summaryrefslogtreecommitdiffstats
path: root/Documentation/media/kapi
diff options
context:
space:
mode:
authorMauro Carvalho Chehab <mchehab+samsung@kernel.org>2019-02-18 20:29:07 +0100
committerMauro Carvalho Chehab <mchehab+samsung@kernel.org>2019-03-01 15:54:06 +0100
commitadf48e3f1f4e851153380af779978b3e3a616733 (patch)
tree5cbbab526b09a6c1ebfd0540d71570f5efba73b2 /Documentation/media/kapi
parentmedia: staging: fix several typos (diff)
downloadlinux-adf48e3f1f4e851153380af779978b3e3a616733.tar.xz
linux-adf48e3f1f4e851153380af779978b3e3a616733.zip
media: Documentation: fix several typos
Use codespell to fix lots of typos over frontends. Manually verified to avoid false-positives. Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Acked-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Diffstat (limited to 'Documentation/media/kapi')
-rw-r--r--Documentation/media/kapi/dtv-core.rst2
-rw-r--r--Documentation/media/kapi/dtv-frontend.rst2
-rw-r--r--Documentation/media/kapi/mc-core.rst2
-rw-r--r--Documentation/media/kapi/v4l2-device.rst2
-rw-r--r--Documentation/media/kapi/v4l2-intro.rst2
-rw-r--r--Documentation/media/kapi/v4l2-subdev.rst4
6 files changed, 7 insertions, 7 deletions
diff --git a/Documentation/media/kapi/dtv-core.rst b/Documentation/media/kapi/dtv-core.rst
index 17454a2cf6b0..ac005b46f23e 100644
--- a/Documentation/media/kapi/dtv-core.rst
+++ b/Documentation/media/kapi/dtv-core.rst
@@ -12,7 +12,7 @@ Digital TV devices are implemented by several different drivers:
- Frontend drivers that are usually implemented as two separate drivers:
- A tuner driver that implements the logic with commands the part of the
- hardware with is reponsible to tune into a digital TV transponder or
+ hardware with is responsible to tune into a digital TV transponder or
physical channel. The output of a tuner is usually a baseband or
Intermediate Frequency (IF) signal;
diff --git a/Documentation/media/kapi/dtv-frontend.rst b/Documentation/media/kapi/dtv-frontend.rst
index 8ea64742c7ba..fbc5517c8d5a 100644
--- a/Documentation/media/kapi/dtv-frontend.rst
+++ b/Documentation/media/kapi/dtv-frontend.rst
@@ -328,7 +328,7 @@ Statistics collect
On almost all frontend hardware, the bit and byte counts are stored by
the hardware after a certain amount of time or after the total bit/block
-counter reaches a certain value (usually programable), for example, on
+counter reaches a certain value (usually programmable), for example, on
every 1000 ms or after receiving 1,000,000 bits.
So, if you read the registers too soon, you'll end by reading the same
diff --git a/Documentation/media/kapi/mc-core.rst b/Documentation/media/kapi/mc-core.rst
index 0bcfeadbc52d..f930725e0d6b 100644
--- a/Documentation/media/kapi/mc-core.rst
+++ b/Documentation/media/kapi/mc-core.rst
@@ -60,7 +60,7 @@ Drivers initialize entity pads by calling
Drivers register entities with a media device by calling
:c:func:`media_device_register_entity()`
-and unregistred by calling
+and unregistered by calling
:c:func:`media_device_unregister_entity()`.
Interfaces
diff --git a/Documentation/media/kapi/v4l2-device.rst b/Documentation/media/kapi/v4l2-device.rst
index c4311f0421be..5e25bf182c18 100644
--- a/Documentation/media/kapi/v4l2-device.rst
+++ b/Documentation/media/kapi/v4l2-device.rst
@@ -93,7 +93,7 @@ You can iterate over all registered devices as follows:
int err;
/* Find driver 'ivtv' on the PCI bus.
- pci_bus_type is a global. For USB busses use usb_bus_type. */
+ pci_bus_type is a global. For USB buses use usb_bus_type. */
drv = driver_find("ivtv", &pci_bus_type);
/* iterate over all ivtv device instances */
err = driver_for_each_device(drv, NULL, p, callback);
diff --git a/Documentation/media/kapi/v4l2-intro.rst b/Documentation/media/kapi/v4l2-intro.rst
index cea3e263e48b..4d54fa9d7a12 100644
--- a/Documentation/media/kapi/v4l2-intro.rst
+++ b/Documentation/media/kapi/v4l2-intro.rst
@@ -11,7 +11,7 @@ hardware: most devices have multiple ICs, export multiple device nodes in
Especially the fact that V4L2 drivers have to setup supporting ICs to
do audio/video muxing/encoding/decoding makes it more complex than most.
Usually these ICs are connected to the main bridge driver through one or
-more I2C busses, but other busses can also be used. Such devices are
+more I2C buses, but other buses can also be used. Such devices are
called 'sub-devices'.
For a long time the framework was limited to the video_device struct for
diff --git a/Documentation/media/kapi/v4l2-subdev.rst b/Documentation/media/kapi/v4l2-subdev.rst
index be4970909f40..29e07e23f888 100644
--- a/Documentation/media/kapi/v4l2-subdev.rst
+++ b/Documentation/media/kapi/v4l2-subdev.rst
@@ -23,7 +23,7 @@ device data.
You also need a way to go from the low-level struct to :c:type:`v4l2_subdev`.
For the common i2c_client struct the i2c_set_clientdata() call is used to store
-a :c:type:`v4l2_subdev` pointer, for other busses you may have to use other
+a :c:type:`v4l2_subdev` pointer, for other buses you may have to use other
methods.
Bridges might also need to store per-subdev private data, such as a pointer to
@@ -33,7 +33,7 @@ provides host private data for that purpose that can be accessed with
From the bridge driver perspective, you load the sub-device module and somehow
obtain the :c:type:`v4l2_subdev` pointer. For i2c devices this is easy: you call
-``i2c_get_clientdata()``. For other busses something similar needs to be done.
+``i2c_get_clientdata()``. For other buses something similar needs to be done.
Helper functions exists for sub-devices on an I2C bus that do most of this
tricky work for you.