diff options
author | Colin Cross <ccross@google.com> | 2022-01-14 23:05:59 +0100 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2022-01-15 15:30:27 +0100 |
commit | 9a10064f5625d5572c3626c1516e0bebc6c9fe9b (patch) | |
tree | c522ff89b62fb32fac39b383b65f3992c2f1fe36 /mm/mmap.c | |
parent | mm: rearrange madvise code to allow for reuse (diff) | |
download | linux-9a10064f5625d5572c3626c1516e0bebc6c9fe9b.tar.xz linux-9a10064f5625d5572c3626c1516e0bebc6c9fe9b.zip |
mm: add a field to store names for private anonymous memory
In many userspace applications, and especially in VM based applications
like Android uses heavily, there are multiple different allocators in
use. At a minimum there is libc malloc and the stack, and in many cases
there are libc malloc, the stack, direct syscalls to mmap anonymous
memory, and multiple VM heaps (one for small objects, one for big
objects, etc.). Each of these layers usually has its own tools to
inspect its usage; malloc by compiling a debug version, the VM through
heap inspection tools, and for direct syscalls there is usually no way
to track them.
On Android we heavily use a set of tools that use an extended version of
the logic covered in Documentation/vm/pagemap.txt to walk all pages
mapped in userspace and slice their usage by process, shared (COW) vs.
unique mappings, backing, etc. This can account for real physical
memory usage even in cases like fork without exec (which Android uses
heavily to share as many private COW pages as possible between
processes), Kernel SamePage Merging, and clean zero pages. It produces
a measurement of the pages that only exist in that process (USS, for
unique), and a measurement of the physical memory usage of that process
with the cost of shared pages being evenly split between processes that
share them (PSS).
If all anonymous memory is indistinguishable then figuring out the real
physical memory usage (PSS) of each heap requires either a pagemap
walking tool that can understand the heap debugging of every layer, or
for every layer's heap debugging tools to implement the pagemap walking
logic, in which case it is hard to get a consistent view of memory
across the whole system.
Tracking the information in userspace leads to all sorts of problems.
It either needs to be stored inside the process, which means every
process has to have an API to export its current heap information upon
request, or it has to be stored externally in a filesystem that somebody
needs to clean up on crashes. It needs to be readable while the process
is still running, so it has to have some sort of synchronization with
every layer of userspace. Efficiently tracking the ranges requires
reimplementing something like the kernel vma trees, and linking to it
from every layer of userspace. It requires more memory, more syscalls,
more runtime cost, and more complexity to separately track regions that
the kernel is already tracking.
This patch adds a field to /proc/pid/maps and /proc/pid/smaps to show a
userspace-provided name for anonymous vmas. The names of named
anonymous vmas are shown in /proc/pid/maps and /proc/pid/smaps as
[anon:<name>].
Userspace can set the name for a region of memory by calling
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, start, len, (unsigned long)name)
Setting the name to NULL clears it. The name length limit is 80 bytes
including NUL-terminator and is checked to contain only printable ascii
characters (including space), except '[',']','\','$' and '`'.
Ascii strings are being used to have a descriptive identifiers for vmas,
which can be understood by the users reading /proc/pid/maps or
/proc/pid/smaps. Names can be standardized for a given system and they
can include some variable parts such as the name of the allocator or a
library, tid of the thread using it, etc.
The name is stored in a pointer in the shared union in vm_area_struct
that points to a null terminated string. Anonymous vmas with the same
name (equivalent strings) and are otherwise mergeable will be merged.
The name pointers are not shared between vmas even if they contain the
same name. The name pointer is stored in a union with fields that are
only used on file-backed mappings, so it does not increase memory usage.
CONFIG_ANON_VMA_NAME kernel configuration is introduced to enable this
feature. It keeps the feature disabled by default to prevent any
additional memory overhead and to avoid confusing procfs parsers on
systems which are not ready to support named anonymous vmas.
The patch is based on the original patch developed by Colin Cross, more
specifically on its latest version [1] posted upstream by Sumit Semwal.
It used a userspace pointer to store vma names. In that design, name
pointers could be shared between vmas. However during the last
upstreaming attempt, Kees Cook raised concerns [2] about this approach
and suggested to copy the name into kernel memory space, perform
validity checks [3] and store as a string referenced from
vm_area_struct.
One big concern is about fork() performance which would need to strdup
anonymous vma names. Dave Hansen suggested experimenting with
worst-case scenario of forking a process with 64k vmas having longest
possible names [4]. I ran this experiment on an ARM64 Android device
and recorded a worst-case regression of almost 40% when forking such a
process.
This regression is addressed in the followup patch which replaces the
pointer to a name with a refcounted structure that allows sharing the
name pointer between vmas of the same name. Instead of duplicating the
string during fork() or when splitting a vma it increments the refcount.
[1] https://lore.kernel.org/linux-mm/20200901161459.11772-4-sumit.semwal@linaro.org/
[2] https://lore.kernel.org/linux-mm/202009031031.D32EF57ED@keescook/
[3] https://lore.kernel.org/linux-mm/202009031022.3834F692@keescook/
[4] https://lore.kernel.org/linux-mm/5d0358ab-8c47-2f5f-8e43-23b89d6a8e95@intel.com/
Changes for prctl(2) manual page (in the options section):
PR_SET_VMA
Sets an attribute specified in arg2 for virtual memory areas
starting from the address specified in arg3 and spanning the
size specified in arg4. arg5 specifies the value of the attribute
to be set. Note that assigning an attribute to a virtual memory
area might prevent it from being merged with adjacent virtual
memory areas due to the difference in that attribute's value.
Currently, arg2 must be one of:
PR_SET_VMA_ANON_NAME
Set a name for anonymous virtual memory areas. arg5 should
be a pointer to a null-terminated string containing the
name. The name length including null byte cannot exceed
80 bytes. If arg5 is NULL, the name of the appropriate
anonymous virtual memory areas will be reset. The name
can contain only printable ascii characters (including
space), except '[',']','\','$' and '`'.
This feature is available only if the kernel is built with
the CONFIG_ANON_VMA_NAME option enabled.
[surenb@google.com: docs: proc.rst: /proc/PID/maps: fix malformed table]
Link: https://lkml.kernel.org/r/20211123185928.2513763-1-surenb@google.com
[surenb: rebased over v5.15-rc6, replaced userpointer with a kernel copy,
added input sanitization and CONFIG_ANON_VMA_NAME config. The bulk of the
work here was done by Colin Cross, therefore, with his permission, keeping
him as the author]
Link: https://lkml.kernel.org/r/20211019215511.3771969-2-surenb@google.com
Signed-off-by: Colin Cross <ccross@google.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Glauber <jan.glauber@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rob Landley <rob@landley.net>
Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com>
Cc: Shaohua Li <shli@fusionio.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/mmap.c')
-rw-r--r-- | mm/mmap.c | 38 |
1 files changed, 22 insertions, 16 deletions
diff --git a/mm/mmap.c b/mm/mmap.c index bfb0ea164a90..85edb0011453 100644 --- a/mm/mmap.c +++ b/mm/mmap.c @@ -1029,7 +1029,8 @@ again: */ static inline int is_mergeable_vma(struct vm_area_struct *vma, struct file *file, unsigned long vm_flags, - struct vm_userfaultfd_ctx vm_userfaultfd_ctx) + struct vm_userfaultfd_ctx vm_userfaultfd_ctx, + const char *anon_name) { /* * VM_SOFTDIRTY should not prevent from VMA merging, if we @@ -1047,6 +1048,8 @@ static inline int is_mergeable_vma(struct vm_area_struct *vma, return 0; if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) return 0; + if (!is_same_vma_anon_name(vma, anon_name)) + return 0; return 1; } @@ -1079,9 +1082,10 @@ static int can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff, - struct vm_userfaultfd_ctx vm_userfaultfd_ctx) + struct vm_userfaultfd_ctx vm_userfaultfd_ctx, + const char *anon_name) { - if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && + if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { if (vma->vm_pgoff == vm_pgoff) return 1; @@ -1100,9 +1104,10 @@ static int can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff, - struct vm_userfaultfd_ctx vm_userfaultfd_ctx) + struct vm_userfaultfd_ctx vm_userfaultfd_ctx, + const char *anon_name) { - if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && + if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { pgoff_t vm_pglen; vm_pglen = vma_pages(vma); @@ -1113,9 +1118,9 @@ can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, } /* - * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out - * whether that can be merged with its predecessor or its successor. - * Or both (it neatly fills a hole). + * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), + * figure out whether that can be merged with its predecessor or its + * successor. Or both (it neatly fills a hole). * * In most cases - when called for mmap, brk or mremap - [addr,end) is * certain not to be mapped by the time vma_merge is called; but when @@ -1160,7 +1165,8 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm, unsigned long end, unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, pgoff_t pgoff, struct mempolicy *policy, - struct vm_userfaultfd_ctx vm_userfaultfd_ctx) + struct vm_userfaultfd_ctx vm_userfaultfd_ctx, + const char *anon_name) { pgoff_t pglen = (end - addr) >> PAGE_SHIFT; struct vm_area_struct *area, *next; @@ -1190,7 +1196,7 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm, mpol_equal(vma_policy(prev), policy) && can_vma_merge_after(prev, vm_flags, anon_vma, file, pgoff, - vm_userfaultfd_ctx)) { + vm_userfaultfd_ctx, anon_name)) { /* * OK, it can. Can we now merge in the successor as well? */ @@ -1199,7 +1205,7 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm, can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, - vm_userfaultfd_ctx) && + vm_userfaultfd_ctx, anon_name) && is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { /* cases 1, 6 */ @@ -1222,7 +1228,7 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm, mpol_equal(policy, vma_policy(next)) && can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, - vm_userfaultfd_ctx)) { + vm_userfaultfd_ctx, anon_name)) { if (prev && addr < prev->vm_end) /* case 4 */ err = __vma_adjust(prev, prev->vm_start, addr, prev->vm_pgoff, NULL, next); @@ -1754,7 +1760,7 @@ unsigned long mmap_region(struct file *file, unsigned long addr, * Can we just expand an old mapping? */ vma = vma_merge(mm, prev, addr, addr + len, vm_flags, - NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); + NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL); if (vma) goto out; @@ -1803,7 +1809,7 @@ unsigned long mmap_region(struct file *file, unsigned long addr, */ if (unlikely(vm_flags != vma->vm_flags && prev)) { merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, - NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX); + NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL); if (merge) { /* ->mmap() can change vma->vm_file and fput the original file. So * fput the vma->vm_file here or we would add an extra fput for file @@ -3056,7 +3062,7 @@ static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long fla /* Can we just expand an old private anonymous mapping? */ vma = vma_merge(mm, prev, addr, addr + len, flags, - NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); + NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL); if (vma) goto out; @@ -3249,7 +3255,7 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, return NULL; /* should never get here */ new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), - vma->vm_userfaultfd_ctx); + vma->vm_userfaultfd_ctx, vma_anon_name(vma)); if (new_vma) { /* * Source vma may have been merged into new_vma |