summaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorLong Li <leo.lilong@huawei.com>2024-12-09 12:42:40 +0100
committerChristian Brauner <brauner@kernel.org>2024-12-11 11:09:05 +0100
commit51d20d1dacbec589d459e11fc88fbca419f84a99 (patch)
treee9e182fc440ff1e6fb542290c5590c135d136b24 /include
parentiomap: pass byte granular end position to iomap_add_to_ioend (diff)
downloadlinux-51d20d1dacbec589d459e11fc88fbca419f84a99.tar.xz
linux-51d20d1dacbec589d459e11fc88fbca419f84a99.zip
iomap: fix zero padding data issue in concurrent append writes
During concurrent append writes to XFS filesystem, zero padding data may appear in the file after power failure. This happens due to imprecise disk size updates when handling write completion. Consider this scenario with concurrent append writes same file: Thread 1: Thread 2: ------------ ----------- write [A, A+B] update inode size to A+B submit I/O [A, A+BS] write [A+B, A+B+C] update inode size to A+B+C <I/O completes, updates disk size to min(A+B+C, A+BS)> <power failure> After reboot: 1) with A+B+C < A+BS, the file has zero padding in range [A+B, A+B+C] |< Block Size (BS) >| |DDDDDDDDDDDDDDDD0000000000000000| ^ ^ ^ A A+B A+B+C (EOF) 2) with A+B+C > A+BS, the file has zero padding in range [A+B, A+BS] |< Block Size (BS) >|< Block Size (BS) >| |DDDDDDDDDDDDDDDD0000000000000000|00000000000000000000000000000000| ^ ^ ^ ^ A A+B A+BS A+B+C (EOF) D = Valid Data 0 = Zero Padding The issue stems from disk size being set to min(io_offset + io_size, inode->i_size) at I/O completion. Since io_offset+io_size is block size granularity, it may exceed the actual valid file data size. In the case of concurrent append writes, inode->i_size may be larger than the actual range of valid file data written to disk, leading to inaccurate disk size updates. This patch modifies the meaning of io_size to represent the size of valid data within EOF in an ioend. If the ioend spans beyond i_size, io_size will be trimmed to provide the file with more accurate size information. This is particularly useful for on-disk size updates at completion time. After this change, ioends that span i_size will not grow or merge with other ioends in concurrent scenarios. However, these cases that need growth/merging rarely occur and it seems no noticeable performance impact. Although rounding up io_size could enable ioend growth/merging in these scenarios, we decided to keep the code simple after discussion [1]. Another benefit is that it makes the xfs_ioend_is_append() check more accurate, which can reduce unnecessary end bio callbacks of xfs_end_bio() in certain scenarios, such as repeated writes at the file tail without extending the file size. Link [1]: https://patchwork.kernel.org/project/xfs/patch/20241113091907.56937-1-leo.lilong@huawei.com Fixes: ae259a9c8593 ("fs: introduce iomap infrastructure") # goes further back than this Signed-off-by: Long Li <leo.lilong@huawei.com> Link: https://lore.kernel.org/r/20241209114241.3725722-3-leo.lilong@huawei.com Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <brauner@kernel.org>
Diffstat (limited to 'include')
-rw-r--r--include/linux/iomap.h2
1 files changed, 1 insertions, 1 deletions
diff --git a/include/linux/iomap.h b/include/linux/iomap.h
index 5675af6b740c..75bf54e76f3b 100644
--- a/include/linux/iomap.h
+++ b/include/linux/iomap.h
@@ -335,7 +335,7 @@ struct iomap_ioend {
u16 io_type;
u16 io_flags; /* IOMAP_F_* */
struct inode *io_inode; /* file being written to */
- size_t io_size; /* size of the extent */
+ size_t io_size; /* size of data within eof */
loff_t io_offset; /* offset in the file */
sector_t io_sector; /* start sector of ioend */
struct bio io_bio; /* MUST BE LAST! */