summaryrefslogtreecommitdiffstats
path: root/daemon/worker.c
blob: 6217dc8a10866cc79bf663fb93bd971c9f68bd1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
/*  Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
 *  SPDX-License-Identifier: GPL-3.0-or-later
 */

#include "kresconfig.h"
#include "daemon/worker.h"

#include <uv.h>
#include <lua.h>
#include <lauxlib.h>
#include <libknot/packet/pkt.h>
#include <libknot/descriptor.h>
#include <contrib/cleanup.h>
#include <contrib/ucw/lib.h>
#include <contrib/ucw/mempool.h>
#if defined(__GLIBC__) && defined(_GNU_SOURCE)
#include <malloc.h>
#endif
#include <sys/types.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

#if ENABLE_XDP
	#include <libknot/xdp/xdp.h>
#endif

#include "daemon/bindings/api.h"
#include "daemon/engine.h"
#include "daemon/io.h"
#include "daemon/proxyv2.h"
#include "daemon/session2.h"
#include "daemon/tls.h"
#include "lib/cache/util.h" /* packet_ttl */
#include "lib/layer.h"
#include "lib/layer/iterate.h" /* kr_response_classify */
#include "lib/utils.h"
#include "daemon/defer.h"


/* Magic defaults for the worker. */
#ifndef MAX_PIPELINED
#define MAX_PIPELINED 100
#endif

#define MAX_DGRAM_LEN UINT16_MAX

#define VERBOSE_MSG(qry, ...) kr_log_q(qry, WORKER, __VA_ARGS__)

/** Client request state. */
struct request_ctx
{
	struct kr_request req;

	struct qr_task *task;
	struct {
		/** NULL if the request didn't come over network. */
		struct session2 *session;
		/** Requestor's address; separate because of UDP session "sharing". */
		union kr_sockaddr addr;
		/** Request communication address; if not from a proxy, same as addr. */
		union kr_sockaddr comm_addr;
		/** Local address.  For AF_XDP we couldn't use session's,
		 * as the address might be different every time. */
		union kr_sockaddr dst_addr;

		/** Router's MAC address for XDP. */
		ethaddr_t eth_from;
		/** Our MAC address for XDP. */
		ethaddr_t eth_to;
		/** Whether XDP was used. */
		bool xdp : 1;
	} source;
};


/** Query resolution task. */
struct qr_task
{
	struct request_ctx *ctx;
	knot_pkt_t *pktbuf;
	qr_tasklist_t waiting;
	struct session2 *pending[MAX_PENDING];
	uint16_t pending_count;
	uint16_t timeouts;
	uint16_t iter_count;
	uint32_t refs;
	bool finished : 1;
	bool leading  : 1;
	uint64_t creation_time;
	uint64_t send_time;
	uint64_t recv_time;
	struct kr_transport *transport;
};


/* Convenience macros */
#define qr_task_ref(task) \
	do { ++(task)->refs; } while(0)
#define qr_task_unref(task) \
	do { \
		if (task) \
			kr_require((task)->refs > 0); \
		if ((task) && --(task)->refs == 0) \
			qr_task_free((task)); \
	} while (0)

/* Forward decls */
static void qr_task_free(struct qr_task *task);
static int qr_task_step(struct qr_task *task,
			const struct sockaddr *packet_source,
			knot_pkt_t *packet);
static int qr_task_send(struct qr_task *task, struct session2 *session,
			const struct comm_info *comm, knot_pkt_t *pkt);
static int qr_task_finalize(struct qr_task *task, int state);
static void qr_task_complete(struct qr_task *task);
static int worker_add_tcp_connected(const struct sockaddr* addr, struct session2 *session);
static int worker_del_tcp_connected(const struct sockaddr* addr);
static struct session2* worker_find_tcp_connected(const struct sockaddr* addr);
static int worker_add_tcp_waiting(const struct sockaddr* addr,
				  struct session2 *session);
static int worker_del_tcp_waiting(const struct sockaddr* addr);
static struct session2* worker_find_tcp_waiting(const struct sockaddr* addr);

static void subreq_finalize(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *pkt);


struct worker_ctx the_worker_value; /**< Static allocation is suitable for the singleton. */
struct worker_ctx *the_worker = NULL;

/*! @internal Create a UDP/TCP handle for an outgoing AF_INET* connection.
 *  socktype is SOCK_* */
static struct session2 *ioreq_spawn(int socktype, sa_family_t family,
                                    enum kr_proto grp,
                                    struct protolayer_data_param *layer_param,
                                    size_t layer_param_count)
{
	bool precond = (socktype == SOCK_DGRAM || socktype == SOCK_STREAM)
			&& (family == AF_INET  || family == AF_INET6);
	if (kr_fails_assert(precond)) {
		kr_log_debug(WORKER, "ioreq_spawn: pre-condition failed\n");
		return NULL;
	}

	/* Create connection for iterative query */
	struct session2 *s;
	int ret = io_create(the_worker->loop, &s, socktype, family, grp,
			layer_param, layer_param_count, true);
	if (ret) {
		if (ret == UV_EMFILE) {
			the_worker->too_many_open = true;
			the_worker->rconcurrent_highwatermark = the_worker->stats.rconcurrent;
		}
		return NULL;
	}

	/* Bind to outgoing address, according to IP v4/v6. */
	union kr_sockaddr *addr;
	if (family == AF_INET) {
		addr = (union kr_sockaddr *)&the_worker->out_addr4;
	} else {
		addr = (union kr_sockaddr *)&the_worker->out_addr6;
	}
	if (addr->ip.sa_family != AF_UNSPEC) {
		if (kr_fails_assert(addr->ip.sa_family == family)) {
			session2_force_close(s);
			return NULL;
		}
		if (socktype == SOCK_DGRAM) {
			uv_udp_t *udp = (uv_udp_t *)session2_get_handle(s);
			ret = uv_udp_bind(udp, &addr->ip, 0);
		} else if (socktype == SOCK_STREAM){
			uv_tcp_t *tcp = (uv_tcp_t *)session2_get_handle(s);
			ret = uv_tcp_bind(tcp, &addr->ip, 0);
		}
	}

	if (ret != 0) {
		session2_force_close(s);
		return NULL;
	}

	/* Connect or issue query datagram */
	return s;
}

static void ioreq_kill_pending(struct qr_task *task)
{
	for (uint16_t i = 0; i < task->pending_count; ++i) {
		session2_kill_ioreq(task->pending[i], task);
	}
	task->pending_count = 0;
}

/** Get a mempool. */
static inline struct mempool *pool_borrow(void)
{
	/* The implementation used to have extra caching layer,
	 * but it didn't work well.  Now it's very simple. */
	return mp_new((size_t)16 * 1024);
}
/** Return a mempool. */
static inline void pool_release(struct mempool *mp)
{
	mp_delete(mp);
}

/** Create a key for an outgoing subrequest: qname, qclass, qtype.
 * @param key Destination buffer for key size, MUST be SUBREQ_KEY_LEN or larger.
 * @return key length if successful or an error
 */
static const size_t SUBREQ_KEY_LEN = KR_RRKEY_LEN;
static int subreq_key(char *dst, knot_pkt_t *pkt)
{
	kr_require(pkt);
	return kr_rrkey(dst, knot_pkt_qclass(pkt), knot_pkt_qname(pkt),
			knot_pkt_qtype(pkt), knot_pkt_qtype(pkt));
}

#if ENABLE_XDP
static uint8_t *alloc_wire_cb(struct kr_request *req, uint16_t *maxlen)
{
	if (kr_fails_assert(maxlen))
		return NULL;
	struct request_ctx *ctx = (struct request_ctx *)req;
	/* We know it's an AF_XDP socket; otherwise this CB isn't assigned. */
	uv_handle_t *handle = session2_get_handle(ctx->source.session);
	if (kr_fails_assert(handle->type == UV_POLL))
		return NULL;
	xdp_handle_data_t *xhd = handle->data;
	knot_xdp_msg_t out;
	bool ipv6 = ctx->source.comm_addr.ip.sa_family == AF_INET6;
	int ret = knot_xdp_send_alloc(xhd->socket, ipv6 ? KNOT_XDP_MSG_IPV6 : 0, &out);
	if (ret != KNOT_EOK) {
		kr_assert(ret == KNOT_ENOMEM);
		*maxlen = 0;
		return NULL;
	}
	*maxlen = MIN(*maxlen, out.payload.iov_len);
	return out.payload.iov_base;
}

static void free_wire(const struct request_ctx *ctx)
{
	if (kr_fails_assert(ctx->req.alloc_wire_cb == alloc_wire_cb))
		return;
	knot_pkt_t *ans = ctx->req.answer;
	if (unlikely(ans == NULL)) /* dropped */
		return;
	if (likely(ans->wire == NULL)) /* sent most likely */
		return;
	if (!ctx->source.session)
		return;
	/* We know it's an AF_XDP socket; otherwise alloc_wire_cb isn't assigned. */
	uv_handle_t *handle = session2_get_handle(ctx->source.session);
	if (!handle || kr_fails_assert(handle->type == UV_POLL))
		return;
	xdp_handle_data_t *xhd = handle->data;
	/* Freeing is done by sending an empty packet (the API won't really send it). */
	knot_xdp_msg_t out;
	out.payload.iov_base = ans->wire;
	out.payload.iov_len = 0;
	uint32_t sent = 0;
	int ret = 0;
	knot_xdp_send_free(xhd->socket, &out, 1);
	kr_assert(ret == KNOT_EOK && sent == 0);
	kr_log_debug(XDP, "freed unsent buffer, ret = %d\n", ret);
}
#endif
/* Helper functions for transport selection */
static inline bool is_tls_capable(struct sockaddr *address) {
	tls_client_param_t *tls_entry = tls_client_param_get(
			the_network->tls_client_params, address);
	return tls_entry;
}

static inline bool is_tcp_connected(struct sockaddr *address) {
	return worker_find_tcp_connected(address);
}

static inline bool is_tcp_waiting(struct sockaddr *address) {
	return worker_find_tcp_waiting(address);
}

/** Create and initialize a request_ctx (on a fresh mempool).
 *
 * session and addr point to the source of the request, and they are NULL
 * in case the request didn't come from network.
 */
static struct request_ctx *request_create(struct session2 *session,
                                          struct comm_info *comm,
                                          uint32_t uid)
{
	knot_mm_t pool = {
		.ctx = pool_borrow(),
		.alloc = (knot_mm_alloc_t) mp_alloc
	};

	/* Create request context */
	struct request_ctx *ctx = mm_calloc(&pool, 1, sizeof(*ctx));
	if (!ctx) {
		pool_release(pool.ctx);
		return NULL;
	}

	/* TODO Relocate pool to struct request */
	if (session && kr_fails_assert(session->outgoing == false)) {
		pool_release(pool.ctx);
		return NULL;
	}
	ctx->source.session = session;
	if (comm && comm->xdp) {
	#if ENABLE_XDP
		if (kr_fails_assert(session)) {
			pool_release(pool.ctx);
			return NULL;
		}
		memcpy(ctx->source.eth_to,   comm->eth_to,   sizeof(ctx->source.eth_to));
		memcpy(ctx->source.eth_from, comm->eth_from, sizeof(ctx->source.eth_from));
		ctx->req.alloc_wire_cb = alloc_wire_cb;
	#else
		kr_assert(!EINVAL);
		pool_release(pool.ctx);
		return NULL;
	#endif
	}

	struct kr_request *req = &ctx->req;
	req->pool = pool;
	req->vars_ref = LUA_NOREF;
	req->uid = uid;
	req->qsource.comm_flags.xdp = comm && comm->xdp;
	kr_request_set_extended_error(req, KNOT_EDNS_EDE_NONE, NULL);
	array_init(req->qsource.headers);
	if (session) {
		kr_require(comm);

		const struct sockaddr *src_addr = comm->src_addr;
		const struct sockaddr *comm_addr = comm->comm_addr;
		const struct sockaddr *dst_addr = comm->dst_addr;
		const struct proxy_result *proxy = comm->proxy;

		req->qsource.stream_id = -1;
		session2_init_request(session, req);

		req->qsource.flags = req->qsource.comm_flags;
		if (proxy) {
			req->qsource.flags.tcp = proxy->protocol == SOCK_STREAM;
			req->qsource.flags.tls = proxy->has_tls;
		}

		/* We need to store a copy of peer address. */
		memcpy(&ctx->source.addr.ip, src_addr, kr_sockaddr_len(src_addr));
		req->qsource.addr = &ctx->source.addr.ip;

		if (!comm_addr)
			comm_addr = src_addr;
		memcpy(&ctx->source.comm_addr.ip, comm_addr, kr_sockaddr_len(comm_addr));
		req->qsource.comm_addr = &ctx->source.comm_addr.ip;

		if (!dst_addr) /* We wouldn't have to copy in this case, but for consistency. */
			dst_addr = session2_get_sockname(session);
		memcpy(&ctx->source.dst_addr.ip, dst_addr, kr_sockaddr_len(dst_addr));
		req->qsource.dst_addr = &ctx->source.dst_addr.ip;
	}

	req->selection_context.is_tls_capable = is_tls_capable;
	req->selection_context.is_tcp_connected = is_tcp_connected;
	req->selection_context.is_tcp_waiting = is_tcp_waiting;
	array_init(req->selection_context.forwarding_targets);
	array_reserve_mm(req->selection_context.forwarding_targets, 1, kr_memreserve, &req->pool);

	the_worker->stats.rconcurrent += 1;

	return ctx;
}

/** More initialization, related to the particular incoming query/packet. */
static int request_start(struct request_ctx *ctx, knot_pkt_t *query)
{
	if (kr_fails_assert(query && ctx))
		return kr_error(EINVAL);

	struct kr_request *req = &ctx->req;
	req->qsource.size = query->size;
	if (knot_pkt_has_tsig(query)) {
		req->qsource.size += query->tsig_wire.len;
	}

	knot_pkt_t *pkt = knot_pkt_new(NULL, req->qsource.size, &req->pool);
	if (!pkt) {
		return kr_error(ENOMEM);
	}

	int ret = knot_pkt_copy(pkt, query);
	if (ret != KNOT_EOK && ret != KNOT_ETRAIL) {
		return kr_error(ENOMEM);
	}
	req->qsource.packet = pkt;

	/* Start resolution */
	kr_resolve_begin(req, the_resolver);
	the_worker->stats.queries += 1;
	return kr_ok();
}

static void request_free(struct request_ctx *ctx)
{
	/* Dereference any Lua vars table if exists */
	if (ctx->req.vars_ref != LUA_NOREF) {
		lua_State *L = the_engine->L;
		/* Get worker variables table */
		lua_rawgeti(L, LUA_REGISTRYINDEX, the_worker->vars_table_ref);
		/* Get next free element (position 0) and store it under current reference (forming a list) */
		lua_rawgeti(L, -1, 0);
		lua_rawseti(L, -2, ctx->req.vars_ref);
		/* Set current reference as the next free element */
		lua_pushinteger(L, ctx->req.vars_ref);
		lua_rawseti(L, -2, 0);
		lua_pop(L, 1);
		ctx->req.vars_ref = LUA_NOREF;
	}
	/* Free HTTP/2 headers for DoH requests. */
	for(int i = 0; i < ctx->req.qsource.headers.len; i++) {
		free(ctx->req.qsource.headers.at[i].name);
		free(ctx->req.qsource.headers.at[i].value);
	}
	array_clear(ctx->req.qsource.headers);

	/* Make sure to free XDP buffer in case it wasn't sent. */
	if (ctx->req.alloc_wire_cb) {
	#if ENABLE_XDP
		free_wire(ctx);
	#else
		kr_assert(!EINVAL);
	#endif
	}
	/* Return mempool to ring or free it if it's full */
	pool_release(ctx->req.pool.ctx);
	/* @note The 'task' is invalidated from now on. */
	the_worker->stats.rconcurrent -= 1;
}

static struct qr_task *qr_task_create(struct request_ctx *ctx)
{
	/* Choose (initial) pktbuf size.  As it is now, pktbuf can be used
	 * for UDP answers from upstream *and* from cache
	 * and for sending queries upstream */
	uint16_t pktbuf_max = KR_EDNS_PAYLOAD;
	const knot_rrset_t *opt_our = the_resolver->upstream_opt_rr;
	if (opt_our) {
		pktbuf_max = MAX(pktbuf_max, knot_edns_get_payload(opt_our));
	}

	/* Create resolution task */
	struct qr_task *task = mm_calloc(&ctx->req.pool, 1, sizeof(*task));
	if (!task) {
		return NULL;
	}

	/* Create packet buffers for answer and subrequests */
	knot_pkt_t *pktbuf = knot_pkt_new(NULL, pktbuf_max, &ctx->req.pool);
	if (!pktbuf) {
		mm_free(&ctx->req.pool, task);
		return NULL;
	}
	pktbuf->size = 0;

	task->ctx = ctx;
	task->pktbuf = pktbuf;
	array_init(task->waiting);
	task->refs = 0;
	kr_assert(ctx->task == NULL);
	ctx->task = task;
	/* Make the primary reference to task. */
	qr_task_ref(task);
	task->creation_time = kr_now();
	the_worker->stats.concurrent += 1;
	return task;
}

/* This is called when the task refcount is zero, free memory. */
static void qr_task_free(struct qr_task *task)
{
	struct request_ctx *ctx = task->ctx;

	if (kr_fails_assert(ctx))
		return;

	kr_require(ctx->task == NULL);
	request_free(ctx);

	/* Update stats */
	the_worker->stats.concurrent -= 1;
}

/*@ Register new qr_task within session. */
static int qr_task_register(struct qr_task *task, struct session2 *session)
{
	if (kr_fails_assert(!session->outgoing && session->stream))
		return kr_error(EINVAL);

	session2_tasklist_add(session, task);

	struct request_ctx *ctx = task->ctx;
	if (kr_fails_assert(ctx && (ctx->source.session == NULL || ctx->source.session == session)))
		return kr_error(EINVAL);
	ctx->source.session = session;
	/* Soft-limit on parallel queries, there is no "slow down" RCODE
	 * that we could use to signalize to client, but we can stop reading,
	 * an in effect shrink TCP window size. To get more precise throttling,
	 * we would need to copy remainder of the unread buffer and reassemble
	 * when resuming reading. This is NYI.  */
	if (session2_tasklist_get_len(session) >= the_worker->tcp_pipeline_max &&
	    !session->throttled && !session->closing) {
		session2_stop_read(session);
		session->throttled = true;
	}

	return 0;
}

static void qr_task_complete(struct qr_task *task)
{
	struct request_ctx *ctx = task->ctx;

	/* Kill pending I/O requests */
	ioreq_kill_pending(task);
	kr_require(task->waiting.len == 0);
	kr_require(task->leading == false);

	struct session2 *s = ctx->source.session;
	if (s) {
		kr_require(!s->outgoing && session2_waitinglist_is_empty(s));
		ctx->source.session = NULL;
		session2_tasklist_del(s, task);
	}

	/* Release primary reference to task. */
	if (ctx->task == task) {
		ctx->task = NULL;
		qr_task_unref(task);
	}
}

/* This is called when we send subrequest / answer */
int qr_task_on_send(struct qr_task *task, struct session2 *s, int status)
{
	if (task->finished) {
		kr_require(task->leading == false);
		qr_task_complete(task);
	}

	if (!s)
		return status;

	if (!s->stream && s->outgoing) {
		// This should ensure that we are only dealing with our question to upstream
		if (kr_fails_assert(!knot_wire_get_qr(task->pktbuf->wire)))
			return status;
		// start the timer
		struct kr_query *qry = array_tail(task->ctx->req.rplan.pending);
		if (kr_fails_assert(qry && task->transport))
			return status;
		size_t timeout = task->transport->timeout;
		int ret = session2_timer_start(s, PROTOLAYER_EVENT_GENERAL_TIMEOUT,
				timeout, 0);
		/* Start next step with timeout, fatal if can't start a timer. */
		if (ret != 0) {
			subreq_finalize(task, &task->transport->address.ip, task->pktbuf);
			qr_task_finalize(task, KR_STATE_FAIL);
		}
	}

	if (s->stream) {
		if (status != 0) { // session probably not usable anymore; typically: ECONNRESET
			const struct kr_request *req = &task->ctx->req;
			if (kr_log_is_debug(WORKER, req)) {
				const char *peer_str = NULL;
				if (!s->outgoing) {
					peer_str = "hidden"; // avoid logging downstream IPs
				} else if (task->transport) {
					peer_str = kr_straddr(&task->transport->address.ip);
				}
				if (!peer_str)
					peer_str = "unknown"; // probably shouldn't happen
				kr_log_req(req, 0, 0, WORKER,
						"=> disconnected from '%s': %s\n",
						peer_str, uv_strerror(status));
			}
			session2_force_close(s);
			return status;
		}

		if (s->outgoing || s->closing)
			return status;

		if (s->throttled &&
		    session2_tasklist_get_len(s) < the_worker->tcp_pipeline_max/2) {
			/* Start reading again if the session is throttled and
			 * the number of outgoing requests is below watermark. */
			session2_start_read(s);
			s->throttled = false;
		}
	}

	return status;
}

static void qr_task_wrap_finished(int status, struct session2 *session,
                                  const struct comm_info *comm, void *baton)
{
	struct qr_task *task = baton;
	qr_task_on_send(task, session, status);
	qr_task_unref(task);
}

static int qr_task_send(struct qr_task *task, struct session2 *session,
			const struct comm_info *comm, knot_pkt_t *pkt)
{
	if (!session)
		return qr_task_on_send(task, NULL, kr_error(EIO));

	int ret = 0;

	if (pkt == NULL)
		pkt = worker_task_get_pktbuf(task);

	if (session->outgoing && session->stream) {
		size_t try_limit = session2_tasklist_get_len(session) + 1;
		uint16_t msg_id = knot_wire_get_id(pkt->wire);
		size_t try_count = 0;
		while (session2_tasklist_find_msgid(session, msg_id) &&
		       try_count <= try_limit) {
			++msg_id;
			++try_count;
		}
		if (try_count > try_limit)
			return kr_error(ENOENT);
		worker_task_pkt_set_msgid(task, msg_id);
	}

	/* Note time for upstream RTT */
	task->send_time = kr_now();
	task->recv_time = 0; // task structure is being reused so we have to zero this out here
	/* Send using given protocol */
	if (kr_fails_assert(!session->closing))
		return qr_task_on_send(task, NULL, kr_error(EIO));

	/* Pending '_finished' callback on current task */
	qr_task_ref(task);
	struct protolayer_payload payload = protolayer_payload_buffer(
			(char *)pkt->wire, pkt->size, false);
	payload.ttl = packet_ttl(pkt);
	ret = session2_wrap(session, payload, comm, qr_task_wrap_finished, task);

	if (ret >= 0) {
		session2_touch(session);
		if (session->outgoing) {
			session2_tasklist_add(session, task);
		}
		if (the_worker->too_many_open &&
		    the_worker->stats.rconcurrent <
			the_worker->rconcurrent_highwatermark - 10) {
			the_worker->too_many_open = false;
		}
		ret = kr_ok();
	} else {
		if (ret == UV_EMFILE) {
			the_worker->too_many_open = true;
			the_worker->rconcurrent_highwatermark = the_worker->stats.rconcurrent;
			ret = kr_error(UV_EMFILE);
		}

		session2_event(session, PROTOLAYER_EVENT_STATS_SEND_ERR, NULL);
	}

	/* Update outgoing query statistics */
	if (session->outgoing && comm) {
		session2_event(session, PROTOLAYER_EVENT_STATS_QRY_OUT, NULL);

		if (comm->comm_addr->sa_family == AF_INET6)
			the_worker->stats.ipv6 += 1;
		else if (comm->comm_addr->sa_family == AF_INET)
			the_worker->stats.ipv4 += 1;
	}
	return ret;
}

static struct kr_query *task_get_last_pending_query(struct qr_task *task)
{
	if (!task || task->ctx->req.rplan.pending.len == 0) {
		return NULL;
	}

	return array_tail(task->ctx->req.rplan.pending);
}

static int send_waiting(struct session2 *session)
{
	int ret = 0;
	while (!session2_waitinglist_is_empty(session)) {
		struct qr_task *t = session2_waitinglist_get(session);
		ret = qr_task_send(t, session, NULL, NULL);
		if (ret != 0) {
			struct sockaddr *peer = session2_get_peer(session);
			session2_waitinglist_finalize(session, KR_STATE_FAIL);
			session2_tasklist_finalize(session, KR_STATE_FAIL);
			worker_del_tcp_connected(peer);
			session2_close(session);
			break;
		}
		session2_waitinglist_pop(session, true);
	}
	return ret;
}

static void on_connect(uv_connect_t *req, int status)
{
	kr_require(the_worker);
	uv_stream_t *handle = req->handle;
	struct session2 *session = handle->data;
	struct sockaddr *peer = session2_get_peer(session);
	free(req);

	if (kr_fails_assert(session->outgoing))
		return;

	if (session->closing) {
		worker_del_tcp_waiting(peer);
		kr_assert(session2_is_empty(session));
		return;
	}

	const bool log_debug = kr_log_is_debug(WORKER, NULL);

	/* Check if the connection is in the waiting list.
	 * If no, most likely this is timed out connection
	 * which was removed from waiting list by
	 * on_tcp_connect_timeout() callback. */
	struct session2 *found_session = worker_find_tcp_waiting(peer);
	if (!found_session || found_session != session) {
		/* session isn't on the waiting list.
		 * it's timed out session. */
		if (log_debug) {
			const char *peer_str = kr_straddr(peer);
			kr_log_debug(WORKER, "=> connected to '%s', but session "
					"is already timed out, close\n",
					peer_str ? peer_str : "");
		}
		kr_assert(session2_tasklist_is_empty(session));
		session2_waitinglist_retry(session, false);
		session2_close(session);
		return;
	}

	found_session = worker_find_tcp_connected(peer);
	if (found_session) {
		/* session already in the connected list.
		 * Something went wrong, it can be due to races when kresd has tried
		 * to reconnect to upstream after unsuccessful attempt. */
		if (log_debug) {
			const char *peer_str = kr_straddr(peer);
			kr_log_debug(WORKER, "=> connected to '%s', but peer "
					"is already connected, close\n",
					peer_str ? peer_str : "");
		}
		kr_assert(session2_tasklist_is_empty(session));
		session2_waitinglist_retry(session, false);
		session2_close(session);
		return;
	}

	if (status != 0) {
		if (log_debug) {
			const char *peer_str = kr_straddr(peer);
			kr_log_debug(WORKER, "=> connection to '%s' failed (%s), flagged as 'bad'\n",
					peer_str ? peer_str : "", uv_strerror(status));
		}
		worker_del_tcp_waiting(peer);
		if (status != UV_ETIMEDOUT) {
			/* In case of UV_ETIMEDOUT upstream has been
			 * already penalized in on_tcp_connect_timeout() */
			session2_event(session, PROTOLAYER_EVENT_CONNECT_FAIL, NULL);
		}
		kr_assert(session2_tasklist_is_empty(session));
		session2_close(session);
		return;
	}

	if (log_debug) {
		const char *peer_str = kr_straddr(peer);
		kr_log_debug(WORKER, "=> connected to '%s'\n", peer_str ? peer_str : "");
	}

	session2_event(session, PROTOLAYER_EVENT_CONNECT, NULL);
	session2_start_read(session);
	session2_timer_stop(session);
	session2_timer_start(session, PROTOLAYER_EVENT_GENERAL_TIMEOUT,
			MAX_TCP_INACTIVITY, MAX_TCP_INACTIVITY);
}

static int transmit(struct qr_task *task)
{
	if (!task)
		return kr_error(EINVAL);

	struct kr_transport* transport = task->transport;
	struct sockaddr_in6 *choice = (struct sockaddr_in6 *)&transport->address;

	if (!choice)
		return kr_error(EINVAL);
	if (task->pending_count >= MAX_PENDING)
		return kr_error(EBUSY);
	/* Checkout answer before sending it */
	struct request_ctx *ctx = task->ctx;
	int ret = kr_resolve_checkout(&ctx->req, NULL, transport, task->pktbuf);
	if (ret)
		return ret;

	struct session2 *session = ioreq_spawn(SOCK_DGRAM, choice->sin6_family,
			KR_PROTO_UDP53, NULL, 0);
	if (!session)
		return kr_error(EINVAL);

	struct sockaddr *addr = (struct sockaddr *)choice;
	struct sockaddr *peer = session2_get_peer(session);
	kr_assert(peer->sa_family == AF_UNSPEC && session->outgoing);
	kr_require(addr->sa_family == AF_INET || addr->sa_family == AF_INET6);
	memcpy(peer, addr, kr_sockaddr_len(addr));

	struct comm_info out_comm = {
		.comm_addr = (struct sockaddr *)choice
	};
	ret = qr_task_send(task, session, &out_comm, task->pktbuf);
	if (ret) {
		session2_close(session);
		return ret;
	}

	task->pending[task->pending_count] = session;
	task->pending_count += 1;
	session2_start_read(session); /* Start reading answer */
	return kr_ok();
}


static void subreq_finalize(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *pkt)
{
	if (!task || task->finished) {
		return;
	}
	/* Close pending timer */
	ioreq_kill_pending(task);
	/* Clear from outgoing table. */
	if (!task->leading)
		return;
	char key[SUBREQ_KEY_LEN];
	const int klen = subreq_key(key, task->pktbuf);
	if (klen > 0) {
		void *val_deleted;
		int ret = trie_del(the_worker->subreq_out, key, klen, &val_deleted);
		kr_assert(ret == KNOT_EOK && val_deleted == task);
	}
	/* Notify waiting tasks. */
	struct kr_query *leader_qry = array_tail(task->ctx->req.rplan.pending);
	for (size_t i = task->waiting.len; i > 0; i--) {
		struct qr_task *follower = task->waiting.at[i - 1];
		/* Reuse MSGID and 0x20 secret */
		if (follower->ctx->req.rplan.pending.len > 0) {
			struct kr_query *qry = array_tail(follower->ctx->req.rplan.pending);
			qry->id = leader_qry->id;
			qry->secret = leader_qry->secret;

			// Note that this transport may not be present in `leader_qry`'s server selection
			follower->transport = task->transport;
			if(follower->transport) {
				follower->transport->deduplicated = true;
			}
			leader_qry->secret = 0; /* Next will be already decoded */
		}
		qr_task_step(follower, packet_source, pkt);
		qr_task_unref(follower);
	}
	task->waiting.len = 0;
	task->leading = false;
}

static void subreq_lead(struct qr_task *task)
{
	if (kr_fails_assert(task))
		return;
	char key[SUBREQ_KEY_LEN];
	const int klen = subreq_key(key, task->pktbuf);
	if (klen < 0)
		return;
	struct qr_task **tvp = (struct qr_task **)
		trie_get_ins(the_worker->subreq_out, key, klen);
	if (unlikely(!tvp))
		return; /*ENOMEM*/
	if (kr_fails_assert(*tvp == NULL))
		return;
	*tvp = task;
	task->leading = true;
}

static bool subreq_enqueue(struct qr_task *task)
{
	if (kr_fails_assert(task))
		return false;
	char key[SUBREQ_KEY_LEN];
	const int klen = subreq_key(key, task->pktbuf);
	if (klen < 0)
		return false;
	struct qr_task **leader = (struct qr_task **)
		trie_get_try(the_worker->subreq_out, key, klen);
	if (!leader /*ENOMEM*/ || !*leader)
		return false;
	/* Enqueue itself to leader for this subrequest. */
	int ret = array_push_mm((*leader)->waiting, task,
				kr_memreserve, &(*leader)->ctx->req.pool);
	if (unlikely(ret < 0)) /*ENOMEM*/
		return false;
	qr_task_ref(task);
	return true;
}

static int qr_task_finalize(struct qr_task *task, int state)
{
	kr_require(task && task->leading == false);
	if (task->finished) {
		return kr_ok();
	}
	struct request_ctx *ctx = task->ctx;
	struct session2 *source_session = ctx->source.session;
	kr_resolve_finish(&ctx->req, state);

	task->finished = true;
	if (source_session == NULL) {
		(void) qr_task_on_send(task, NULL, kr_error(EIO));
		return state == KR_STATE_DONE ? kr_ok() : kr_error(EIO);
	}

	/* meant to be dropped */
	if (unlikely(ctx->req.answer == NULL || ctx->req.options.NO_ANSWER)) {
		/* For NO_ANSWER, a well-behaved layer should set the state to FAIL */
		kr_assert(!ctx->req.options.NO_ANSWER || (ctx->req.state & KR_STATE_FAIL));

		(void) qr_task_on_send(task, NULL, kr_ok());
		return kr_ok();
	}

	if (source_session->closing ||
	    ctx->source.addr.ip.sa_family == AF_UNSPEC)
		return kr_error(EINVAL);

	/* Reference task as the callback handler can close it */
	qr_task_ref(task);

	/* Send back answer */
	struct comm_info out_comm = {
		.src_addr = &ctx->source.addr.ip,
		.dst_addr = &ctx->source.dst_addr.ip,
		.comm_addr = &ctx->source.comm_addr.ip,
		.xdp = ctx->source.xdp
	};
	if (ctx->source.xdp) {
		memcpy(out_comm.eth_from, ctx->source.eth_from, sizeof(out_comm.eth_from));
		memcpy(out_comm.eth_to,   ctx->source.eth_to,   sizeof(out_comm.eth_to));
	}
	int ret = qr_task_send(task, source_session, &out_comm, ctx->req.answer);

	if (ret != kr_ok()) {
		(void) qr_task_on_send(task, NULL, kr_error(EIO));
		/* Since source session is erroneous detach all tasks. */
		while (!session2_tasklist_is_empty(source_session)) {
			struct qr_task *t = session2_tasklist_del_first(source_session, false);
			struct request_ctx *c = t->ctx;
			kr_assert(c->source.session == source_session);
			c->source.session = NULL;
			/* Don't finalize them as there can be other tasks
			 * waiting for answer to this particular task.
			 * (ie. task->leading is true) */
			worker_task_unref(t);
		}
		session2_close(source_session);
	}

	qr_task_unref(task);

	if (ret != kr_ok() || state != KR_STATE_DONE)
		return kr_error(EIO);
	return kr_ok();
}

static int udp_task_step(struct qr_task *task,
			 const struct sockaddr *packet_source, knot_pkt_t *packet)
{
	/* If there is already outgoing query, enqueue to it. */
	if (subreq_enqueue(task)) {
		return kr_ok(); /* Will be notified when outgoing query finishes. */
	}

	/* Start transmitting */
	int err = transmit(task);
	if (err) {
		subreq_finalize(task, packet_source, packet);
		return qr_task_finalize(task, KR_STATE_FAIL);
	}

	/* Announce and start subrequest.
	 * @note Only UDP can lead I/O as it doesn't touch 'task->pktbuf' for reassembly.
	 */
	subreq_lead(task);

	return kr_ok();
}

static int tcp_task_waiting_connection(struct session2 *session, struct qr_task *task)
{
	if (kr_fails_assert(session->outgoing && !session->closing))
		return kr_error(EINVAL);
	/* Add task to the end of list of waiting tasks.
	 * It will be notified in on_connect() or qr_task_on_send(). */
	int ret = session2_waitinglist_push(session, task);
	if (ret < 0) {
		return kr_error(EINVAL);
	}
	return kr_ok();
}

static int tcp_task_existing_connection(struct session2 *session, struct qr_task *task)
{
	if (kr_fails_assert(session->outgoing && !session->closing))
		return kr_error(EINVAL);

	/* If there are any unsent queries, send it first. */
	int ret = send_waiting(session);
	if (ret != 0) {
		return kr_error(EINVAL);
	}

	/* No unsent queries at that point. */
	if (session2_tasklist_get_len(session) >= the_worker->tcp_pipeline_max) {
		/* Too many outstanding queries, answer with SERVFAIL, */
		return kr_error(EINVAL);
	}

	/* Send query to upstream. */
	ret = qr_task_send(task, session, NULL, NULL);
	if (ret != 0) {
		/* Error, finalize task with SERVFAIL and
		 * close connection to upstream. */
		session2_tasklist_finalize(session, KR_STATE_FAIL);
		worker_del_tcp_connected(session2_get_peer(session));
		session2_close(session);
		return kr_error(EINVAL);
	}

	return kr_ok();
}

static int tcp_task_make_connection(struct qr_task *task, const struct sockaddr *addr)
{
	/* Check if there must be TLS */
	tls_client_param_t *tls_entry = tls_client_param_get(
			the_network->tls_client_params, addr);

	uv_connect_t *conn = malloc(sizeof(uv_connect_t));
	if (!conn) {
		return kr_error(EINVAL);
	}
	struct session2 *session;

	bool has_tls = tls_entry;
	if (has_tls) {
		struct protolayer_data_param param = {
			.protocol = PROTOLAYER_TYPE_TLS,
			.param = tls_entry
		};
		session = ioreq_spawn(SOCK_STREAM, addr->sa_family,
				KR_PROTO_DOT, &param, 1);
	} else {
		session = ioreq_spawn(SOCK_STREAM, addr->sa_family,
				KR_PROTO_TCP53, NULL, 0);
	}
	if (!session) {
		free(conn);
		return kr_error(EINVAL);
	}
	if (kr_fails_assert(session->secure == has_tls)) {
		free(conn);
		return kr_error(EINVAL);
	}

	/* Add address to the waiting list.
	 * Now it "is waiting to be connected to." */
	int ret = worker_add_tcp_waiting(addr, session);
	if (ret < 0) {
		free(conn);
		session2_close(session);
		return kr_error(EINVAL);
	}

	conn->data = session;
	/*  Store peer address for the session. */
	struct sockaddr *peer = session2_get_peer(session);
	memcpy(peer, addr, kr_sockaddr_len(addr));

	/*  Start watchdog to catch eventual connection timeout. */
	ret = session2_timer_start(session, PROTOLAYER_EVENT_CONNECT_TIMEOUT,
			KR_CONN_RTT_MAX, 0);
	if (ret != 0) {
		worker_del_tcp_waiting(addr);
		free(conn);
		session2_close(session);
		return kr_error(EINVAL);
	}

	struct kr_query *qry = task_get_last_pending_query(task);
	if (kr_log_is_debug_qry(WORKER, qry)) {
		const char *peer_str = kr_straddr(peer);
		VERBOSE_MSG(qry, "=> connecting to: '%s'\n", peer_str ? peer_str : "");
	}

	/*  Start connection process to upstream. */
	ret = uv_tcp_connect(conn, (uv_tcp_t *)session2_get_handle(session),
			addr , on_connect);
	if (ret != 0) {
		session2_timer_stop(session);
		worker_del_tcp_waiting(addr);
		free(conn);
		session2_close(session);
		qry->server_selection.error(qry, task->transport, KR_SELECTION_TCP_CONNECT_FAILED);
		return kr_error(EAGAIN);
	}

	/* Add task to the end of list of waiting tasks.
	 * Will be notified either in on_connect() or in qr_task_on_send(). */
	ret = session2_waitinglist_push(session, task);
	if (ret < 0) {
		session2_timer_stop(session);
		worker_del_tcp_waiting(addr);
		free(conn);
		session2_close(session);
		return kr_error(EINVAL);
	}

	return kr_ok();
}

static int tcp_task_step(struct qr_task *task,
			 const struct sockaddr *packet_source, knot_pkt_t *packet)
{
	if (kr_fails_assert(task->pending_count == 0)) {
		subreq_finalize(task, packet_source, packet);
		return qr_task_finalize(task, KR_STATE_FAIL);
	}

	/* target */
	const struct sockaddr *addr = &task->transport->address.ip;
	if (addr->sa_family == AF_UNSPEC) {
		/* Target isn't defined. Finalize task with SERVFAIL.
		 * Although task->pending_count is zero, there are can be followers,
		 * so we need to call subreq_finalize() to handle them properly. */
		subreq_finalize(task, packet_source, packet);
		return qr_task_finalize(task, KR_STATE_FAIL);
	}
	/* Checkout task before connecting */
	struct request_ctx *ctx = task->ctx;
	if (kr_resolve_checkout(&ctx->req, NULL, task->transport, task->pktbuf) != 0) {
		subreq_finalize(task, packet_source, packet);
		return qr_task_finalize(task, KR_STATE_FAIL);
	}
	int ret;
	struct session2* session = NULL;
	if ((session = worker_find_tcp_waiting(addr)) != NULL) {
		/* Connection is in the list of waiting connections.
		 * It means that connection establishing is coming right now. */
		ret = tcp_task_waiting_connection(session, task);
	} else if ((session = worker_find_tcp_connected(addr)) != NULL) {
		/* Connection has been already established. */
		ret = tcp_task_existing_connection(session, task);
	} else {
		/* Make connection. */
		ret = tcp_task_make_connection(task, addr);
	}

	if (ret != kr_ok()) {
		subreq_finalize(task, addr, packet);
		if (ret == kr_error(EAGAIN)) {
			ret = qr_task_step(task, addr, NULL);
		} else {
			ret = qr_task_finalize(task, KR_STATE_FAIL);
		}
	}

	return ret;
}

static int qr_task_step(struct qr_task *task,
			const struct sockaddr *packet_source, knot_pkt_t *packet)
{
	if (task && task->ctx->source.session)
		defer_sample_addr(&task->ctx->source.addr, task->ctx->source.session->stream);

	/* No more steps after we're finished. */
	if (!task || task->finished) {
		return kr_error(ESTALE);
	}

	/* Close pending I/O requests */
	subreq_finalize(task, packet_source, packet);
	if ((kr_now() - task->creation_time) >= KR_RESOLVE_TIME_LIMIT) {
		struct kr_request *req = worker_task_request(task);
		if (!kr_fails_assert(req))
			kr_query_inform_timeout(req, req->current_query);
		return qr_task_finalize(task, KR_STATE_FAIL);
	}

	/* Consume input and produce next query */
	struct request_ctx *ctx = task->ctx;
	if (kr_fails_assert(ctx))
		return qr_task_finalize(task, KR_STATE_FAIL);
	struct kr_request *req = &ctx->req;

	if (the_worker->too_many_open) {
		/* */
		struct kr_rplan *rplan = &req->rplan;
		if (the_worker->stats.rconcurrent <
			the_worker->rconcurrent_highwatermark - 10) {
			the_worker->too_many_open = false;
		} else {
			if (packet && kr_rplan_empty(rplan)) {
				/* new query; TODO - make this detection more obvious */
				kr_resolve_consume(req, &task->transport, packet);
			}
			return qr_task_finalize(task, KR_STATE_FAIL);
		}
	}

	// Report network RTT back to server selection
	if (packet && task->send_time && task->recv_time) {
		struct kr_query *qry = array_tail(req->rplan.pending);
		qry->server_selection.update_rtt(qry, task->transport, task->recv_time - task->send_time);
	}

	int state = kr_resolve_consume(req, &task->transport, packet);

	task->transport = NULL;
	while (state == KR_STATE_PRODUCE) {
		state = kr_resolve_produce(req, &task->transport, task->pktbuf);
		if (unlikely(++task->iter_count > KR_ITER_LIMIT ||
			     task->timeouts >= KR_TIMEOUT_LIMIT)) {

			struct kr_rplan *rplan = &req->rplan;
			struct kr_query *last = kr_rplan_last(rplan);
			if (task->iter_count > KR_ITER_LIMIT) {
				char *msg = "cancelling query due to exceeded iteration count limit";
				VERBOSE_MSG(last, "%s of %d\n", msg, KR_ITER_LIMIT);
				kr_request_set_extended_error(req, KNOT_EDNS_EDE_OTHER,
					"OGHD: exceeded iteration count limit");
			}
			if (task->timeouts >= KR_TIMEOUT_LIMIT) {
				char *msg = "cancelling query due to exceeded timeout retries limit";
				VERBOSE_MSG(last, "%s of %d\n", msg, KR_TIMEOUT_LIMIT);
				kr_request_set_extended_error(req, KNOT_EDNS_EDE_NREACH_AUTH, "QLPL");
			}

			return qr_task_finalize(task, KR_STATE_FAIL);
		}
	}

	/* We're done, no more iterations needed */
	if (state & (KR_STATE_DONE|KR_STATE_FAIL)) {
		return qr_task_finalize(task, state);
	} else if (!task->transport || !task->transport->protocol) {
		return qr_task_step(task, NULL, NULL);
	}

	switch (task->transport->protocol)
	{
	case KR_TRANSPORT_UDP:
		return udp_task_step(task, packet_source, packet);
	case KR_TRANSPORT_TCP: // fall through
	case KR_TRANSPORT_TLS:
		return tcp_task_step(task, packet_source, packet);
	default:
		kr_assert(!EINVAL);
		return kr_error(EINVAL);
	}
}

static int worker_submit(struct session2 *session, struct comm_info *comm, knot_pkt_t *pkt)
{
	if (!session || !pkt || session->closing)
		return kr_error(EINVAL);

	const bool is_query = pkt->size > KNOT_WIRE_OFFSET_FLAGS1
				&& knot_wire_get_qr(pkt->wire) == 0;
	const bool is_outgoing = session->outgoing;

	int ret = 0;
	if (is_query == is_outgoing)
		ret = KNOT_ENOENT;

	// For responses from upstream, try to find associated task and query.
	// In case of errors, at least try to guess.
	struct qr_task *task = NULL;
	bool task_matched_id = false;
	if (is_outgoing && pkt->size >= 2) {
		const uint16_t id = knot_wire_get_id(pkt->wire);
		task = session2_tasklist_del_msgid(session, id);
		task_matched_id = task != NULL;
		if (task_matched_id) // Note receive time for RTT calculation
			task->recv_time = kr_now();
		if (!task_matched_id) {
			ret = KNOT_ENOENT;
			VERBOSE_MSG(NULL, "=> DNS message with mismatching ID %d\n",
					(int)id);
		}
	}
	if (!task && is_outgoing && session->stream) {
		// Source address of the reply got somewhat validated,
		// so we try to at least guess which query, for error reporting.
		task = session2_tasklist_get_first(session);
	}
	struct kr_query *qry = NULL;
	if (task)
		qry = array_tail(task->ctx->req.rplan.pending);

	// Parse the packet, unless it's useless anyway.
	if (ret == 0) {
		ret = knot_pkt_parse(pkt, 0);
		if (ret == KNOT_ETRAIL && is_outgoing
				&& !kr_fails_assert(pkt->parsed < pkt->size)) {
			// We deal with this later, so that RCODE takes priority.
			ret = 0;
		}
		if (ret && kr_log_is_debug_qry(WORKER, qry)) {
			VERBOSE_MSG(qry, "=> DNS message failed to parse, %s\n",
					knot_strerror(ret));
		}
	}

	/* Badly formed query when using DoH leads to a Bad Request */
	if (session->custom_emalf_handling && !is_outgoing && ret) {
		session2_event(session, PROTOLAYER_EVENT_MALFORMED, NULL);
		return ret;
	}

	const struct sockaddr *addr = comm ? comm->src_addr : NULL;

	/* Ignore badly formed queries. */
	if (ret) {
		if (is_outgoing && qry) // unusuable response from somewhat validated IP
			qry->server_selection.error(qry, task->transport, KR_SELECTION_MALFORMED);
		if (!is_outgoing)
			the_worker->stats.dropped += 1;
		if (task_matched_id) // notify task that answer won't be coming anymore
			qr_task_step(task, addr, NULL);
		return kr_error(EILSEQ);
	}

	/* Start new task on listening sockets,
	 * or resume if this is subrequest */
	if (!is_outgoing) { /* request from a client */
		struct request_ctx *ctx =
			request_create(session, comm, knot_wire_get_id(pkt->wire));
		if (!ctx)
			return kr_error(ENOMEM);

		ret = request_start(ctx, pkt);
		if (ret != 0) {
			request_free(ctx);
			return kr_error(ENOMEM);
		}

		task = qr_task_create(ctx);
		if (!task) {
			request_free(ctx);
			return kr_error(ENOMEM);
		}

		if (session->stream && qr_task_register(task, session)) {
			return kr_error(ENOMEM);
		}
	} else { /* response from upstream */
		if (task == NULL) {
			return kr_error(ENOENT);
		}
		if (kr_fails_assert(!session->closing))
			return kr_error(EINVAL);
	}
	if (kr_fails_assert(!session->closing))
		return kr_error(EINVAL);

	/* Packet was successfully parsed.
	 * Task was created (found). */
	session2_touch(session);

	/* Consume input and produce next message */
	return qr_task_step(task, addr, pkt);
}

static int trie_add_tcp_session(trie_t *trie, const struct sockaddr *addr,
                                struct session2 *session)
{
	if (kr_fails_assert(trie && addr))
		return kr_error(EINVAL);
	struct kr_sockaddr_key_storage key;
	ssize_t keylen = kr_sockaddr_key(&key, addr);
	if (keylen < 0)
		return keylen;
	trie_val_t *val = trie_get_ins(trie, key.bytes, keylen);
	if (*val != NULL)
		return kr_error(EEXIST);
	*val = session;
	return kr_ok();
}

static int trie_del_tcp_session(trie_t *trie, const struct sockaddr *addr)
{
	if (kr_fails_assert(trie && addr))
		return kr_error(EINVAL);
	struct kr_sockaddr_key_storage key;
	ssize_t keylen = kr_sockaddr_key(&key, addr);
	if (keylen < 0)
		return keylen;
	int ret = trie_del(trie, key.bytes, keylen, NULL);
	return ret ? kr_error(ENOENT) : kr_ok();
}

static struct session2 *trie_find_tcp_session(trie_t *trie,
                                             const struct sockaddr *addr)
{
	if (kr_fails_assert(trie && addr))
		return NULL;
	struct kr_sockaddr_key_storage key;
	ssize_t keylen = kr_sockaddr_key(&key, addr);
	if (keylen < 0)
		return NULL;
	trie_val_t *val = trie_get_try(trie, key.bytes, keylen);
	return val ? *val : NULL;
}

static int worker_add_tcp_connected(const struct sockaddr* addr, struct session2 *session)
{
	return trie_add_tcp_session(the_worker->tcp_connected, addr, session);
}

static int worker_del_tcp_connected(const struct sockaddr* addr)
{
	return trie_del_tcp_session(the_worker->tcp_connected, addr);
}

static struct session2* worker_find_tcp_connected(const struct sockaddr* addr)
{
	return trie_find_tcp_session(the_worker->tcp_connected, addr);
}

static int worker_add_tcp_waiting(const struct sockaddr* addr,
				  struct session2 *session)
{
	return trie_add_tcp_session(the_worker->tcp_waiting, addr, session);
}

static int worker_del_tcp_waiting(const struct sockaddr* addr)
{
	return trie_del_tcp_session(the_worker->tcp_waiting, addr);
}

static struct session2* worker_find_tcp_waiting(const struct sockaddr* addr)
{
	return trie_find_tcp_session(the_worker->tcp_waiting, addr);
}

knot_pkt_t *worker_resolve_mk_pkt_dname(knot_dname_t *qname, uint16_t qtype, uint16_t qclass,
				   const struct kr_qflags *options)
{
	knot_pkt_t *pkt = knot_pkt_new(NULL, KNOT_EDNS_MAX_UDP_PAYLOAD, NULL);
	if (!pkt)
		return NULL;
	knot_pkt_put_question(pkt, qname, qclass, qtype);
	knot_wire_set_rd(pkt->wire);
	knot_wire_set_ad(pkt->wire);

	/* Add OPT RR, including wire format so modules can see both representations.
	 * knot_pkt_put() copies the outside; we need to duplicate the inside manually. */
	knot_rrset_t *opt = knot_rrset_copy(the_resolver->downstream_opt_rr, NULL);
	if (!opt) {
		knot_pkt_free(pkt);
		return NULL;
	}
	if (options->DNSSEC_WANT) {
		knot_edns_set_do(opt);
	}
	knot_pkt_begin(pkt, KNOT_ADDITIONAL);
	int ret = knot_pkt_put(pkt, KNOT_COMPR_HINT_NONE, opt, KNOT_PF_FREE);
	if (ret == KNOT_EOK) {
		free(opt); /* inside is owned by pkt now */
	} else {
		knot_rrset_free(opt, NULL);
		knot_pkt_free(pkt);
		return NULL;
	}

	if (options->DNSSEC_CD) {
		knot_wire_set_cd(pkt->wire);
	}

	return pkt;
}

knot_pkt_t *worker_resolve_mk_pkt(const char *qname_str, uint16_t qtype, uint16_t qclass,
				   const struct kr_qflags *options)
{
	uint8_t qname[KNOT_DNAME_MAXLEN];
	if (!knot_dname_from_str(qname, qname_str, sizeof(qname)))
		return NULL;
	return worker_resolve_mk_pkt_dname(qname, qtype, qclass, options);
}

struct qr_task *worker_resolve_start(knot_pkt_t *query, struct kr_qflags options)
{
	if (kr_fails_assert(the_worker && query))
		return NULL;


	struct request_ctx *ctx = request_create(NULL, NULL, the_worker->next_request_uid);
	if (!ctx)
		return NULL;

	/* Create task */
	struct qr_task *task = qr_task_create(ctx);
	if (!task) {
		request_free(ctx);
		return NULL;
	}

	/* Start task */
	int ret = request_start(ctx, query);
	if (ret != 0) {
		/* task is attached to request context,
		 * so dereference (and deallocate) it first */
		ctx->task = NULL;
		qr_task_unref(task);
		request_free(ctx);
		return NULL;
	}

	the_worker->next_request_uid += 1;
	if (the_worker->next_request_uid == 0)
		the_worker->next_request_uid = UINT16_MAX + 1;

	/* Set options late, as qr_task_start() -> kr_resolve_begin() rewrite it. */
	kr_qflags_set(&task->ctx->req.options, options);
	return task;
}

int worker_resolve_exec(struct qr_task *task, knot_pkt_t *query)
{
	if (!task)
		return kr_error(EINVAL);
	return qr_task_step(task, NULL, query);
}

int worker_task_numrefs(const struct qr_task *task)
{
	return task->refs;
}

struct kr_request *worker_task_request(struct qr_task *task)
{
	if (!task || !task->ctx)
		return NULL;

	return &task->ctx->req;
}

int worker_task_finalize(struct qr_task *task, int state)
{
	return qr_task_finalize(task, state);
}

int worker_task_step(struct qr_task *task, const struct sockaddr *packet_source,
                     knot_pkt_t *packet)
{
	 return qr_task_step(task, packet_source, packet);
}

void worker_task_ref(struct qr_task *task)
{
	qr_task_ref(task);
}

void worker_task_unref(struct qr_task *task)
{
	qr_task_unref(task);
}

void worker_task_timeout_inc(struct qr_task *task)
{
	task->timeouts += 1;
}

knot_pkt_t *worker_task_get_pktbuf(const struct qr_task *task)
{
	return task->pktbuf;
}

struct kr_transport *worker_task_get_transport(struct qr_task *task)
{
	return task->transport;
}

struct session2 *worker_request_get_source_session(const struct kr_request *req)
{
	static_assert(offsetof(struct request_ctx, req) == 0,
			"Bad struct request_ctx definition.");
	return ((struct request_ctx *)req)->source.session;
}

uint16_t worker_task_pkt_get_msgid(struct qr_task *task)
{
	knot_pkt_t *pktbuf = worker_task_get_pktbuf(task);
	uint16_t msg_id = knot_wire_get_id(pktbuf->wire);
	return msg_id;
}

void worker_task_pkt_set_msgid(struct qr_task *task, uint16_t msgid)
{
	knot_pkt_t *pktbuf = worker_task_get_pktbuf(task);
	knot_wire_set_id(pktbuf->wire, msgid);
	struct kr_query *q = task_get_last_pending_query(task);
	if (q)
		q->id = msgid;
}

uint64_t worker_task_creation_time(struct qr_task *task)
{
	return task->creation_time;
}

void worker_task_subreq_finalize(struct qr_task *task)
{
	subreq_finalize(task, NULL, NULL);
}

bool worker_task_finished(struct qr_task *task)
{
	return task->finished;
}

/** Reserve worker buffers.  We assume worker's been zeroed. */
static int worker_reserve(void)
{
	the_worker->tcp_connected = trie_create(NULL);
	the_worker->tcp_waiting = trie_create(NULL);
	the_worker->subreq_out = trie_create(NULL);

	mm_ctx_mempool(&the_worker->pkt_pool, 4 * sizeof(knot_pkt_t));

	return kr_ok();
}

void worker_deinit(void)
{
	if (kr_fails_assert(the_worker))
		return;
	trie_free(the_worker->tcp_connected);
	trie_free(the_worker->tcp_waiting);
	trie_free(the_worker->subreq_out);
	the_worker->subreq_out = NULL;

	for (int i = 0; i < the_worker->doh_qry_headers.len; i++)
		free((void *)the_worker->doh_qry_headers.at[i]);
	array_clear(the_worker->doh_qry_headers);

	mp_delete(the_worker->pkt_pool.ctx);
	the_worker->pkt_pool.ctx = NULL;

	the_worker = NULL;
}

static inline knot_pkt_t *produce_packet(uint8_t *buf, size_t buf_len)
{
	return knot_pkt_new(buf, buf_len, &the_worker->pkt_pool);
}

static enum protolayer_event_cb_result pl_dns_dgram_event_unwrap(
		enum protolayer_event_type event, void **baton,
		struct session2 *session, void *sess_data)
{
	if (event != PROTOLAYER_EVENT_GENERAL_TIMEOUT)
		return PROTOLAYER_EVENT_PROPAGATE;

	if (session2_tasklist_get_len(session) != 1 ||
			!session2_waitinglist_is_empty(session))
		return PROTOLAYER_EVENT_PROPAGATE;

	session2_timer_stop(session);

	struct qr_task *task = session2_tasklist_get_first(session);
	if (!task)
		return PROTOLAYER_EVENT_PROPAGATE;

	if (task->leading && task->pending_count > 0) {
		struct kr_query *qry = array_tail(task->ctx->req.rplan.pending);
		qry->server_selection.error(qry, task->transport, KR_SELECTION_QUERY_TIMEOUT);
	}

	task->timeouts += 1;
	the_worker->stats.timeout += 1;
	qr_task_step(task, NULL, NULL);

	return PROTOLAYER_EVENT_PROPAGATE;
}

static size_t pl_dns_dgram_wire_buf_overhead(bool outgoing)
{
	if (outgoing) {
		if (the_resolver->upstream_opt_rr)
			return knot_edns_get_payload(the_resolver->upstream_opt_rr);
	} else {
		if (the_resolver->downstream_opt_rr)
			return knot_edns_get_payload(the_resolver->downstream_opt_rr);
	}
	return KNOT_WIRE_MAX_PKTSIZE;
}

static enum protolayer_iter_cb_result pl_dns_dgram_unwrap(
		void *sess_data, void *iter_data, struct protolayer_iter_ctx *ctx)
{
	struct session2 *session = ctx->session;

	if (ctx->payload.type == PROTOLAYER_PAYLOAD_IOVEC) {
		int ret = kr_ok();
		for (int i = 0; i < ctx->payload.iovec.cnt; i++) {
			const struct iovec *iov = &ctx->payload.iovec.iov[i];
			if (iov->iov_len > MAX_DGRAM_LEN) {
				session2_penalize(session);
				ret = kr_error(EFBIG);
				break;
			}

			knot_pkt_t *pkt = produce_packet(
					iov->iov_base, iov->iov_len);
			if (!pkt) {
				ret = KNOT_EMALF;
				break;
			}

			ret = worker_submit(session, ctx->comm, pkt);
			if (ret)
				break;
		}

		mp_flush(the_worker->pkt_pool.ctx);
		return protolayer_break(ctx, ret);
	} else if (ctx->payload.type == PROTOLAYER_PAYLOAD_BUFFER) {
		if (ctx->payload.buffer.len > MAX_DGRAM_LEN) {
			session2_penalize(session);
			return protolayer_break(ctx, kr_error(EFBIG));
		}
		knot_pkt_t *pkt = produce_packet(
				ctx->payload.buffer.buf,
				ctx->payload.buffer.len);
		if (!pkt)
			return protolayer_break(ctx, KNOT_EMALF);

		int ret = worker_submit(session, ctx->comm, pkt);
		mp_flush(the_worker->pkt_pool.ctx);
		return protolayer_break(ctx, ret);
	} else if (ctx->payload.type == PROTOLAYER_PAYLOAD_WIRE_BUF) {
		const size_t msg_len = wire_buf_data_length(ctx->payload.wire_buf);
		if (msg_len > MAX_DGRAM_LEN) {
			session2_penalize(session);
			return protolayer_break(ctx, kr_error(EFBIG));
		}

		knot_pkt_t *pkt = produce_packet(
				wire_buf_data(ctx->payload.wire_buf),
				msg_len);
		if (!pkt)
			return protolayer_break(ctx, KNOT_EMALF);

		int ret = worker_submit(session, ctx->comm, pkt);
		wire_buf_reset(ctx->payload.wire_buf);
		mp_flush(the_worker->pkt_pool.ctx);
		return protolayer_break(ctx, ret);
	} else {
		kr_assert(false && "Invalid payload");
		return protolayer_break(ctx, kr_error(EINVAL));
	}
}

struct pl_dns_stream_sess_data {
	struct protolayer_data h;
	bool single : 1; /**< True: Stream only allows a single packet */
	bool produced : 1; /**< True: At least one packet has been produced */
	bool connected : 1; /**< True: The stream is connected */
};

static int pl_dns_stream_sess_init(struct session2 *session,
                                   void *sess_data, void *param)
{
	/* _UNSIZED_STREAM and _MULTI_STREAM - don't forget to split if needed
	 * at some point */
	session->stream = true;
	return kr_ok();
}

static int pl_dns_single_stream_sess_init(struct session2 *session,
                                          void *sess_data, void *param)
{
	session->stream = true;
	struct pl_dns_stream_sess_data *stream = sess_data;
	stream->single = true;
	return kr_ok();
}

static enum protolayer_event_cb_result pl_dns_stream_resolution_timeout(
		struct session2 *s)
{
	if (kr_fails_assert(!s->closing))
		return PROTOLAYER_EVENT_PROPAGATE;

	if (!session2_tasklist_is_empty(s)) {
		int finalized = session2_tasklist_finalize_expired(s);
		the_worker->stats.timeout += finalized;
		/* session2_tasklist_finalize_expired() may call worker_task_finalize().
		 * If session is a source session and there were IO errors,
		 * worker_task_finalize() can finalize all tasks and close session. */
		if (s->closing)
			return PROTOLAYER_EVENT_PROPAGATE;
	}

	if (!session2_tasklist_is_empty(s)) {
		session2_timer_stop(s);
		session2_timer_start(s,
				PROTOLAYER_EVENT_GENERAL_TIMEOUT,
				KR_RESOLVE_TIME_LIMIT / 2,
				KR_RESOLVE_TIME_LIMIT / 2);
	} else {
		/* Normally it should not happen,
		 * but better to check if there anything in this list. */
		while (!session2_waitinglist_is_empty(s)) {
			struct qr_task *t = session2_waitinglist_pop(s, false);
			worker_task_finalize(t, KR_STATE_FAIL);
			worker_task_unref(t);
			the_worker->stats.timeout += 1;
			if (s->closing)
				return PROTOLAYER_EVENT_PROPAGATE;
		}
		uint64_t idle_in_timeout = the_network->tcp.in_idle_timeout;
		uint64_t idle_time = kr_now() - s->last_activity;
		if (idle_time < idle_in_timeout) {
			idle_in_timeout -= idle_time;
			session2_timer_stop(s);
			session2_timer_start(s, PROTOLAYER_EVENT_GENERAL_TIMEOUT,
					idle_in_timeout, idle_in_timeout);
		} else {
			struct sockaddr *peer = session2_get_peer(s);
			char *peer_str = kr_straddr(peer);
			kr_log_debug(IO, "=> closing connection to '%s'\n",
				       peer_str ? peer_str : "");
			worker_del_tcp_waiting(peer);
			worker_del_tcp_connected(peer);
			session2_close(s);
		}
	}

	return PROTOLAYER_EVENT_PROPAGATE;
}

static enum protolayer_event_cb_result pl_dns_stream_connected(
		struct session2 *session, struct pl_dns_stream_sess_data *stream)
{
	if (kr_fails_assert(!stream->connected))
		return PROTOLAYER_EVENT_PROPAGATE;

	stream->connected = true;

	struct sockaddr *peer = session2_get_peer(session);
	if (session->outgoing && worker_del_tcp_waiting(peer) != 0) {
		/* session isn't in list of waiting queries,
		 * something gone wrong */
		goto fail;
	}

	int err = worker_add_tcp_connected(peer, session);
	if (err) {
		/* Could not add session to the list of connected, something
		 * went wrong. */
		goto fail;
	}

	send_waiting(session);
	return PROTOLAYER_EVENT_PROPAGATE;

fail:
	session2_waitinglist_finalize(session, KR_STATE_FAIL);
	kr_assert(session2_tasklist_is_empty(session));
	session2_close(session);
	return PROTOLAYER_EVENT_CONSUME;
}

static enum protolayer_event_cb_result pl_dns_stream_connection_fail(
		struct session2 *session, enum kr_selection_error sel_err)
{
	session2_timer_stop(session);

	kr_assert(session2_tasklist_is_empty(session));

	struct sockaddr *peer = session2_get_peer(session);
	worker_del_tcp_waiting(peer);

	struct qr_task *task = session2_waitinglist_get(session);
	if (!task) {
		/* Normally shouldn't happen. */
		const char *peer_str = kr_straddr(peer);
		VERBOSE_MSG(NULL, "=> connection to '%s' failed, empty waitinglist\n",
			    peer_str ? peer_str : "");
		return PROTOLAYER_EVENT_PROPAGATE;
	}

	struct kr_query *qry = task_get_last_pending_query(task);
	if (kr_log_is_debug_qry(WORKER, qry)) {
		const char *peer_str = kr_straddr(peer);
		bool timeout = sel_err == KR_SELECTION_TCP_CONNECT_TIMEOUT;
		VERBOSE_MSG(qry, "=> connection to '%s' failed (%s)\n",
				peer_str ? peer_str : "",
				timeout ? "timeout" : "error");
	}

	if (qry)
		qry->server_selection.error(qry, task->transport, sel_err);

	the_worker->stats.timeout += session2_waitinglist_get_len(session);
	session2_waitinglist_retry(session, true);
	kr_assert(session2_tasklist_is_empty(session));
	/* uv_cancel() doesn't support uv_connect_t request,
	 * so that we can't cancel it.
	 * There still exists possibility of successful connection
	 * for this request.
	 * So connection callback (on_connect()) must check
	 * if connection is in the list of waiting connection.
	 * If no, most likely this is timed out connection even if
	 * it was successful. */

	return PROTOLAYER_EVENT_PROPAGATE;
}

static enum protolayer_event_cb_result pl_dns_stream_disconnected(
		struct session2 *session, struct pl_dns_stream_sess_data *stream)
{
	struct sockaddr *peer = session2_get_peer(session);
	worker_del_tcp_waiting(peer);
	worker_del_tcp_connected(peer);

	if (!stream->connected)
		return PROTOLAYER_EVENT_PROPAGATE;

	stream->connected = false;

	while (!session2_waitinglist_is_empty(session)) {
		struct qr_task *task = session2_waitinglist_pop(session, false);
		kr_assert(task->refs > 1);
		session2_tasklist_del(session, task);
		if (session->outgoing) {
			if (task->ctx->req.options.FORWARD) {
				/* We are in TCP_FORWARD mode.
				 * To prevent failing at kr_resolve_consume()
				 * qry.flags.TCP must be cleared.
				 * TODO - refactoring is needed. */
				struct kr_request *req = &task->ctx->req;
				struct kr_rplan *rplan = &req->rplan;
				struct kr_query *qry = array_tail(rplan->pending);
				qry->flags.TCP = false;
			}
			qr_task_step(task, NULL, NULL);
		} else {
			kr_assert(task->ctx->source.session == session);
			task->ctx->source.session = NULL;
		}
		worker_task_unref(task);
	}
	while (!session2_tasklist_is_empty(session)) {
		struct qr_task *task = session2_tasklist_del_first(session, false);
		if (session->outgoing) {
			if (task->ctx->req.options.FORWARD) {
				struct kr_request *req = &task->ctx->req;
				struct kr_rplan *rplan = &req->rplan;
				struct kr_query *qry = array_tail(rplan->pending);
				qry->flags.TCP = false;
			}
			qr_task_step(task, NULL, NULL);
		} else {
			kr_assert(task->ctx->source.session == session);
			task->ctx->source.session = NULL;
		}
		worker_task_unref(task);
	}

	return PROTOLAYER_EVENT_PROPAGATE;
}

static enum protolayer_event_cb_result pl_dns_stream_event_unwrap(
		enum protolayer_event_type event, void **baton,
		struct session2 *session, void *sess_data)
{
	if (session->closing)
		return PROTOLAYER_EVENT_PROPAGATE;

	struct pl_dns_stream_sess_data *stream = sess_data;

	switch (event) {
	case PROTOLAYER_EVENT_GENERAL_TIMEOUT:
		return pl_dns_stream_resolution_timeout(session);

	case PROTOLAYER_EVENT_CONNECT_TIMEOUT:
		return pl_dns_stream_connection_fail(session,
				KR_SELECTION_TCP_CONNECT_TIMEOUT);

	case PROTOLAYER_EVENT_CONNECT:
		return pl_dns_stream_connected(session, stream);

	case PROTOLAYER_EVENT_CONNECT_FAIL:;
		enum kr_selection_error err = (*baton)
			? *(enum kr_selection_error *)baton
			: KR_SELECTION_TCP_CONNECT_FAILED;
		return pl_dns_stream_connection_fail(session, err);

	case PROTOLAYER_EVENT_DISCONNECT:
	case PROTOLAYER_EVENT_CLOSE:
	case PROTOLAYER_EVENT_FORCE_CLOSE:
		return pl_dns_stream_disconnected(session, stream);

	default:
		return PROTOLAYER_EVENT_PROPAGATE;
	}
}

static knot_pkt_t *stream_produce_packet(struct session2 *session,
                                         struct wire_buf *wb,
                                         bool *out_err)
{
	*out_err = false;
	if (wire_buf_data_length(wb) == 0) {
		wire_buf_reset(wb);
		return NULL;
	}
	if (wire_buf_data_length(wb) < sizeof(uint16_t)) {
		return NULL;
	}

	uint16_t msg_len = knot_wire_read_u16(wire_buf_data(wb));
	if (msg_len == 0) {
		*out_err = true;
		session2_penalize(session);
		return NULL;
	}
	if (msg_len >= wb->size) {
		*out_err = true;
		session2_penalize(session);
		return NULL;
	}
	if (wire_buf_data_length(wb) < msg_len + sizeof(uint16_t)) {
		return NULL;
	}

	uint8_t *wire = (uint8_t *)wire_buf_data(wb) + sizeof(uint16_t);

	session->was_useful = true;
	knot_pkt_t *pkt = produce_packet(wire, msg_len);
	*out_err = (pkt == NULL);
	return pkt;
}

static int stream_discard_packet(struct session2 *session,
                                 struct wire_buf *wb,
                                 const knot_pkt_t *pkt,
                                 bool *out_err)
{
	*out_err = true;

	if (kr_fails_assert(wire_buf_data_length(wb) >= sizeof(uint16_t))) {
		wire_buf_reset(wb);
		return kr_error(EINVAL);
	}

	size_t msg_size = knot_wire_read_u16(wire_buf_data(wb));
	uint8_t *wire = (uint8_t *)wire_buf_data(wb) + sizeof(uint16_t);
	if (kr_fails_assert(msg_size + sizeof(uint16_t) <= wire_buf_data_length(wb))) {
		/* TCP message length field is greater then
		 * number of bytes in buffer, must not happen. */
		wire_buf_reset(wb);
		return kr_error(EINVAL);
	}

	if (kr_fails_assert(wire == pkt->wire)) {
		/* packet wirebuf must be located at the beginning
		 * of the session wirebuf, must not happen. */
		wire_buf_reset(wb);
		return kr_error(EINVAL);
	}

	if (kr_fails_assert(msg_size >= pkt->size)) {
		wire_buf_reset(wb);
		return kr_error(EINVAL);
	}

	wire_buf_trim(wb, msg_size + sizeof(uint16_t));
	*out_err = false;

	if (wire_buf_data_length(wb) == 0) {
		wire_buf_reset(wb);
	} else if (wire_buf_data_length(wb) < KNOT_WIRE_HEADER_SIZE) {
		wire_buf_movestart(wb);
	}

	return kr_ok();
}

static enum protolayer_iter_cb_result pl_dns_stream_unwrap(
		void *sess_data, void *iter_data, struct protolayer_iter_ctx *ctx)
{
	if (kr_fails_assert(ctx->payload.type == PROTOLAYER_PAYLOAD_WIRE_BUF)) {
		/* DNS stream only works with a wire buffer */
		return protolayer_break(ctx, kr_error(EINVAL));
	}

	int status = kr_ok();
	struct session2 *session = ctx->session;
	struct pl_dns_stream_sess_data *stream_sess = sess_data;
	struct wire_buf *wb = ctx->payload.wire_buf;

	if (wire_buf_data_length(wb) == 0)
		return protolayer_break(ctx, status);

	const uint32_t max_iters = (wire_buf_data_length(wb) /
		(KNOT_WIRE_HEADER_SIZE + KNOT_WIRE_QUESTION_MIN_SIZE)) + 1;
	int iters = 0;

	bool pkt_error = false;
	knot_pkt_t *pkt = NULL;
	while ((pkt = stream_produce_packet(session, wb, &pkt_error)) && iters < max_iters) {
		if (kr_fails_assert(!pkt_error)) {
			status = kr_error(EINVAL);
			goto exit;
		}
		if (stream_sess->single && stream_sess->produced) {
			if (kr_log_is_debug(WORKER, NULL)) {
				kr_log_debug(WORKER, "Unexpected extra data from %s\n",
						kr_straddr(ctx->comm->src_addr));
			}
			status = KNOT_EMALF;
			goto exit;
		}

		stream_sess->produced = true;
		int ret = worker_submit(session, ctx->comm, pkt);

		/* Errors from worker_submit() are intentionally *not* handled
		 * in order to ensure the entire wire buffer is processed. */
		if (ret == kr_ok()) {
			iters += 1;
		}
		if (stream_discard_packet(session, wb, pkt, &pkt_error) < 0) {
			/* Packet data isn't stored in memory as expected.
			 * something went wrong, normally should not happen. */
			break;
		}
	}

	/* worker_submit() may cause the session to close (e.g. due to IO
	 * write error when the packet triggers an immediate answer). This is
	 * an error state, as well as any wirebuf error. */
	if (session->closing || pkt_error)
		status = kr_error(EIO);

exit:
	wire_buf_movestart(wb);
	mp_flush(the_worker->pkt_pool.ctx);
	if (status < 0)
		session2_force_close(session);
	return protolayer_break(ctx, status);
}

struct sized_iovs {
	uint8_t nlen[2];
	struct iovec iovs[];
};

static enum protolayer_iter_cb_result pl_dns_stream_wrap(
		void *sess_data, void *iter_data, struct protolayer_iter_ctx *ctx)
{
	if (ctx->payload.type == PROTOLAYER_PAYLOAD_BUFFER) {
		if (kr_fails_assert(ctx->payload.buffer.len <= UINT16_MAX))
			return protolayer_break(ctx, kr_error(EMSGSIZE));

		const int iovcnt = 2;
		struct sized_iovs *siov = mm_alloc(&ctx->pool,
				sizeof(*siov) + iovcnt * sizeof(struct iovec));
		kr_require(siov);
		knot_wire_write_u16(siov->nlen, ctx->payload.buffer.len);
		siov->iovs[0] = (struct iovec){
			.iov_base = &siov->nlen,
			.iov_len = sizeof(siov->nlen)
		};
		siov->iovs[1] = (struct iovec){
			.iov_base = ctx->payload.buffer.buf,
			.iov_len = ctx->payload.buffer.len
		};

		ctx->payload = protolayer_payload_iovec(siov->iovs, iovcnt, false);
		return protolayer_continue(ctx);
	} else if (ctx->payload.type == PROTOLAYER_PAYLOAD_IOVEC) {
		const int iovcnt = 1 + ctx->payload.iovec.cnt;
		struct sized_iovs *siov = mm_alloc(&ctx->pool,
				sizeof(*siov) + iovcnt * sizeof(struct iovec));
		kr_require(siov);

		size_t total_len = 0;
		for (int i = 0; i < ctx->payload.iovec.cnt; i++) {
			const struct iovec *iov = &ctx->payload.iovec.iov[i];
			total_len += iov->iov_len;
			siov->iovs[i + 1] = *iov;
		}

		if (kr_fails_assert(total_len <= UINT16_MAX))
			return protolayer_break(ctx, kr_error(EMSGSIZE));
		knot_wire_write_u16(siov->nlen, total_len);
		siov->iovs[0] = (struct iovec){
			.iov_base = &siov->nlen,
			.iov_len = sizeof(siov->nlen)
		};

		ctx->payload = protolayer_payload_iovec(siov->iovs, iovcnt, false);
		return protolayer_continue(ctx);
	} else {
		kr_assert(false && "Invalid payload");
		return protolayer_break(ctx, kr_error(EINVAL));
	}
}

static void pl_dns_stream_request_init(struct session2 *session,
                                       struct kr_request *req,
                                       void *sess_data)
{
	req->qsource.comm_flags.tcp = true;
}

__attribute__((constructor))
static void worker_protolayers_init(void)
{
	protolayer_globals[PROTOLAYER_TYPE_DNS_DGRAM] = (struct protolayer_globals){
		.wire_buf_overhead_cb = pl_dns_dgram_wire_buf_overhead,
		.wire_buf_max_overhead = KNOT_WIRE_MAX_PKTSIZE,
		.unwrap = pl_dns_dgram_unwrap,
		.event_unwrap = pl_dns_dgram_event_unwrap
	};
	protolayer_globals[PROTOLAYER_TYPE_DNS_UNSIZED_STREAM] = (struct protolayer_globals){
		.sess_size = sizeof(struct pl_dns_stream_sess_data),
		.wire_buf_overhead = KNOT_WIRE_MAX_PKTSIZE,
		.sess_init = pl_dns_stream_sess_init,
		.unwrap = pl_dns_dgram_unwrap,
		.event_unwrap = pl_dns_stream_event_unwrap,
		.request_init = pl_dns_stream_request_init
	};
	const struct protolayer_globals stream_common = {
		.sess_size = sizeof(struct pl_dns_stream_sess_data),
		.wire_buf_overhead = KNOT_WIRE_MAX_PKTSIZE,
		.sess_init = NULL, /* replaced in specific layers below */
		.unwrap = pl_dns_stream_unwrap,
		.wrap = pl_dns_stream_wrap,
		.event_unwrap = pl_dns_stream_event_unwrap,
		.request_init = pl_dns_stream_request_init
	};
	protolayer_globals[PROTOLAYER_TYPE_DNS_MULTI_STREAM] = stream_common;
	protolayer_globals[PROTOLAYER_TYPE_DNS_MULTI_STREAM].sess_init = pl_dns_stream_sess_init;
	protolayer_globals[PROTOLAYER_TYPE_DNS_SINGLE_STREAM] = stream_common;
	protolayer_globals[PROTOLAYER_TYPE_DNS_SINGLE_STREAM].sess_init = pl_dns_single_stream_sess_init;
}

int worker_init(void)
{
	if (kr_fails_assert(the_worker == NULL))
		return kr_error(EINVAL);
	kr_bindings_register(the_engine->L); // TODO move

	/* Create main worker. */
	the_worker = &the_worker_value;
	memset(the_worker, 0, sizeof(*the_worker));

	uv_loop_t *loop = uv_default_loop();
	the_worker->loop = loop;

	static const int worker_count = 1;
	the_worker->count = worker_count;

	/* Register table for worker per-request variables */
	struct lua_State *L = the_engine->L;
	lua_newtable(L);
	lua_setfield(L, -2, "vars");
	lua_getfield(L, -1, "vars");
	the_worker->vars_table_ref = luaL_ref(L, LUA_REGISTRYINDEX);
	lua_pop(L, 1);

	the_worker->tcp_pipeline_max = MAX_PIPELINED;
	the_worker->out_addr4.sin_family = AF_UNSPEC;
	the_worker->out_addr6.sin6_family = AF_UNSPEC;

	array_init(the_worker->doh_qry_headers);

	int ret = worker_reserve();
	if (ret) return ret;
	the_worker->next_request_uid = UINT16_MAX + 1;

	/* Set some worker.* fields in Lua */
	lua_getglobal(L, "worker");
	pid_t pid = getpid();

	auto_free char *pid_str = NULL;
	const char *inst_name = getenv("SYSTEMD_INSTANCE");
	if (inst_name) {
		lua_pushstring(L, inst_name);
	} else {
		ret = asprintf(&pid_str, "%ld", (long)pid);
		kr_assert(ret > 0);
		lua_pushstring(L, pid_str);
	}
	lua_setfield(L, -2, "id");

	lua_pushnumber(L, pid);
	lua_setfield(L, -2, "pid");
	lua_pushnumber(L, worker_count);
	lua_setfield(L, -2, "count");

	char cwd[PATH_MAX];
	get_workdir(cwd, sizeof(cwd));
	lua_pushstring(L, cwd);
	lua_setfield(L, -2, "cwd");

	loop->data = the_worker;
	/* ^^^^ Now this shouldn't be used anymore, but it's hard to be 100% sure. */
	return kr_ok();
}

#undef VERBOSE_MSG