the info.
EXPECT_EQ("hwtype=1 10:0d:7f:00:07:88", found->toText(true));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_DOCSIS_MODEM, found->source_);
// Now let's remove the option
OptionVendorPtr vendor = boost::dynamic_pointer_cast<
OptionVendor>(pkt->getOption(D6O_VENDOR_OPTS));
ASSERT_TRUE(vendor);
ASSERT_TRUE(vendor->delOption(DOCSIS3_V6_DEVICE_ID));
// Ok, there's no more suboption 36. Now getMAC() should fail.
EXPECT_FALSE(pkt->getMAC(HWAddr::HWADDR_SOURCE_DOCSIS_MODEM));
}
// Test checks whether getMAC(DOCSIS_CMTS) is working properly.
// We only have a small number of actual traffic captures from
// cable networks, so the scope of unit-tests is somewhat limited.
TEST_F(Pkt6Test, getMAC_DOCSIS_CMTS) {
// Let's use a captured traffic. The one we have comes from a
// modem with MAC address 20:e5:2a:b8:15:14.
Pkt6Ptr pkt = PktCaptures::captureeRouterRelayedSolicit();
ASSERT_NO_THROW(pkt->unpack());
// The method should return MAC based on the vendor-specific info,
// suboption 36, which is inserted by the modem itself.
HWAddrPtr found = pkt->getMAC(HWAddr::HWADDR_SOURCE_DOCSIS_CMTS);
ASSERT_TRUE(found);
// Let's check the info.
EXPECT_EQ("hwtype=1 20:e5:2a:b8:15:14", found->toText(true));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_DOCSIS_CMTS, found->source_);
// Now let's remove the suboption 1026 that is inserted by the
// relay.
OptionVendorPtr vendor = boost::dynamic_pointer_cast<
OptionVendor>(pkt->getAnyRelayOption(D6O_VENDOR_OPTS,
isc::dhcp::Pkt6::RELAY_SEARCH_FROM_CLIENT));
ASSERT_TRUE(vendor);
EXPECT_TRUE(vendor->delOption(DOCSIS3_V6_CMTS_CM_MAC));
EXPECT_FALSE(pkt->getMAC(HWAddr::HWADDR_SOURCE_DOCSIS_CMTS));
}
// Test checks whether getMACFromRemoteIdRelayOption() returns the hardware (MAC)
// address properly from a relayed message.
TEST_F(Pkt6Test, getMACFromRemoteIdRelayOption) {
// Create a solicit message.
Pkt6 pkt(DHCPV6_SOLICIT, 1234);
// This should fail as the message is't relayed yet.
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_REMOTE_ID));
// Let's get the first interface
IfacePtr iface = IfaceMgr::instance().getIface(1);
ASSERT_TRUE(iface);
// and set source interface data properly. getMACFromIPv6LinkLocal attempts
// to use source interface to obtain hardware type
pkt.setIface(iface->getName());
pkt.setIndex(iface->getIndex());
// Generate option data with randomly picked enterprise number and remote-id
const uint8_t opt_data[] = {
1, 2, 3, 4, // enterprise-number
0xa, 0xb, 0xc, 0xd, 0xe, 0xf // remote-id can be used as a standard MAC
};
// Create option with number 37 (remote-id relay agent option)
OptionPtr relay_opt(new Option(Option::V6, D6O_REMOTE_ID,
OptionBuffer(opt_data, opt_data + sizeof(opt_data))));
// First simulate relaying message without adding remote-id option
Pkt6::RelayInfo info;
pkt.addRelayInfo(info);
ASSERT_EQ(1, pkt.relay_info_.size());
// This should fail as the remote-id option isn't there
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_REMOTE_ID));
// Now add this option to the relayed message
info.options_.insert(make_pair(relay_opt->getType(), relay_opt));
pkt.addRelayInfo(info);
ASSERT_EQ(2, pkt.relay_info_.size());
// This should work now
HWAddrPtr mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_REMOTE_ID);
ASSERT_TRUE(mac);
stringstream tmp;
tmp << "hwtype=" << (int)iface->getHWType() << " 0a:0b:0c:0d:0e:0f";
EXPECT_EQ(tmp.str(), mac->toText(true));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_REMOTE_ID, mac->source_);
}
// Test checks whether getMACFromRemoteIdRelayOption() returns the hardware (MAC)
// address properly from a relayed message (even if the remote-id is longer than
// 20 bytes).
TEST_F(Pkt6Test, getMACFromRemoteIdRelayOptionExtendedValue) {
// Create a solicit message.
Pkt6 pkt(DHCPV6_SOLICIT, 1234);
// This should fail as the message is't relayed yet.
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_REMOTE_ID));
// Let's get the first interface
IfacePtr iface = IfaceMgr::instance().getIface(1);
ASSERT_TRUE(iface);
// and set source interface data properly. getMACFromIPv6LinkLocal attempts
// to use source interface to obtain hardware type
pkt.setIface(iface->getName());
pkt.setIndex(iface->getIndex());
// Generate option data with randomly picked enterprise number and remote-id
const uint8_t opt_data[] = {
1, 2, 3, 4, // enterprise-number
0xa, 0xb, 0xc, 0xd, 0xe, 0xf, // remote-id can be longer than 20 bytes,
0xa, 0xb, 0xc, 0xd, 0xe, 0xf, // truncate it so that is can be used as
0xa, 0xb, 0xc, 0xd, 0xe, 0xf, // a standard MAC
0xa, 0xb, 0xc, 0xd, 0xe, 0xf
};
// Create option with number 37 (remote-id relay agent option)
OptionPtr relay_opt(new Option(Option::V6, D6O_REMOTE_ID,
OptionBuffer(opt_data, opt_data + sizeof(opt_data))));
// First simulate relaying message without adding remote-id option
Pkt6::RelayInfo info;
pkt.addRelayInfo(info);
ASSERT_EQ(1, pkt.relay_info_.size());
// This should fail as the remote-id option isn't there
EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_REMOTE_ID));
// Now add this option to the relayed message
info.options_.insert(make_pair(relay_opt->getType(), relay_opt));
pkt.addRelayInfo(info);
ASSERT_EQ(2, pkt.relay_info_.size());
// This should work now
HWAddrPtr mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_REMOTE_ID);
ASSERT_TRUE(mac);
stringstream tmp;
tmp << "hwtype=" << (int)iface->getHWType()
<< " 0a:0b:0c:0d:0e:0f:0a:0b:0c:0d:0e:0f:0a:0b:0c:0d:0e:0f:0a:0b";
EXPECT_EQ(tmp.str(), mac->toText(true));
EXPECT_EQ(HWAddr::HWADDR_SOURCE_REMOTE_ID, mac->source_);
}
// This test verifies that a solicit that passed through two relays is parsed
// properly. In particular the second relay (outer encapsulation) included RSOO
// (Relay Supplied Options option). This test checks whether it was parsed
// properly. See captureRelayed2xRSOO() description for details.
TEST_F(Pkt6Test, rsoo) {
Pkt6Ptr msg = dhcp::test::PktCaptures::captureRelayed2xRSOO();
EXPECT_NO_THROW(msg->unpack());
EXPECT_EQ(DHCPV6_SOLICIT, msg->getType());
EXPECT_EQ(217, msg->len());
ASSERT_EQ(2, msg->relay_info_.size());
// There should be an RSOO option in the outermost relay
OptionPtr opt = msg->getRelayOption(D6O_RSOO, 1);
ASSERT_TRUE(opt);
EXPECT_EQ(D6O_RSOO, opt->getType());
const OptionCollection& rsoo = opt->getOptions();
ASSERT_EQ(2, rsoo.size());
OptionPtr rsoo1 = opt->getOption(255);
OptionPtr rsoo2 = opt->getOption(256);
ASSERT_TRUE(rsoo1);
ASSERT_TRUE(rsoo2);
EXPECT_EQ(8, rsoo1->len()); // 4 bytes of data + header
EXPECT_EQ(13, rsoo2->len()); // 9 bytes of data + header
}
// Verify that the DUID can be extracted from the DHCPv6 packet
// holding Client Identifier option.
TEST_F(Pkt6Test, getClientId) {
// Create a packet.
Pkt6Ptr pkt(new Pkt6(DHCPV6_SOLICIT, 0x2312));
// Initially, the packet should hold no DUID.
EXPECT_FALSE(pkt->getClientId());
// Create DUID and add it to the packet.
const uint8_t duid_data[] = { 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0 };
OptionBuffer duid_vec(duid_data, duid_data + sizeof(duid_data) - 1);
pkt->addOption(OptionPtr(new Option(Option::V6, D6O_CLIENTID,
duid_vec.begin(),
duid_vec.end())));
// Simulate the packet transmission over the wire, i.e. create on
// wire representation of the packet, and then parse it.
Pkt6Ptr pkt_clone = packAndClone(pkt);
ASSERT_NO_THROW(pkt_clone->unpack());
// This time the DUID should be returned.
DuidPtr duid = pkt_clone->getClientId();
ASSERT_TRUE(duid);
// And it should be equal to the one that we used to create
// the packet.
EXPECT_TRUE(duid->getDuid() == duid_vec);
}
// This test verifies that it is possible to obtain the packet
// identifiers (DUID, HW Address, transaction id) in the textual
// format.
TEST_F(Pkt6Test, makeLabel) {
DuidPtr duid(new DUID(DUID::fromText("0102020202030303030303")));
HWAddrPtr hwaddr(new HWAddr(HWAddr::fromText("01:02:03:04:05:06",
HTYPE_ETHER)));
// Specify DUID and no HW Address.
EXPECT_EQ("duid=[01:02:02:02:02:03:03:03:03:03:03], [no hwaddr info], tid=0x123",
Pkt6::makeLabel(duid, 0x123, HWAddrPtr()));
// Specify HW Address and no DUID.
EXPECT_EQ("duid=[no info], [hwtype=1 01:02:03:04:05:06], tid=0x123",
Pkt6::makeLabel(DuidPtr(), 0x123, hwaddr));
// Specify both DUID and HW Address.
EXPECT_EQ("duid=[01:02:02:02:02:03:03:03:03:03:03], "
"[hwtype=1 01:02:03:04:05:06], tid=0x123",
Pkt6::makeLabel(duid, 0x123, hwaddr));
// Specify neither DUID nor HW Address.
EXPECT_EQ("duid=[no info], [no hwaddr info], tid=0x0",
Pkt6::makeLabel(DuidPtr(), 0x0, HWAddrPtr()));
}
// Tests that the variant of makeLabel which doesn't include transaction
// id produces expected output.
TEST_F(Pkt6Test, makeLabelWithoutTransactionId) {
DuidPtr duid(new DUID(DUID::fromText("0102020202030303030303")));
HWAddrPtr hwaddr(new HWAddr(HWAddr::fromText("01:02:03:04:05:06",
HTYPE_ETHER)));
// Specify DUID and no HW Address.
EXPECT_EQ("duid=[01:02:02:02:02:03:03:03:03:03:03], [no hwaddr info]",
Pkt6::makeLabel(duid, HWAddrPtr()));
// Specify HW Address and no DUID.
EXPECT_EQ("duid=[no info], [hwtype=1 01:02:03:04:05:06]",
Pkt6::makeLabel(DuidPtr(), hwaddr));
// Specify both DUID and HW Address.
EXPECT_EQ("duid=[01:02:02:02:02:03:03:03:03:03:03], "
"[hwtype=1 01:02:03:04:05:06]",
Pkt6::makeLabel(duid, hwaddr));
// Specify neither DUID nor HW Address.
EXPECT_EQ("duid=[no info], [no hwaddr info]", Pkt6::makeLabel(DuidPtr(), HWAddrPtr()));
}
// This test verifies that it is possible to obtain the packet
// identifiers in the textual format from the packet instance.
TEST_F(Pkt6Test, getLabel) {
// Create a packet.
Pkt6Ptr pkt(new Pkt6(DHCPV6_SOLICIT, 0x2312));
EXPECT_EQ("duid=[no info], [no hwaddr info], tid=0x2312",
pkt->getLabel());
DuidPtr duid(new DUID(DUID::fromText("0102020202030303030303")));
pkt->addOption(OptionPtr(new Option(Option::V6, D6O_CLIENTID,
duid->getDuid().begin(),
duid->getDuid().end())));
// Simulate the packet transmission over the wire, i.e. create on
// wire representation of the packet, and then parse it.
Pkt6Ptr pkt_clone = packAndClone(pkt);
ASSERT_NO_THROW(pkt_clone->unpack());
EXPECT_EQ("duid=[01:02:02:02:02:03:03:03:03:03:03], [no hwaddr info], tid=0x2312",
pkt_clone->getLabel());
}
// Test that empty client identifier option doesn't cause an exception from
// Pkt6::getLabel.
TEST_F(Pkt6Test, getLabelEmptyClientId) {
// Create a packet.
Pkt6 pkt(DHCPV6_SOLICIT, 0x2312);
// Add empty client identifier option.
pkt.addOption(OptionPtr(new Option(Option::V6, D6O_CLIENTID)));
EXPECT_EQ("duid=[no info], [no hwaddr info], tid=0x2312", pkt.getLabel());
}
// Verifies that when the VIVSO, 17, has length that is too
// short (i.e. less than sizeof(uint8_t), unpack throws a
// SkipRemainingOptionsError exception
TEST_F(Pkt6Test, truncatedVendorLength) {
// Build a good Solicit packet
Pkt6Ptr pkt = dhcp::test::PktCaptures::captureSolicitWithVIVSO();
// Unpacking should not throw
ASSERT_NO_THROW(pkt->unpack());
ASSERT_EQ(DHCPV6_SOLICIT, pkt->getType());
// VIVSO option should be there
OptionPtr x = pkt->getOption(D6O_VENDOR_OPTS);
ASSERT_TRUE(x);
ASSERT_EQ(D6O_VENDOR_OPTS, x->getType());
OptionVendorPtr vivso = boost::dynamic_pointer_cast<OptionVendor>(x);
ASSERT_TRUE(vivso);
EXPECT_EQ(8, vivso->len()); // data + opt code + len
// Build a bad Solicit packet
pkt = dhcp::test::PktCaptures::captureSolicitWithTruncatedVIVSO();
// Unpack should throw Skip exception
ASSERT_THROW(pkt->unpack(), SkipRemainingOptionsError);
ASSERT_EQ(DHCPV6_SOLICIT, pkt->getType());
// VIVSO option should not be there
x = pkt->getOption(D6O_VENDOR_OPTS);
ASSERT_FALSE(x);
}
// Checks that unpacking correctly handles SkipThisOptionError by
// omitting the offending option from the unpacked options.
TEST_F(Pkt6Test, testSkipThisOptionError) {
// Get a packet. We're really interested in its on-wire
// representation only.
Pkt6Ptr donor(capture1());
// That's our original content. It should be sane.
OptionBuffer orig = donor->data_;
orig.push_back(0);
orig.push_back(41); // new-posix-timezone
orig.push_back(0);
orig.push_back(3); // length=3
orig.push_back(0x61); // data="abc"
orig.push_back(0x62);
orig.push_back(0x63);
orig.push_back(0);
orig.push_back(59); // bootfile-url
orig.push_back(0);
orig.push_back(3); // length=3
orig.push_back(0); // data= all nulls
orig.push_back(0);
orig.push_back(0);
orig.push_back(0);
orig.push_back(42); // new-tzdb-timezone
orig.push_back(0);
orig.push_back(3); // length=3
orig.push_back(0x64); // data="def"
orig.push_back(0x65);
orig.push_back(0x66);
// Unpacking should not throw.
Pkt6Ptr pkt(new Pkt6(&orig[0], orig.size()));
ASSERT_NO_THROW_LOG(pkt->unpack());
// We should have option 41 = "abc".
OptionPtr opt;
OptionStringPtr opstr;
ASSERT_TRUE(opt = pkt->getOption(41));
ASSERT_TRUE(opstr = boost::dynamic_pointer_cast<OptionString>(opt));
EXPECT_EQ(3, opstr->getValue().length());
EXPECT_EQ("abc", opstr->getValue());
// We should not have option 59.
EXPECT_FALSE(opt = pkt->getOption(59));
// We should have option 42 = "def".
ASSERT_TRUE(opt = pkt->getOption(42));
ASSERT_TRUE(opstr = boost::dynamic_pointer_cast<OptionString>(opt));
EXPECT_EQ(3, opstr->getValue().length());
EXPECT_EQ("def", opstr->getValue());
}
// This test verifies that LQ_QUERY_OPTIONs can be created, packed,
// and unpacked correctly.
TEST_F(Pkt6Test, lqQueryOption) {
const OptionDefinition& def = LibDHCP::D6O_LQ_QUERY_DEF();
OptionCustomPtr lq_option(new OptionCustom(def, Option::V6));
ASSERT_TRUE(lq_option);
// Add query type (77 is technically not valid but better visually).
uint8_t orig_type = 77;
ASSERT_NO_THROW_LOG(lq_option->writeInteger<uint8_t>(77,0));
// Add query link address
IOAddress orig_link("2001:db8::1");
ASSERT_NO_THROW_LOG(lq_option->writeAddress(orig_link, 1));
// Now add supported sub-options: D6O_IAADR, D6O_CLIENTID, and D6O_ORO
// We are ingoring the fact that a query containing both a D6O_IAADDR
// and a D6O_CLIENTID is not technically valid. We only care that the
// sub options will pack and unpack.
// Add a D6O_IAADDR option
Option6IAAddrPtr orig_iaaddr(new Option6IAAddr(D6O_IAADDR, IOAddress("2001:db8::2"), 0, 0));
ASSERT_TRUE(orig_iaaddr);
ASSERT_NO_THROW_LOG(lq_option->addOption(orig_iaaddr));
// Add a D6O_CLIENTID option
DuidPtr duid(new DUID(DUID::fromText("0102020202030303030303")));
OptionPtr orig_clientid(new Option(Option::V6, D6O_CLIENTID, OptionBuffer(
duid->getDuid().begin(), duid->getDuid().end())));
ASSERT_NO_THROW_LOG(lq_option->addOption(orig_clientid));
// Add a D6O_ORO option
OptionUint16ArrayPtr orig_oro(new OptionUint16Array(Option::V6, D6O_ORO));
ASSERT_TRUE(orig_oro);
orig_oro->addValue(1234);
ASSERT_NO_THROW_LOG(lq_option->addOption(orig_oro));
// Now let's create a packet to which to add our new lq_option.
Pkt6Ptr orig(new Pkt6(DHCPV6_LEASEQUERY, 0x2312));
orig->addOption(lq_option);
ASSERT_NO_THROW_LOG(orig->pack());
// Now create second packet,based on assembled data from the first one
Pkt6Ptr clone(new Pkt6(static_cast<const uint8_t*>
(orig->getBuffer().getData()),
orig->getBuffer().getLength()));
// Unpack it.
ASSERT_NO_THROW_LOG(clone->unpack());
// We should be able to find our query option.
OptionPtr opt;
opt = clone->getOption(D6O_LQ_QUERY);
ASSERT_TRUE(opt);
OptionCustomPtr clone_query = boost::dynamic_pointer_cast<OptionCustom>(opt);
ASSERT_TRUE(clone_query);
// Verify the query type is right.
uint8_t clone_type;
ASSERT_NO_THROW_LOG(clone_type = clone_query->readInteger<uint8_t>(0));
EXPECT_EQ(orig_type, clone_type);
// Verify the query link address is right.
IOAddress clone_link("::");
ASSERT_NO_THROW_LOG(clone_link = clone_query->readAddress(1));
EXPECT_EQ(orig_link, clone_link);
// Verify the suboptions.
// Verify the D6O_IAADDR option
opt = clone_query->getOption(D6O_IAADDR);
ASSERT_TRUE(opt);
Option6IAAddrPtr clone_iaaddr = boost::dynamic_pointer_cast<Option6IAAddr>(opt);
ASSERT_TRUE(clone_iaaddr);
EXPECT_TRUE(clone_iaaddr->equals(*orig_iaaddr));
// Verify the D6O_CLIENTID option
opt = clone_query->getOption(D6O_CLIENTID);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(*orig_clientid));
// Verify the D6O_ORO option
opt = clone_query->getOption(D6O_ORO);
ASSERT_TRUE(opt);
OptionUint16ArrayPtr clone_oro = boost::dynamic_pointer_cast<OptionUint16Array>(opt);
ASSERT_TRUE(clone_oro);
EXPECT_TRUE(clone_oro->equals(*orig_oro));
}
// This test verifies that D6O_CLIENT_DATA options can be created, packed,
// and unpacked correctly.
TEST_F(Pkt6Test, clientDataOption) {
const OptionDefinition& def = LibDHCP::D6O_CLIENT_DATA_DEF();
OptionCustomPtr cd_option(new OptionCustom(def, Option::V6));
ASSERT_TRUE(cd_option);
// Now add supported sub-options: D6O_CLIENTID, D6O_IAADR, D6O_IAAPREFIX,
// and D6O_CLTT
// Add a D6O_CLIENTID option
DuidPtr duid(new DUID(DUID::fromText("0102020202030303030303")));
OptionPtr orig_clientid(new Option(Option::V6, D6O_CLIENTID, OptionBuffer(
duid->getDuid().begin(), duid->getDuid().end())));
ASSERT_NO_THROW_LOG(cd_option->addOption(orig_clientid));
// Add a D6O_IAADDR option
Option6IAAddrPtr orig_iaaddr1(new Option6IAAddr(D6O_IAADDR, IOAddress("2001:db8::1"), 0, 0));
ASSERT_TRUE(orig_iaaddr1);
ASSERT_NO_THROW_LOG(cd_option->addOption(orig_iaaddr1));
// Add another D6O_IAADDR option
Option6IAAddrPtr orig_iaaddr2(new Option6IAAddr(D6O_IAADDR, IOAddress("2001:db8::2"), 0, 0));
ASSERT_TRUE(orig_iaaddr2);
ASSERT_NO_THROW_LOG(cd_option->addOption(orig_iaaddr2));
// Add a D6O_IAPREFIX option
Option6IAAddrPtr orig_iaprefix1(new Option6IAPrefix(D6O_IAPREFIX, IOAddress("2001:db8:1::"), 64, 0, 0));
ASSERT_TRUE(orig_iaprefix1);
ASSERT_NO_THROW_LOG(cd_option->addOption(orig_iaprefix1));
// Add another D6O_IAPREFIX option
Option6IAAddrPtr orig_iaprefix2(new Option6IAPrefix(D6O_IAPREFIX, IOAddress("2001:db8:2::"), 64, 0, 0));
ASSERT_TRUE(orig_iaprefix2);
ASSERT_NO_THROW_LOG(cd_option->addOption(orig_iaprefix2));
// Add a D6O_CLT_TIME option
OptionUint32Ptr orig_cltt(new OptionInt<uint32_t>(Option::V6, D6O_CLT_TIME, 4000));
ASSERT_TRUE(orig_cltt);
ASSERT_NO_THROW_LOG(cd_option->addOption(orig_cltt));
// Now let's create a packet to which to add our new client data option.
Pkt6Ptr orig(new Pkt6(DHCPV6_LEASEQUERY_REPLY, 0x2312));
orig->addOption(cd_option);
ASSERT_NO_THROW_LOG(orig->pack());
// Now create second packet,based on assembled data from the first one
Pkt6Ptr clone(new Pkt6(static_cast<const uint8_t*>
(orig->getBuffer().getData()),
orig->getBuffer().getLength()));
// Unpack it.
ASSERT_NO_THROW_LOG(clone->unpack());
// We should be able to find our client data option.
OptionPtr opt;
opt = clone->getOption(D6O_CLIENT_DATA);
ASSERT_TRUE(opt);
OptionCustomPtr clone_cd_option = boost::dynamic_pointer_cast<OptionCustom>(opt);
ASSERT_TRUE(clone_cd_option);
// Verify the suboptions.
opt = clone_cd_option->getOption(D6O_CLIENTID);
ASSERT_TRUE(opt);
EXPECT_TRUE(opt->equals(*orig_clientid));
// Verify the first address option
opt = clone_cd_option->getOption(D6O_IAADDR);
ASSERT_TRUE(opt);
Option6IAAddrPtr clone_iaaddr = boost::dynamic_pointer_cast<Option6IAAddr>(opt);
ASSERT_TRUE(clone_iaaddr);
EXPECT_TRUE(clone_iaaddr->equals(*orig_iaaddr1));
// Verify the second address option.
opt = clone_cd_option->getOption(D6O_IAADDR);
ASSERT_TRUE(opt);
clone_iaaddr = boost::dynamic_pointer_cast<Option6IAAddr>(opt);
ASSERT_TRUE(clone_iaaddr);
EXPECT_TRUE(clone_iaaddr->equals(*orig_iaaddr2));
// Verify the first prefix option.
opt = clone_cd_option->getOption(D6O_IAPREFIX);
ASSERT_TRUE(opt);
Option6IAPrefixPtr clone_iaprefix = boost::dynamic_pointer_cast<Option6IAPrefix>(opt);
ASSERT_TRUE(clone_iaprefix);
EXPECT_TRUE(clone_iaprefix->equals(*orig_iaprefix1));
// Verify the second prefix option.
opt = clone_cd_option->getOption(D6O_IAPREFIX);
ASSERT_TRUE(opt);
clone_iaprefix = boost::dynamic_pointer_cast<Option6IAPrefix>(opt);
ASSERT_TRUE(clone_iaprefix);
EXPECT_TRUE(clone_iaprefix->equals(*orig_iaprefix2));
// Verify the CLT option.
opt = clone_cd_option->getOption(D6O_CLT_TIME);
ASSERT_TRUE(opt);
OptionUint32Ptr clone_cltt = boost::dynamic_pointer_cast<OptionUint32>(opt);
ASSERT_TRUE(clone_cltt);
EXPECT_TRUE(clone_cltt->equals(*orig_cltt));
}
// This test verifies that D6O_LQ_RELAY_DATA options can be created, packed,
// and unpacked correctly.
TEST_F(Pkt6Test, relayDataOption) {
const OptionDefinition& def = LibDHCP::D6O_LQ_RELAY_DATA_DEF();
OptionCustomPtr rd_option(new OptionCustom(def, Option::V6));
ASSERT_TRUE(rd_option);
// Write out the peer address.
IOAddress orig_address("2001:db8::1");
rd_option->writeAddress(orig_address, 0);
// Write out the binary data (in real life this is a RELAY_FORW message)
std::vector<uint8_t>orig_data({ 01,02,03,04,05,06 });
rd_option->writeBinary(orig_data, 1);
// Now let's create a packet to which to add our new relay data option.
Pkt6Ptr orig(new Pkt6(DHCPV6_LEASEQUERY_REPLY, 0x2312));
orig->addOption(rd_option);
ASSERT_NO_THROW_LOG(orig->pack());
// Now create second packet,based on assembled data from the first one
Pkt6Ptr clone(new Pkt6(static_cast<const uint8_t*>
(orig->getBuffer().getData()),
orig->getBuffer().getLength()));
// Unpack it.
ASSERT_NO_THROW_LOG(clone->unpack());
// We should be able to find our client data option.
OptionPtr opt;
opt = clone->getOption(D6O_LQ_RELAY_DATA);
ASSERT_TRUE(opt);
OptionCustomPtr clone_rd_option = boost::dynamic_pointer_cast<OptionCustom>(opt);
ASSERT_TRUE(clone_rd_option);
// Verify the address field.
IOAddress clone_addr("::");
ASSERT_NO_THROW_LOG(clone_addr = clone_rd_option->readAddress(0));
EXPECT_EQ(orig_address, clone_addr);
// Verify the binary field
OptionBuffer clone_data;
ASSERT_NO_THROW_LOG(clone_data = clone_rd_option->readBinary(1));
EXPECT_EQ(orig_data, clone_data);
}
// Exercises packet event stack and helper functions.
TEST_F(Pkt6Test, PktEvents) {
// Get current time.
auto start_time = PktEvent::now();
// Verify that a set time is not equal to an EMPTY_TIME.
ASSERT_NE(start_time, PktEvent::EMPTY_TIME());
// Create a test packet.
scoped_ptr<Pkt6> pkt(new Pkt6(DHCPV6_SOLICIT, 0x020304));
// Upon creation, the events table should be empty.
ASSERT_TRUE(pkt->getPktEvents().empty());
// An non-existent event should return an empty time.
auto event_time = pkt->getPktEventTime(PktEvent::BUFFER_READ);
ASSERT_EQ(event_time, PktEvent::EMPTY_TIME());
// Sleep for 200 microseconds to put some distance between now and start_time.
usleep(200);
// Should be able to add an event, defaulting the event time to current time.
pkt->addPktEvent(PktEvent::BUFFER_READ);
event_time = pkt->getPktEventTime(PktEvent::BUFFER_READ);
ASSERT_GT(event_time, start_time);
// Should be able to overwrite an existing event's time.
pkt->setPktEvent(PktEvent::BUFFER_READ, start_time);
event_time = pkt->getPktEventTime(PktEvent::BUFFER_READ);
ASSERT_EQ(event_time, start_time);
// Should be able to add an event with an explicit time.
pkt->addPktEvent(PktEvent::RESPONSE_SENT, start_time);
event_time = pkt->getPktEventTime(PktEvent::RESPONSE_SENT);
ASSERT_EQ(event_time, start_time);
// Should be able to fetch the list of events.
auto const& events = pkt->getPktEvents();
ASSERT_FALSE(events.empty());
auto event = events.begin();
ASSERT_EQ((*event).label_, PktEvent::BUFFER_READ);
++event;
ASSERT_EQ((*event).label_, PktEvent::RESPONSE_SENT);
// Discard the event stack contents.
pkt->clearPktEvents();
ASSERT_TRUE(pkt->getPktEvents().empty());
// Verify dumpPktEvent terse output. Also serves to
// verify adding events using struct timeval.
struct timeval log_time = {1706802676, 100};
struct timeval log_time_plus = {1706802676, 250};
pkt->addPktEvent("first-event", log_time);
pkt->addPktEvent("second-event", log_time_plus);
std::string log = pkt->dumpPktEvents();
EXPECT_EQ(log, "2024-Feb-01 15:51:16.000100 : first-event, 2024-Feb-01 15:51:16.000250 : second-event");
// Verify dumpPktEvent verbose output.
log = pkt->dumpPktEvents(true);
EXPECT_EQ(log,
"Event log: \n"
"2024-Feb-01 15:51:16.000100 : first-event\n"
"2024-Feb-01 15:51:16.000250 : second-event elapsed: 00:00:00.000150\n"
"total elapsed: 00:00:00.000150");
}
} // namespace
|