summaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide/cgroup-v2.rst
diff options
context:
space:
mode:
authorDavid Finkel <davidf@vimeo.com>2024-07-29 16:37:42 +0200
committerAndrew Morton <akpm@linux-foundation.org>2024-09-02 05:25:53 +0200
commitc6f53ed8f213a66ae8bc40aa9112c32412c35a21 (patch)
tree4c1809b01e308558cb62c85255cc968c28057d87 /Documentation/admin-guide/cgroup-v2.rst
parents390/uv: drop arch_make_page_accessible() (diff)
downloadlinux-c6f53ed8f213a66ae8bc40aa9112c32412c35a21.tar.xz
linux-c6f53ed8f213a66ae8bc40aa9112c32412c35a21.zip
mm, memcg: cg2 memory{.swap,}.peak write handlers
Patch series "mm, memcg: cg2 memory{.swap,}.peak write handlers", v7. This patch (of 2): Other mechanisms for querying the peak memory usage of either a process or v1 memory cgroup allow for resetting the high watermark. Restore parity with those mechanisms, but with a less racy API. For example: - Any write to memory.max_usage_in_bytes in a cgroup v1 mount resets the high watermark. - writing "5" to the clear_refs pseudo-file in a processes's proc directory resets the peak RSS. This change is an evolution of a previous patch, which mostly copied the cgroup v1 behavior, however, there were concerns about races/ownership issues with a global reset, so instead this change makes the reset filedescriptor-local. Writing any non-empty string to the memory.peak and memory.swap.peak pseudo-files reset the high watermark to the current usage for subsequent reads through that same FD. Notably, following Johannes's suggestion, this implementation moves the O(FDs that have written) behavior onto the FD write(2) path. Instead, on the page-allocation path, we simply add one additional watermark to conditionally bump per-hierarchy level in the page-counter. Additionally, this takes Longman's suggestion of nesting the page-charging-path checks for the two watermarks to reduce the number of common-case comparisons. This behavior is particularly useful for work scheduling systems that need to track memory usage of worker processes/cgroups per-work-item. Since memory can't be squeezed like CPU can (the OOM-killer has opinions), these systems need to track the peak memory usage to compute system/container fullness when binpacking workitems. Most notably, Vimeo's use-case involves a system that's doing global binpacking across many Kubernetes pods/containers, and while we can use PSI for some local decisions about overload, we strive to avoid packing workloads too tightly in the first place. To facilitate this, we track the peak memory usage. However, since we run with long-lived workers (to amortize startup costs) we need a way to track the high watermark while a work-item is executing. Polling runs the risk of missing short spikes that last for timescales below the polling interval, and peak memory tracking at the cgroup level is otherwise perfect for this use-case. As this data is used to ensure that binpacked work ends up with sufficient headroom, this use-case mostly avoids the inaccuracies surrounding reclaimable memory. Link: https://lkml.kernel.org/r/20240730231304.761942-1-davidf@vimeo.com Link: https://lkml.kernel.org/r/20240729143743.34236-1-davidf@vimeo.com Link: https://lkml.kernel.org/r/20240729143743.34236-2-davidf@vimeo.com Signed-off-by: David Finkel <davidf@vimeo.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Waiman Long <longman@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michal Koutný <mkoutny@suse.com> Acked-by: Tejun Heo <tj@kernel.org> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Shuah Khan <shuah@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'Documentation/admin-guide/cgroup-v2.rst')
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst22
1 files changed, 14 insertions, 8 deletions
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index 86311c2907cd..f0499884124d 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -1333,11 +1333,14 @@ The following nested keys are defined.
all the existing limitations and potential future extensions.
memory.peak
- A read-only single value file which exists on non-root
- cgroups.
+ A read-write single value file which exists on non-root cgroups.
+
+ The max memory usage recorded for the cgroup and its descendants since
+ either the creation of the cgroup or the most recent reset for that FD.
- The max memory usage recorded for the cgroup and its
- descendants since the creation of the cgroup.
+ A write of any non-empty string to this file resets it to the
+ current memory usage for subsequent reads through the same
+ file descriptor.
memory.oom.group
A read-write single value file which exists on non-root
@@ -1663,11 +1666,14 @@ The following nested keys are defined.
Healthy workloads are not expected to reach this limit.
memory.swap.peak
- A read-only single value file which exists on non-root
- cgroups.
+ A read-write single value file which exists on non-root cgroups.
+
+ The max swap usage recorded for the cgroup and its descendants since
+ the creation of the cgroup or the most recent reset for that FD.
- The max swap usage recorded for the cgroup and its
- descendants since the creation of the cgroup.
+ A write of any non-empty string to this file resets it to the
+ current memory usage for subsequent reads through the same
+ file descriptor.
memory.swap.max
A read-write single value file which exists on non-root