diff options
Diffstat (limited to 'drivers/accel/habanalabs/gaudi2/gaudi2.c')
-rw-r--r-- | drivers/accel/habanalabs/gaudi2/gaudi2.c | 10603 |
1 files changed, 10603 insertions, 0 deletions
diff --git a/drivers/accel/habanalabs/gaudi2/gaudi2.c b/drivers/accel/habanalabs/gaudi2/gaudi2.c new file mode 100644 index 000000000000..7df1a68dd403 --- /dev/null +++ b/drivers/accel/habanalabs/gaudi2/gaudi2.c @@ -0,0 +1,10603 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2020-2022 HabanaLabs, Ltd. + * All Rights Reserved. + */ + +#include "gaudi2P.h" +#include "gaudi2_masks.h" +#include "../include/hw_ip/mmu/mmu_general.h" +#include "../include/hw_ip/mmu/mmu_v2_0.h" +#include "../include/gaudi2/gaudi2_packets.h" +#include "../include/gaudi2/gaudi2_reg_map.h" +#include "../include/gaudi2/gaudi2_async_ids_map_extended.h" +#include "../include/gaudi2/arc/gaudi2_arc_common_packets.h" + +#include <linux/module.h> +#include <linux/pci.h> +#include <linux/hwmon.h> +#include <linux/iommu.h> + +#define GAUDI2_DMA_POOL_BLK_SIZE SZ_256 /* 256 bytes */ + +#define GAUDI2_RESET_TIMEOUT_MSEC 2000 /* 2000ms */ +#define GAUDI2_RESET_POLL_TIMEOUT_USEC 50000 /* 50ms */ +#define GAUDI2_PLDM_HRESET_TIMEOUT_MSEC 25000 /* 25s */ +#define GAUDI2_PLDM_SRESET_TIMEOUT_MSEC 25000 /* 25s */ +#define GAUDI2_PLDM_RESET_POLL_TIMEOUT_USEC 3000000 /* 3s */ +#define GAUDI2_RESET_POLL_CNT 3 +#define GAUDI2_RESET_WAIT_MSEC 1 /* 1ms */ +#define GAUDI2_CPU_RESET_WAIT_MSEC 100 /* 100ms */ +#define GAUDI2_PLDM_RESET_WAIT_MSEC 1000 /* 1s */ +#define GAUDI2_CB_POOL_CB_CNT 512 +#define GAUDI2_CB_POOL_CB_SIZE SZ_128K /* 128KB */ +#define GAUDI2_MSG_TO_CPU_TIMEOUT_USEC 4000000 /* 4s */ +#define GAUDI2_WAIT_FOR_BL_TIMEOUT_USEC 25000000 /* 25s */ +#define GAUDI2_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */ +#define GAUDI2_PLDM_TEST_QUEUE_WAIT_USEC 1000000 /* 1s */ + +#define GAUDI2_ALLOC_CPU_MEM_RETRY_CNT 3 + +/* + * since the code already has built-in support for binning of up to MAX_FAULTY_TPCS TPCs + * and the code relies on that value (for array size etc..) we define another value + * for MAX faulty TPCs which reflects the cluster binning requirements + */ +#define MAX_CLUSTER_BINNING_FAULTY_TPCS 1 +#define MAX_FAULTY_XBARS 1 +#define MAX_FAULTY_EDMAS 1 +#define MAX_FAULTY_DECODERS 1 + +#define GAUDI2_TPC_FULL_MASK 0x1FFFFFF +#define GAUDI2_HIF_HMMU_FULL_MASK 0xFFFF +#define GAUDI2_DECODER_FULL_MASK 0x3FF + +#define GAUDI2_NA_EVENT_CAUSE 0xFF +#define GAUDI2_NUM_OF_QM_ERR_CAUSE 18 +#define GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE 25 +#define GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE 3 +#define GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE 14 +#define GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE 3 +#define GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE 2 +#define GAUDI2_NUM_OF_ROT_ERR_CAUSE 22 +#define GAUDI2_NUM_OF_TPC_INTR_CAUSE 30 +#define GAUDI2_NUM_OF_DEC_ERR_CAUSE 25 +#define GAUDI2_NUM_OF_MME_ERR_CAUSE 16 +#define GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE 5 +#define GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE 7 +#define GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE 8 +#define GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE 19 +#define GAUDI2_NUM_OF_HBM_SEI_CAUSE 9 +#define GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE 3 +#define GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE 3 +#define GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE 2 +#define GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE 2 +#define GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE 2 +#define GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE 5 + +#define GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 10) +#define GAUDI2_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 200) +#define GAUDI2_ARB_WDT_TIMEOUT (0x1000000) + +#define GAUDI2_VDEC_TIMEOUT_USEC 10000 /* 10ms */ +#define GAUDI2_PLDM_VDEC_TIMEOUT_USEC (GAUDI2_VDEC_TIMEOUT_USEC * 100) + +#define KDMA_TIMEOUT_USEC USEC_PER_SEC + +#define IS_DMA_IDLE(dma_core_idle_ind_mask) \ + (!((dma_core_idle_ind_mask) & \ + ((DCORE0_EDMA0_CORE_IDLE_IND_MASK_DESC_CNT_STS_MASK) | \ + (DCORE0_EDMA0_CORE_IDLE_IND_MASK_COMP_MASK)))) + +#define IS_MME_IDLE(mme_arch_sts) (((mme_arch_sts) & MME_ARCH_IDLE_MASK) == MME_ARCH_IDLE_MASK) + +#define IS_TPC_IDLE(tpc_cfg_sts) (((tpc_cfg_sts) & (TPC_IDLE_MASK)) == (TPC_IDLE_MASK)) + +#define IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) \ + ((((qm_glbl_sts0) & (QM_IDLE_MASK)) == (QM_IDLE_MASK)) && \ + (((qm_glbl_sts1) & (QM_ARC_IDLE_MASK)) == (QM_ARC_IDLE_MASK)) && \ + (((qm_cgm_sts) & (CGM_IDLE_MASK)) == (CGM_IDLE_MASK))) + +#define PCIE_DEC_EN_MASK 0x300 +#define DEC_WORK_STATE_IDLE 0 +#define DEC_WORK_STATE_PEND 3 +#define IS_DEC_IDLE(dec_swreg15) \ + (((dec_swreg15) & DCORE0_DEC0_CMD_SWREG15_SW_WORK_STATE_MASK) == DEC_WORK_STATE_IDLE || \ + ((dec_swreg15) & DCORE0_DEC0_CMD_SWREG15_SW_WORK_STATE_MASK) == DEC_WORK_STATE_PEND) + +/* HBM MMU address scrambling parameters */ +#define GAUDI2_HBM_MMU_SCRM_MEM_SIZE SZ_8M +#define GAUDI2_HBM_MMU_SCRM_DIV_SHIFT 26 +#define GAUDI2_HBM_MMU_SCRM_MOD_SHIFT 0 +#define GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK DRAM_VA_HINT_MASK +#define GAUDI2_COMPENSATE_TLB_PAGE_SIZE_FACTOR 16 +#define MMU_RANGE_INV_VA_LSB_SHIFT 12 +#define MMU_RANGE_INV_VA_MSB_SHIFT 44 +#define MMU_RANGE_INV_EN_SHIFT 0 +#define MMU_RANGE_INV_ASID_EN_SHIFT 1 +#define MMU_RANGE_INV_ASID_SHIFT 2 + +/* The last SPI_SEI cause bit, "burst_fifo_full", is expected to be triggered in PMMU because it has + * a 2 entries FIFO, and hence it is not enabled for it. + */ +#define GAUDI2_PMMU_SPI_SEI_ENABLE_MASK GENMASK(GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE - 2, 0) +#define GAUDI2_HMMU_SPI_SEI_ENABLE_MASK GENMASK(GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE - 1, 0) + +#define GAUDI2_MAX_STRING_LEN 64 + +#define GAUDI2_VDEC_MSIX_ENTRIES (GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM - \ + GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 1) + +#define ENGINE_ID_DCORE_OFFSET (GAUDI2_DCORE1_ENGINE_ID_EDMA_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0) + +enum hl_pmmu_fatal_cause { + LATENCY_RD_OUT_FIFO_OVERRUN, + LATENCY_WR_OUT_FIFO_OVERRUN, +}; + +enum hl_pcie_drain_ind_cause { + LBW_AXI_DRAIN_IND, + HBW_AXI_DRAIN_IND +}; + +static const u32 cluster_hmmu_hif_enabled_mask[GAUDI2_HBM_NUM] = { + [HBM_ID0] = 0xFFFC, + [HBM_ID1] = 0xFFCF, + [HBM_ID2] = 0xF7F7, + [HBM_ID3] = 0x7F7F, + [HBM_ID4] = 0xFCFF, + [HBM_ID5] = 0xCFFF, +}; + +static const u8 xbar_edge_to_hbm_cluster[EDMA_ID_SIZE] = { + [0] = HBM_ID0, + [1] = HBM_ID1, + [2] = HBM_ID4, + [3] = HBM_ID5, +}; + +static const u8 edma_to_hbm_cluster[EDMA_ID_SIZE] = { + [EDMA_ID_DCORE0_INSTANCE0] = HBM_ID0, + [EDMA_ID_DCORE0_INSTANCE1] = HBM_ID2, + [EDMA_ID_DCORE1_INSTANCE0] = HBM_ID1, + [EDMA_ID_DCORE1_INSTANCE1] = HBM_ID3, + [EDMA_ID_DCORE2_INSTANCE0] = HBM_ID2, + [EDMA_ID_DCORE2_INSTANCE1] = HBM_ID4, + [EDMA_ID_DCORE3_INSTANCE0] = HBM_ID3, + [EDMA_ID_DCORE3_INSTANCE1] = HBM_ID5, +}; + +static const int gaudi2_qman_async_event_id[] = { + [GAUDI2_QUEUE_ID_PDMA_0_0] = GAUDI2_EVENT_PDMA0_QM, + [GAUDI2_QUEUE_ID_PDMA_0_1] = GAUDI2_EVENT_PDMA0_QM, + [GAUDI2_QUEUE_ID_PDMA_0_2] = GAUDI2_EVENT_PDMA0_QM, + [GAUDI2_QUEUE_ID_PDMA_0_3] = GAUDI2_EVENT_PDMA0_QM, + [GAUDI2_QUEUE_ID_PDMA_1_0] = GAUDI2_EVENT_PDMA1_QM, + [GAUDI2_QUEUE_ID_PDMA_1_1] = GAUDI2_EVENT_PDMA1_QM, + [GAUDI2_QUEUE_ID_PDMA_1_2] = GAUDI2_EVENT_PDMA1_QM, + [GAUDI2_QUEUE_ID_PDMA_1_3] = GAUDI2_EVENT_PDMA1_QM, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = GAUDI2_EVENT_HDMA0_QM, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = GAUDI2_EVENT_HDMA0_QM, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = GAUDI2_EVENT_HDMA0_QM, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = GAUDI2_EVENT_HDMA0_QM, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = GAUDI2_EVENT_HDMA1_QM, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = GAUDI2_EVENT_HDMA1_QM, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = GAUDI2_EVENT_HDMA1_QM, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = GAUDI2_EVENT_HDMA1_QM, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = GAUDI2_EVENT_MME0_QM, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = GAUDI2_EVENT_MME0_QM, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = GAUDI2_EVENT_MME0_QM, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = GAUDI2_EVENT_MME0_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = GAUDI2_EVENT_TPC0_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = GAUDI2_EVENT_TPC0_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = GAUDI2_EVENT_TPC0_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = GAUDI2_EVENT_TPC0_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = GAUDI2_EVENT_TPC1_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = GAUDI2_EVENT_TPC1_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = GAUDI2_EVENT_TPC1_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = GAUDI2_EVENT_TPC1_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = GAUDI2_EVENT_TPC2_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = GAUDI2_EVENT_TPC2_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = GAUDI2_EVENT_TPC2_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = GAUDI2_EVENT_TPC2_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = GAUDI2_EVENT_TPC3_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = GAUDI2_EVENT_TPC3_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = GAUDI2_EVENT_TPC3_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = GAUDI2_EVENT_TPC3_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = GAUDI2_EVENT_TPC4_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = GAUDI2_EVENT_TPC4_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = GAUDI2_EVENT_TPC4_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = GAUDI2_EVENT_TPC4_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = GAUDI2_EVENT_TPC5_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = GAUDI2_EVENT_TPC5_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = GAUDI2_EVENT_TPC5_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = GAUDI2_EVENT_TPC5_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = GAUDI2_EVENT_TPC24_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = GAUDI2_EVENT_TPC24_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = GAUDI2_EVENT_TPC24_QM, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = GAUDI2_EVENT_TPC24_QM, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = GAUDI2_EVENT_HDMA2_QM, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = GAUDI2_EVENT_HDMA2_QM, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = GAUDI2_EVENT_HDMA2_QM, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = GAUDI2_EVENT_HDMA2_QM, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = GAUDI2_EVENT_HDMA3_QM, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = GAUDI2_EVENT_HDMA3_QM, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = GAUDI2_EVENT_HDMA3_QM, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = GAUDI2_EVENT_HDMA3_QM, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = GAUDI2_EVENT_MME1_QM, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = GAUDI2_EVENT_MME1_QM, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = GAUDI2_EVENT_MME1_QM, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = GAUDI2_EVENT_MME1_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = GAUDI2_EVENT_TPC6_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = GAUDI2_EVENT_TPC6_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = GAUDI2_EVENT_TPC6_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = GAUDI2_EVENT_TPC6_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = GAUDI2_EVENT_TPC7_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = GAUDI2_EVENT_TPC7_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = GAUDI2_EVENT_TPC7_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = GAUDI2_EVENT_TPC7_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = GAUDI2_EVENT_TPC8_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = GAUDI2_EVENT_TPC8_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = GAUDI2_EVENT_TPC8_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = GAUDI2_EVENT_TPC8_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = GAUDI2_EVENT_TPC9_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = GAUDI2_EVENT_TPC9_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = GAUDI2_EVENT_TPC9_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = GAUDI2_EVENT_TPC9_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = GAUDI2_EVENT_TPC10_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = GAUDI2_EVENT_TPC10_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = GAUDI2_EVENT_TPC10_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = GAUDI2_EVENT_TPC10_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = GAUDI2_EVENT_TPC11_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = GAUDI2_EVENT_TPC11_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = GAUDI2_EVENT_TPC11_QM, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = GAUDI2_EVENT_TPC11_QM, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = GAUDI2_EVENT_HDMA4_QM, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = GAUDI2_EVENT_HDMA4_QM, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = GAUDI2_EVENT_HDMA4_QM, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = GAUDI2_EVENT_HDMA4_QM, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = GAUDI2_EVENT_HDMA5_QM, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = GAUDI2_EVENT_HDMA5_QM, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = GAUDI2_EVENT_HDMA5_QM, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = GAUDI2_EVENT_HDMA5_QM, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = GAUDI2_EVENT_MME2_QM, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = GAUDI2_EVENT_MME2_QM, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = GAUDI2_EVENT_MME2_QM, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = GAUDI2_EVENT_MME2_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = GAUDI2_EVENT_TPC12_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = GAUDI2_EVENT_TPC12_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = GAUDI2_EVENT_TPC12_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = GAUDI2_EVENT_TPC12_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = GAUDI2_EVENT_TPC13_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = GAUDI2_EVENT_TPC13_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = GAUDI2_EVENT_TPC13_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = GAUDI2_EVENT_TPC13_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = GAUDI2_EVENT_TPC14_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = GAUDI2_EVENT_TPC14_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = GAUDI2_EVENT_TPC14_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = GAUDI2_EVENT_TPC14_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = GAUDI2_EVENT_TPC15_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = GAUDI2_EVENT_TPC15_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = GAUDI2_EVENT_TPC15_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = GAUDI2_EVENT_TPC15_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = GAUDI2_EVENT_TPC16_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = GAUDI2_EVENT_TPC16_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = GAUDI2_EVENT_TPC16_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = GAUDI2_EVENT_TPC16_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = GAUDI2_EVENT_TPC17_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = GAUDI2_EVENT_TPC17_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = GAUDI2_EVENT_TPC17_QM, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = GAUDI2_EVENT_TPC17_QM, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = GAUDI2_EVENT_HDMA6_QM, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = GAUDI2_EVENT_HDMA6_QM, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = GAUDI2_EVENT_HDMA6_QM, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = GAUDI2_EVENT_HDMA6_QM, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = GAUDI2_EVENT_HDMA7_QM, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = GAUDI2_EVENT_HDMA7_QM, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = GAUDI2_EVENT_HDMA7_QM, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = GAUDI2_EVENT_HDMA7_QM, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = GAUDI2_EVENT_MME3_QM, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = GAUDI2_EVENT_MME3_QM, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = GAUDI2_EVENT_MME3_QM, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = GAUDI2_EVENT_MME3_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = GAUDI2_EVENT_TPC18_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = GAUDI2_EVENT_TPC18_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = GAUDI2_EVENT_TPC18_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = GAUDI2_EVENT_TPC18_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = GAUDI2_EVENT_TPC19_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = GAUDI2_EVENT_TPC19_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = GAUDI2_EVENT_TPC19_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = GAUDI2_EVENT_TPC19_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = GAUDI2_EVENT_TPC20_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = GAUDI2_EVENT_TPC20_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = GAUDI2_EVENT_TPC20_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = GAUDI2_EVENT_TPC20_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = GAUDI2_EVENT_TPC21_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = GAUDI2_EVENT_TPC21_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = GAUDI2_EVENT_TPC21_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = GAUDI2_EVENT_TPC21_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = GAUDI2_EVENT_TPC22_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = GAUDI2_EVENT_TPC22_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = GAUDI2_EVENT_TPC22_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = GAUDI2_EVENT_TPC22_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = GAUDI2_EVENT_TPC23_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = GAUDI2_EVENT_TPC23_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = GAUDI2_EVENT_TPC23_QM, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = GAUDI2_EVENT_TPC23_QM, + [GAUDI2_QUEUE_ID_NIC_0_0] = GAUDI2_EVENT_NIC0_QM0, + [GAUDI2_QUEUE_ID_NIC_0_1] = GAUDI2_EVENT_NIC0_QM0, + [GAUDI2_QUEUE_ID_NIC_0_2] = GAUDI2_EVENT_NIC0_QM0, + [GAUDI2_QUEUE_ID_NIC_0_3] = GAUDI2_EVENT_NIC0_QM0, + [GAUDI2_QUEUE_ID_NIC_1_0] = GAUDI2_EVENT_NIC0_QM1, + [GAUDI2_QUEUE_ID_NIC_1_1] = GAUDI2_EVENT_NIC0_QM1, + [GAUDI2_QUEUE_ID_NIC_1_2] = GAUDI2_EVENT_NIC0_QM1, + [GAUDI2_QUEUE_ID_NIC_1_3] = GAUDI2_EVENT_NIC0_QM1, + [GAUDI2_QUEUE_ID_NIC_2_0] = GAUDI2_EVENT_NIC1_QM0, + [GAUDI2_QUEUE_ID_NIC_2_1] = GAUDI2_EVENT_NIC1_QM0, + [GAUDI2_QUEUE_ID_NIC_2_2] = GAUDI2_EVENT_NIC1_QM0, + [GAUDI2_QUEUE_ID_NIC_2_3] = GAUDI2_EVENT_NIC1_QM0, + [GAUDI2_QUEUE_ID_NIC_3_0] = GAUDI2_EVENT_NIC1_QM1, + [GAUDI2_QUEUE_ID_NIC_3_1] = GAUDI2_EVENT_NIC1_QM1, + [GAUDI2_QUEUE_ID_NIC_3_2] = GAUDI2_EVENT_NIC1_QM1, + [GAUDI2_QUEUE_ID_NIC_3_3] = GAUDI2_EVENT_NIC1_QM1, + [GAUDI2_QUEUE_ID_NIC_4_0] = GAUDI2_EVENT_NIC2_QM0, + [GAUDI2_QUEUE_ID_NIC_4_1] = GAUDI2_EVENT_NIC2_QM0, + [GAUDI2_QUEUE_ID_NIC_4_2] = GAUDI2_EVENT_NIC2_QM0, + [GAUDI2_QUEUE_ID_NIC_4_3] = GAUDI2_EVENT_NIC2_QM0, + [GAUDI2_QUEUE_ID_NIC_5_0] = GAUDI2_EVENT_NIC2_QM1, + [GAUDI2_QUEUE_ID_NIC_5_1] = GAUDI2_EVENT_NIC2_QM1, + [GAUDI2_QUEUE_ID_NIC_5_2] = GAUDI2_EVENT_NIC2_QM1, + [GAUDI2_QUEUE_ID_NIC_5_3] = GAUDI2_EVENT_NIC2_QM1, + [GAUDI2_QUEUE_ID_NIC_6_0] = GAUDI2_EVENT_NIC3_QM0, + [GAUDI2_QUEUE_ID_NIC_6_1] = GAUDI2_EVENT_NIC3_QM0, + [GAUDI2_QUEUE_ID_NIC_6_2] = GAUDI2_EVENT_NIC3_QM0, + [GAUDI2_QUEUE_ID_NIC_6_3] = GAUDI2_EVENT_NIC3_QM0, + [GAUDI2_QUEUE_ID_NIC_7_0] = GAUDI2_EVENT_NIC3_QM1, + [GAUDI2_QUEUE_ID_NIC_7_1] = GAUDI2_EVENT_NIC3_QM1, + [GAUDI2_QUEUE_ID_NIC_7_2] = GAUDI2_EVENT_NIC3_QM1, + [GAUDI2_QUEUE_ID_NIC_7_3] = GAUDI2_EVENT_NIC3_QM1, + [GAUDI2_QUEUE_ID_NIC_8_0] = GAUDI2_EVENT_NIC4_QM0, + [GAUDI2_QUEUE_ID_NIC_8_1] = GAUDI2_EVENT_NIC4_QM0, + [GAUDI2_QUEUE_ID_NIC_8_2] = GAUDI2_EVENT_NIC4_QM0, + [GAUDI2_QUEUE_ID_NIC_8_3] = GAUDI2_EVENT_NIC4_QM0, + [GAUDI2_QUEUE_ID_NIC_9_0] = GAUDI2_EVENT_NIC4_QM1, + [GAUDI2_QUEUE_ID_NIC_9_1] = GAUDI2_EVENT_NIC4_QM1, + [GAUDI2_QUEUE_ID_NIC_9_2] = GAUDI2_EVENT_NIC4_QM1, + [GAUDI2_QUEUE_ID_NIC_9_3] = GAUDI2_EVENT_NIC4_QM1, + [GAUDI2_QUEUE_ID_NIC_10_0] = GAUDI2_EVENT_NIC5_QM0, + [GAUDI2_QUEUE_ID_NIC_10_1] = GAUDI2_EVENT_NIC5_QM0, + [GAUDI2_QUEUE_ID_NIC_10_2] = GAUDI2_EVENT_NIC5_QM0, + [GAUDI2_QUEUE_ID_NIC_10_3] = GAUDI2_EVENT_NIC5_QM0, + [GAUDI2_QUEUE_ID_NIC_11_0] = GAUDI2_EVENT_NIC5_QM1, + [GAUDI2_QUEUE_ID_NIC_11_1] = GAUDI2_EVENT_NIC5_QM1, + [GAUDI2_QUEUE_ID_NIC_11_2] = GAUDI2_EVENT_NIC5_QM1, + [GAUDI2_QUEUE_ID_NIC_11_3] = GAUDI2_EVENT_NIC5_QM1, + [GAUDI2_QUEUE_ID_NIC_12_0] = GAUDI2_EVENT_NIC6_QM0, + [GAUDI2_QUEUE_ID_NIC_12_1] = GAUDI2_EVENT_NIC6_QM0, + [GAUDI2_QUEUE_ID_NIC_12_2] = GAUDI2_EVENT_NIC6_QM0, + [GAUDI2_QUEUE_ID_NIC_12_3] = GAUDI2_EVENT_NIC6_QM0, + [GAUDI2_QUEUE_ID_NIC_13_0] = GAUDI2_EVENT_NIC6_QM1, + [GAUDI2_QUEUE_ID_NIC_13_1] = GAUDI2_EVENT_NIC6_QM1, + [GAUDI2_QUEUE_ID_NIC_13_2] = GAUDI2_EVENT_NIC6_QM1, + [GAUDI2_QUEUE_ID_NIC_13_3] = GAUDI2_EVENT_NIC6_QM1, + [GAUDI2_QUEUE_ID_NIC_14_0] = GAUDI2_EVENT_NIC7_QM0, + [GAUDI2_QUEUE_ID_NIC_14_1] = GAUDI2_EVENT_NIC7_QM0, + [GAUDI2_QUEUE_ID_NIC_14_2] = GAUDI2_EVENT_NIC7_QM0, + [GAUDI2_QUEUE_ID_NIC_14_3] = GAUDI2_EVENT_NIC7_QM0, + [GAUDI2_QUEUE_ID_NIC_15_0] = GAUDI2_EVENT_NIC7_QM1, + [GAUDI2_QUEUE_ID_NIC_15_1] = GAUDI2_EVENT_NIC7_QM1, + [GAUDI2_QUEUE_ID_NIC_15_2] = GAUDI2_EVENT_NIC7_QM1, + [GAUDI2_QUEUE_ID_NIC_15_3] = GAUDI2_EVENT_NIC7_QM1, + [GAUDI2_QUEUE_ID_NIC_16_0] = GAUDI2_EVENT_NIC8_QM0, + [GAUDI2_QUEUE_ID_NIC_16_1] = GAUDI2_EVENT_NIC8_QM0, + [GAUDI2_QUEUE_ID_NIC_16_2] = GAUDI2_EVENT_NIC8_QM0, + [GAUDI2_QUEUE_ID_NIC_16_3] = GAUDI2_EVENT_NIC8_QM0, + [GAUDI2_QUEUE_ID_NIC_17_0] = GAUDI2_EVENT_NIC8_QM1, + [GAUDI2_QUEUE_ID_NIC_17_1] = GAUDI2_EVENT_NIC8_QM1, + [GAUDI2_QUEUE_ID_NIC_17_2] = GAUDI2_EVENT_NIC8_QM1, + [GAUDI2_QUEUE_ID_NIC_17_3] = GAUDI2_EVENT_NIC8_QM1, + [GAUDI2_QUEUE_ID_NIC_18_0] = GAUDI2_EVENT_NIC9_QM0, + [GAUDI2_QUEUE_ID_NIC_18_1] = GAUDI2_EVENT_NIC9_QM0, + [GAUDI2_QUEUE_ID_NIC_18_2] = GAUDI2_EVENT_NIC9_QM0, + [GAUDI2_QUEUE_ID_NIC_18_3] = GAUDI2_EVENT_NIC9_QM0, + [GAUDI2_QUEUE_ID_NIC_19_0] = GAUDI2_EVENT_NIC9_QM1, + [GAUDI2_QUEUE_ID_NIC_19_1] = GAUDI2_EVENT_NIC9_QM1, + [GAUDI2_QUEUE_ID_NIC_19_2] = GAUDI2_EVENT_NIC9_QM1, + [GAUDI2_QUEUE_ID_NIC_19_3] = GAUDI2_EVENT_NIC9_QM1, + [GAUDI2_QUEUE_ID_NIC_20_0] = GAUDI2_EVENT_NIC10_QM0, + [GAUDI2_QUEUE_ID_NIC_20_1] = GAUDI2_EVENT_NIC10_QM0, + [GAUDI2_QUEUE_ID_NIC_20_2] = GAUDI2_EVENT_NIC10_QM0, + [GAUDI2_QUEUE_ID_NIC_20_3] = GAUDI2_EVENT_NIC10_QM0, + [GAUDI2_QUEUE_ID_NIC_21_0] = GAUDI2_EVENT_NIC10_QM1, + [GAUDI2_QUEUE_ID_NIC_21_1] = GAUDI2_EVENT_NIC10_QM1, + [GAUDI2_QUEUE_ID_NIC_21_2] = GAUDI2_EVENT_NIC10_QM1, + [GAUDI2_QUEUE_ID_NIC_21_3] = GAUDI2_EVENT_NIC10_QM1, + [GAUDI2_QUEUE_ID_NIC_22_0] = GAUDI2_EVENT_NIC11_QM0, + [GAUDI2_QUEUE_ID_NIC_22_1] = GAUDI2_EVENT_NIC11_QM0, + [GAUDI2_QUEUE_ID_NIC_22_2] = GAUDI2_EVENT_NIC11_QM0, + [GAUDI2_QUEUE_ID_NIC_22_3] = GAUDI2_EVENT_NIC11_QM0, + [GAUDI2_QUEUE_ID_NIC_23_0] = GAUDI2_EVENT_NIC11_QM1, + [GAUDI2_QUEUE_ID_NIC_23_1] = GAUDI2_EVENT_NIC11_QM1, + [GAUDI2_QUEUE_ID_NIC_23_2] = GAUDI2_EVENT_NIC11_QM1, + [GAUDI2_QUEUE_ID_NIC_23_3] = GAUDI2_EVENT_NIC11_QM1, + [GAUDI2_QUEUE_ID_ROT_0_0] = GAUDI2_EVENT_ROTATOR0_ROT0_QM, + [GAUDI2_QUEUE_ID_ROT_0_1] = GAUDI2_EVENT_ROTATOR0_ROT0_QM, + [GAUDI2_QUEUE_ID_ROT_0_2] = GAUDI2_EVENT_ROTATOR0_ROT0_QM, + [GAUDI2_QUEUE_ID_ROT_0_3] = GAUDI2_EVENT_ROTATOR0_ROT0_QM, + [GAUDI2_QUEUE_ID_ROT_1_0] = GAUDI2_EVENT_ROTATOR1_ROT1_QM, + [GAUDI2_QUEUE_ID_ROT_1_1] = GAUDI2_EVENT_ROTATOR1_ROT1_QM, + [GAUDI2_QUEUE_ID_ROT_1_2] = GAUDI2_EVENT_ROTATOR1_ROT1_QM, + [GAUDI2_QUEUE_ID_ROT_1_3] = GAUDI2_EVENT_ROTATOR1_ROT1_QM +}; + +static const int gaudi2_dma_core_async_event_id[] = { + [DMA_CORE_ID_EDMA0] = GAUDI2_EVENT_HDMA0_CORE, + [DMA_CORE_ID_EDMA1] = GAUDI2_EVENT_HDMA1_CORE, + [DMA_CORE_ID_EDMA2] = GAUDI2_EVENT_HDMA2_CORE, + [DMA_CORE_ID_EDMA3] = GAUDI2_EVENT_HDMA3_CORE, + [DMA_CORE_ID_EDMA4] = GAUDI2_EVENT_HDMA4_CORE, + [DMA_CORE_ID_EDMA5] = GAUDI2_EVENT_HDMA5_CORE, + [DMA_CORE_ID_EDMA6] = GAUDI2_EVENT_HDMA6_CORE, + [DMA_CORE_ID_EDMA7] = GAUDI2_EVENT_HDMA7_CORE, + [DMA_CORE_ID_PDMA0] = GAUDI2_EVENT_PDMA0_CORE, + [DMA_CORE_ID_PDMA1] = GAUDI2_EVENT_PDMA1_CORE, + [DMA_CORE_ID_KDMA] = GAUDI2_EVENT_KDMA0_CORE, +}; + +static const char * const gaudi2_qm_sei_error_cause[GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE] = { + "qman sei intr", + "arc sei intr" +}; + +static const char * const gaudi2_cpu_sei_error_cause[GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE] = { + "AXI_TERMINATOR WR", + "AXI_TERMINATOR RD", + "AXI SPLIT SEI Status" +}; + +static const char * const gaudi2_arc_sei_error_cause[GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE] = { + "cbu_bresp_sei_intr_cause", + "cbu_rresp_sei_intr_cause", + "lbu_bresp_sei_intr_cause", + "lbu_rresp_sei_intr_cause", + "cbu_axi_split_intr_cause", + "lbu_axi_split_intr_cause", + "arc_ip_excptn_sei_intr_cause", + "dmi_bresp_sei_intr_cause", + "aux2apb_err_sei_intr_cause", + "cfg_lbw_wr_terminated_intr_cause", + "cfg_lbw_rd_terminated_intr_cause", + "cfg_dccm_wr_terminated_intr_cause", + "cfg_dccm_rd_terminated_intr_cause", + "cfg_hbw_rd_terminated_intr_cause" +}; + +static const char * const gaudi2_dec_error_cause[GAUDI2_NUM_OF_DEC_ERR_CAUSE] = { + "msix_vcd_hbw_sei", + "msix_l2c_hbw_sei", + "msix_nrm_hbw_sei", + "msix_abnrm_hbw_sei", + "msix_vcd_lbw_sei", + "msix_l2c_lbw_sei", + "msix_nrm_lbw_sei", + "msix_abnrm_lbw_sei", + "apb_vcd_lbw_sei", + "apb_l2c_lbw_sei", + "apb_nrm_lbw_sei", + "apb_abnrm_lbw_sei", + "dec_sei", + "dec_apb_sei", + "trc_apb_sei", + "lbw_mstr_if_sei", + "axi_split_bresp_err_sei", + "hbw_axi_wr_viol_sei", + "hbw_axi_rd_viol_sei", + "lbw_axi_wr_viol_sei", + "lbw_axi_rd_viol_sei", + "vcd_spi", + "l2c_spi", + "nrm_spi", + "abnrm_spi", +}; + +static const char * const gaudi2_qman_error_cause[GAUDI2_NUM_OF_QM_ERR_CAUSE] = { + "PQ AXI HBW error", + "CQ AXI HBW error", + "CP AXI HBW error", + "CP error due to undefined OPCODE", + "CP encountered STOP OPCODE", + "CP AXI LBW error", + "CP WRREG32 or WRBULK returned error", + "N/A", + "FENCE 0 inc over max value and clipped", + "FENCE 1 inc over max value and clipped", + "FENCE 2 inc over max value and clipped", + "FENCE 3 inc over max value and clipped", + "FENCE 0 dec under min value and clipped", + "FENCE 1 dec under min value and clipped", + "FENCE 2 dec under min value and clipped", + "FENCE 3 dec under min value and clipped", + "CPDMA Up overflow", + "PQC L2H error" +}; + +static const char * const gaudi2_qman_lower_cp_error_cause[GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE] = { + "RSVD0", + "CQ AXI HBW error", + "CP AXI HBW error", + "CP error due to undefined OPCODE", + "CP encountered STOP OPCODE", + "CP AXI LBW error", + "CP WRREG32 or WRBULK returned error", + "N/A", + "FENCE 0 inc over max value and clipped", + "FENCE 1 inc over max value and clipped", + "FENCE 2 inc over max value and clipped", + "FENCE 3 inc over max value and clipped", + "FENCE 0 dec under min value and clipped", + "FENCE 1 dec under min value and clipped", + "FENCE 2 dec under min value and clipped", + "FENCE 3 dec under min value and clipped", + "CPDMA Up overflow", + "RSVD17", + "CQ_WR_IFIFO_CI_ERR", + "CQ_WR_CTL_CI_ERR", + "ARC_CQF_RD_ERR", + "ARC_CQ_WR_IFIFO_CI_ERR", + "ARC_CQ_WR_CTL_CI_ERR", + "ARC_AXI_ERR", + "CP_SWITCH_WDT_ERR" +}; + +static const char * const gaudi2_qman_arb_error_cause[GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE] = { + "Choice push while full error", + "Choice Q watchdog error", + "MSG AXI LBW returned with error" +}; + +static const char * const guadi2_rot_error_cause[GAUDI2_NUM_OF_ROT_ERR_CAUSE] = { + "qm_axi_err", + "qm_trace_fence_events", + "qm_sw_err", + "qm_cp_sw_stop", + "lbw_mstr_rresp_err", + "lbw_mstr_bresp_err", + "lbw_msg_slverr", + "hbw_msg_slverr", + "wbc_slverr", + "hbw_mstr_rresp_err", + "hbw_mstr_bresp_err", + "sb_resp_intr", + "mrsb_resp_intr", + "core_dw_status_0", + "core_dw_status_1", + "core_dw_status_2", + "core_dw_status_3", + "core_dw_status_4", + "core_dw_status_5", + "core_dw_status_6", + "core_dw_status_7", + "async_arc2cpu_sei_intr", +}; + +static const char * const gaudi2_tpc_interrupts_cause[GAUDI2_NUM_OF_TPC_INTR_CAUSE] = { + "tpc_address_exceed_slm", + "tpc_div_by_0", + "tpc_spu_mac_overflow", + "tpc_spu_addsub_overflow", + "tpc_spu_abs_overflow", + "tpc_spu_fma_fp_dst_nan", + "tpc_spu_fma_fp_dst_inf", + "tpc_spu_convert_fp_dst_nan", + "tpc_spu_convert_fp_dst_inf", + "tpc_spu_fp_dst_denorm", + "tpc_vpu_mac_overflow", + "tpc_vpu_addsub_overflow", + "tpc_vpu_abs_overflow", + "tpc_vpu_convert_fp_dst_nan", + "tpc_vpu_convert_fp_dst_inf", + "tpc_vpu_fma_fp_dst_nan", + "tpc_vpu_fma_fp_dst_inf", + "tpc_vpu_fp_dst_denorm", + "tpc_assertions", + "tpc_illegal_instruction", + "tpc_pc_wrap_around", + "tpc_qm_sw_err", + "tpc_hbw_rresp_err", + "tpc_hbw_bresp_err", + "tpc_lbw_rresp_err", + "tpc_lbw_bresp_err", + "st_unlock_already_locked", + "invalid_lock_access", + "LD_L protection violation", + "ST_L protection violation", +}; + +static const char * const guadi2_mme_error_cause[GAUDI2_NUM_OF_MME_ERR_CAUSE] = { + "agu_resp_intr", + "qman_axi_err", + "wap sei (wbc axi err)", + "arc sei", + "cfg access error", + "qm_sw_err", + "sbte_dbg_intr_0", + "sbte_dbg_intr_1", + "sbte_dbg_intr_2", + "sbte_dbg_intr_3", + "sbte_dbg_intr_4", + "sbte_prtn_intr_0", + "sbte_prtn_intr_1", + "sbte_prtn_intr_2", + "sbte_prtn_intr_3", + "sbte_prtn_intr_4", +}; + +static const char * const guadi2_mme_sbte_error_cause[GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE] = { + "i0", + "i1", + "i2", + "i3", + "i4", +}; + +static const char * const guadi2_mme_wap_error_cause[GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE] = { + "WBC ERR RESP_0", + "WBC ERR RESP_1", + "AP SOURCE POS INF", + "AP SOURCE NEG INF", + "AP SOURCE NAN", + "AP RESULT POS INF", + "AP RESULT NEG INF", +}; + +static const char * const gaudi2_dma_core_interrupts_cause[GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE] = { + "HBW Read returned with error RRESP", + "HBW write returned with error BRESP", + "LBW write returned with error BRESP", + "descriptor_fifo_overflow", + "KDMA SB LBW Read returned with error", + "KDMA WBC LBW Write returned with error", + "TRANSPOSE ENGINE DESC FIFO OVERFLOW", + "WRONG CFG FOR COMMIT IN LIN DMA" +}; + +static const char * const gaudi2_kdma_core_interrupts_cause[GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE] = { + "HBW/LBW Read returned with error RRESP", + "HBW/LBW write returned with error BRESP", + "LBW write returned with error BRESP", + "descriptor_fifo_overflow", + "KDMA SB LBW Read returned with error", + "KDMA WBC LBW Write returned with error", + "TRANSPOSE ENGINE DESC FIFO OVERFLOW", + "WRONG CFG FOR COMMIT IN LIN DMA" +}; + +struct gaudi2_sm_sei_cause_data { + const char *cause_name; + const char *log_name; + u32 log_mask; +}; + +static const struct gaudi2_sm_sei_cause_data +gaudi2_sm_sei_cause[GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE] = { + {"calculated SO value overflow/underflow", "SOB group ID", 0x7FF}, + {"payload address of monitor is not aligned to 4B", "monitor addr", 0xFFFF}, + {"armed monitor write got BRESP (SLVERR or DECERR)", "AXI id", 0xFFFF}, +}; + +static const char * const +gaudi2_pmmu_fatal_interrupts_cause[GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE] = { + "LATENCY_RD_OUT_FIFO_OVERRUN", + "LATENCY_WR_OUT_FIFO_OVERRUN", +}; + +static const char * const +gaudi2_hif_fatal_interrupts_cause[GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE] = { + "LATENCY_RD_OUT_FIFO_OVERRUN", + "LATENCY_WR_OUT_FIFO_OVERRUN", +}; + +static const char * const +gaudi2_psoc_axi_drain_interrupts_cause[GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE] = { + "AXI drain HBW", + "AXI drain LBW", +}; + +static const char * const +gaudi2_pcie_addr_dec_error_cause[GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE] = { + "HBW error response", + "LBW error response", + "TLP is blocked by RR" +}; + +const u32 gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_SIZE] = { + [GAUDI2_QUEUE_ID_PDMA_0_0] = mmPDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_PDMA_0_1] = mmPDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_PDMA_0_2] = mmPDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_PDMA_0_3] = mmPDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_PDMA_1_0] = mmPDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_PDMA_1_1] = mmPDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_PDMA_1_2] = mmPDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_PDMA_1_3] = mmPDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = mmDCORE0_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = mmDCORE0_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = mmDCORE0_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = mmDCORE0_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = mmDCORE0_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = mmDCORE0_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = mmDCORE0_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = mmDCORE0_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = mmDCORE0_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = mmDCORE0_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = mmDCORE0_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = mmDCORE0_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = mmDCORE0_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = mmDCORE0_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = mmDCORE0_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = mmDCORE0_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = mmDCORE0_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = mmDCORE0_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = mmDCORE0_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = mmDCORE0_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = mmDCORE0_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = mmDCORE0_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = mmDCORE0_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = mmDCORE0_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = mmDCORE0_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = mmDCORE0_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = mmDCORE0_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = mmDCORE0_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = mmDCORE0_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = mmDCORE0_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = mmDCORE0_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = mmDCORE0_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = mmDCORE0_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = mmDCORE0_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = mmDCORE0_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = mmDCORE0_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = mmDCORE0_TPC6_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = mmDCORE0_TPC6_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = mmDCORE0_TPC6_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = mmDCORE0_TPC6_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = mmDCORE1_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = mmDCORE1_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = mmDCORE1_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = mmDCORE1_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = mmDCORE1_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = mmDCORE1_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = mmDCORE1_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = mmDCORE1_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = mmDCORE1_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = mmDCORE1_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = mmDCORE1_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = mmDCORE1_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = mmDCORE1_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = mmDCORE1_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = mmDCORE1_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = mmDCORE1_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = mmDCORE1_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = mmDCORE1_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = mmDCORE1_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = mmDCORE1_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = mmDCORE1_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = mmDCORE1_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = mmDCORE1_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = mmDCORE1_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = mmDCORE1_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = mmDCORE1_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = mmDCORE1_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = mmDCORE1_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = mmDCORE1_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = mmDCORE1_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = mmDCORE1_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = mmDCORE1_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = mmDCORE1_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = mmDCORE1_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = mmDCORE1_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = mmDCORE1_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = mmDCORE2_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = mmDCORE2_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = mmDCORE2_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = mmDCORE2_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = mmDCORE2_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = mmDCORE2_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = mmDCORE2_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = mmDCORE2_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = mmDCORE2_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = mmDCORE2_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = mmDCORE2_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = mmDCORE2_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = mmDCORE2_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = mmDCORE2_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = mmDCORE2_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = mmDCORE2_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = mmDCORE2_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = mmDCORE2_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = mmDCORE2_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = mmDCORE2_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = mmDCORE2_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = mmDCORE2_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = mmDCORE2_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = mmDCORE2_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = mmDCORE2_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = mmDCORE2_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = mmDCORE2_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = mmDCORE2_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = mmDCORE2_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = mmDCORE2_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = mmDCORE2_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = mmDCORE2_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = mmDCORE2_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = mmDCORE2_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = mmDCORE2_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = mmDCORE2_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = mmDCORE3_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = mmDCORE3_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = mmDCORE3_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = mmDCORE3_EDMA0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = mmDCORE3_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = mmDCORE3_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = mmDCORE3_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = mmDCORE3_EDMA1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = mmDCORE3_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = mmDCORE3_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = mmDCORE3_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = mmDCORE3_MME_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = mmDCORE3_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = mmDCORE3_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = mmDCORE3_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = mmDCORE3_TPC0_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = mmDCORE3_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = mmDCORE3_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = mmDCORE3_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = mmDCORE3_TPC1_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = mmDCORE3_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = mmDCORE3_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = mmDCORE3_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = mmDCORE3_TPC2_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = mmDCORE3_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = mmDCORE3_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = mmDCORE3_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = mmDCORE3_TPC3_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = mmDCORE3_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = mmDCORE3_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = mmDCORE3_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = mmDCORE3_TPC4_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = mmDCORE3_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = mmDCORE3_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = mmDCORE3_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = mmDCORE3_TPC5_QM_BASE, + [GAUDI2_QUEUE_ID_NIC_0_0] = mmNIC0_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_0_1] = mmNIC0_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_0_2] = mmNIC0_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_0_3] = mmNIC0_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_1_0] = mmNIC0_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_1_1] = mmNIC0_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_1_2] = mmNIC0_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_1_3] = mmNIC0_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_2_0] = mmNIC1_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_2_1] = mmNIC1_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_2_2] = mmNIC1_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_2_3] = mmNIC1_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_3_0] = mmNIC1_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_3_1] = mmNIC1_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_3_2] = mmNIC1_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_3_3] = mmNIC1_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_4_0] = mmNIC2_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_4_1] = mmNIC2_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_4_2] = mmNIC2_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_4_3] = mmNIC2_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_5_0] = mmNIC2_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_5_1] = mmNIC2_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_5_2] = mmNIC2_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_5_3] = mmNIC2_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_6_0] = mmNIC3_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_6_1] = mmNIC3_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_6_2] = mmNIC3_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_6_3] = mmNIC3_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_7_0] = mmNIC3_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_7_1] = mmNIC3_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_7_2] = mmNIC3_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_7_3] = mmNIC3_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_8_0] = mmNIC4_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_8_1] = mmNIC4_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_8_2] = mmNIC4_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_8_3] = mmNIC4_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_9_0] = mmNIC4_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_9_1] = mmNIC4_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_9_2] = mmNIC4_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_9_3] = mmNIC4_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_10_0] = mmNIC5_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_10_1] = mmNIC5_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_10_2] = mmNIC5_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_10_3] = mmNIC5_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_11_0] = mmNIC5_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_11_1] = mmNIC5_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_11_2] = mmNIC5_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_11_3] = mmNIC5_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_12_0] = mmNIC6_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_12_1] = mmNIC6_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_12_2] = mmNIC6_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_12_3] = mmNIC6_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_13_0] = mmNIC6_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_13_1] = mmNIC6_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_13_2] = mmNIC6_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_13_3] = mmNIC6_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_14_0] = mmNIC7_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_14_1] = mmNIC7_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_14_2] = mmNIC7_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_14_3] = mmNIC7_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_15_0] = mmNIC7_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_15_1] = mmNIC7_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_15_2] = mmNIC7_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_15_3] = mmNIC7_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_16_0] = mmNIC8_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_16_1] = mmNIC8_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_16_2] = mmNIC8_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_16_3] = mmNIC8_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_17_0] = mmNIC8_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_17_1] = mmNIC8_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_17_2] = mmNIC8_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_17_3] = mmNIC8_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_18_0] = mmNIC9_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_18_1] = mmNIC9_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_18_2] = mmNIC9_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_18_3] = mmNIC9_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_19_0] = mmNIC9_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_19_1] = mmNIC9_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_19_2] = mmNIC9_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_19_3] = mmNIC9_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_20_0] = mmNIC10_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_20_1] = mmNIC10_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_20_2] = mmNIC10_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_20_3] = mmNIC10_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_21_0] = mmNIC10_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_21_1] = mmNIC10_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_21_2] = mmNIC10_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_21_3] = mmNIC10_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_22_0] = mmNIC11_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_22_1] = mmNIC11_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_22_2] = mmNIC11_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_22_3] = mmNIC11_QM0_BASE, + [GAUDI2_QUEUE_ID_NIC_23_0] = mmNIC11_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_23_1] = mmNIC11_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_23_2] = mmNIC11_QM1_BASE, + [GAUDI2_QUEUE_ID_NIC_23_3] = mmNIC11_QM1_BASE, + [GAUDI2_QUEUE_ID_ROT_0_0] = mmROT0_QM_BASE, + [GAUDI2_QUEUE_ID_ROT_0_1] = mmROT0_QM_BASE, + [GAUDI2_QUEUE_ID_ROT_0_2] = mmROT0_QM_BASE, + [GAUDI2_QUEUE_ID_ROT_0_3] = mmROT0_QM_BASE, + [GAUDI2_QUEUE_ID_ROT_1_0] = mmROT1_QM_BASE, + [GAUDI2_QUEUE_ID_ROT_1_1] = mmROT1_QM_BASE, + [GAUDI2_QUEUE_ID_ROT_1_2] = mmROT1_QM_BASE, + [GAUDI2_QUEUE_ID_ROT_1_3] = mmROT1_QM_BASE +}; + +static const u32 gaudi2_arc_blocks_bases[NUM_ARC_CPUS] = { + [CPU_ID_SCHED_ARC0] = mmARC_FARM_ARC0_AUX_BASE, + [CPU_ID_SCHED_ARC1] = mmARC_FARM_ARC1_AUX_BASE, + [CPU_ID_SCHED_ARC2] = mmARC_FARM_ARC2_AUX_BASE, + [CPU_ID_SCHED_ARC3] = mmARC_FARM_ARC3_AUX_BASE, + [CPU_ID_SCHED_ARC4] = mmDCORE1_MME_QM_ARC_AUX_BASE, + [CPU_ID_SCHED_ARC5] = mmDCORE3_MME_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC0] = mmDCORE0_TPC0_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC1] = mmDCORE0_TPC1_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC2] = mmDCORE0_TPC2_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC3] = mmDCORE0_TPC3_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC4] = mmDCORE0_TPC4_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC5] = mmDCORE0_TPC5_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC6] = mmDCORE1_TPC0_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC7] = mmDCORE1_TPC1_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC8] = mmDCORE1_TPC2_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC9] = mmDCORE1_TPC3_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC10] = mmDCORE1_TPC4_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC11] = mmDCORE1_TPC5_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC12] = mmDCORE2_TPC0_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC13] = mmDCORE2_TPC1_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC14] = mmDCORE2_TPC2_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC15] = mmDCORE2_TPC3_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC16] = mmDCORE2_TPC4_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC17] = mmDCORE2_TPC5_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC18] = mmDCORE3_TPC0_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC19] = mmDCORE3_TPC1_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC20] = mmDCORE3_TPC2_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC21] = mmDCORE3_TPC3_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC22] = mmDCORE3_TPC4_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC23] = mmDCORE3_TPC5_QM_ARC_AUX_BASE, + [CPU_ID_TPC_QMAN_ARC24] = mmDCORE0_TPC6_QM_ARC_AUX_BASE, + [CPU_ID_MME_QMAN_ARC0] = mmDCORE0_MME_QM_ARC_AUX_BASE, + [CPU_ID_MME_QMAN_ARC1] = mmDCORE2_MME_QM_ARC_AUX_BASE, + [CPU_ID_EDMA_QMAN_ARC0] = mmDCORE0_EDMA0_QM_ARC_AUX_BASE, + [CPU_ID_EDMA_QMAN_ARC1] = mmDCORE0_EDMA1_QM_ARC_AUX_BASE, + [CPU_ID_EDMA_QMAN_ARC2] = mmDCORE1_EDMA0_QM_ARC_AUX_BASE, + [CPU_ID_EDMA_QMAN_ARC3] = mmDCORE1_EDMA1_QM_ARC_AUX_BASE, + [CPU_ID_EDMA_QMAN_ARC4] = mmDCORE2_EDMA0_QM_ARC_AUX_BASE, + [CPU_ID_EDMA_QMAN_ARC5] = mmDCORE2_EDMA1_QM_ARC_AUX_BASE, + [CPU_ID_EDMA_QMAN_ARC6] = mmDCORE3_EDMA0_QM_ARC_AUX_BASE, + [CPU_ID_EDMA_QMAN_ARC7] = mmDCORE3_EDMA1_QM_ARC_AUX_BASE, + [CPU_ID_PDMA_QMAN_ARC0] = mmPDMA0_QM_ARC_AUX_BASE, + [CPU_ID_PDMA_QMAN_ARC1] = mmPDMA1_QM_ARC_AUX_BASE, + [CPU_ID_ROT_QMAN_ARC0] = mmROT0_QM_ARC_AUX_BASE, + [CPU_ID_ROT_QMAN_ARC1] = mmROT1_QM_ARC_AUX_BASE, + [CPU_ID_NIC_QMAN_ARC0] = mmNIC0_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC1] = mmNIC0_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC2] = mmNIC1_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC3] = mmNIC1_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC4] = mmNIC2_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC5] = mmNIC2_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC6] = mmNIC3_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC7] = mmNIC3_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC8] = mmNIC4_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC9] = mmNIC4_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC10] = mmNIC5_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC11] = mmNIC5_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC12] = mmNIC6_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC13] = mmNIC6_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC14] = mmNIC7_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC15] = mmNIC7_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC16] = mmNIC8_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC17] = mmNIC8_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC18] = mmNIC9_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC19] = mmNIC9_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC20] = mmNIC10_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC21] = mmNIC10_QM_ARC_AUX1_BASE, + [CPU_ID_NIC_QMAN_ARC22] = mmNIC11_QM_ARC_AUX0_BASE, + [CPU_ID_NIC_QMAN_ARC23] = mmNIC11_QM_ARC_AUX1_BASE, +}; + +static const u32 gaudi2_arc_dccm_bases[NUM_ARC_CPUS] = { + [CPU_ID_SCHED_ARC0] = mmARC_FARM_ARC0_DCCM0_BASE, + [CPU_ID_SCHED_ARC1] = mmARC_FARM_ARC1_DCCM0_BASE, + [CPU_ID_SCHED_ARC2] = mmARC_FARM_ARC2_DCCM0_BASE, + [CPU_ID_SCHED_ARC3] = mmARC_FARM_ARC3_DCCM0_BASE, + [CPU_ID_SCHED_ARC4] = mmDCORE1_MME_QM_ARC_DCCM_BASE, + [CPU_ID_SCHED_ARC5] = mmDCORE3_MME_QM_ARC_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC0] = mmDCORE0_TPC0_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC1] = mmDCORE0_TPC1_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC2] = mmDCORE0_TPC2_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC3] = mmDCORE0_TPC3_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC4] = mmDCORE0_TPC4_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC5] = mmDCORE0_TPC5_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC6] = mmDCORE1_TPC0_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC7] = mmDCORE1_TPC1_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC8] = mmDCORE1_TPC2_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC9] = mmDCORE1_TPC3_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC10] = mmDCORE1_TPC4_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC11] = mmDCORE1_TPC5_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC12] = mmDCORE2_TPC0_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC13] = mmDCORE2_TPC1_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC14] = mmDCORE2_TPC2_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC15] = mmDCORE2_TPC3_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC16] = mmDCORE2_TPC4_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC17] = mmDCORE2_TPC5_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC18] = mmDCORE3_TPC0_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC19] = mmDCORE3_TPC1_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC20] = mmDCORE3_TPC2_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC21] = mmDCORE3_TPC3_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC22] = mmDCORE3_TPC4_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC23] = mmDCORE3_TPC5_QM_DCCM_BASE, + [CPU_ID_TPC_QMAN_ARC24] = mmDCORE0_TPC6_QM_DCCM_BASE, + [CPU_ID_MME_QMAN_ARC0] = mmDCORE0_MME_QM_ARC_DCCM_BASE, + [CPU_ID_MME_QMAN_ARC1] = mmDCORE2_MME_QM_ARC_DCCM_BASE, + [CPU_ID_EDMA_QMAN_ARC0] = mmDCORE0_EDMA0_QM_DCCM_BASE, + [CPU_ID_EDMA_QMAN_ARC1] = mmDCORE0_EDMA1_QM_DCCM_BASE, + [CPU_ID_EDMA_QMAN_ARC2] = mmDCORE1_EDMA0_QM_DCCM_BASE, + [CPU_ID_EDMA_QMAN_ARC3] = mmDCORE1_EDMA1_QM_DCCM_BASE, + [CPU_ID_EDMA_QMAN_ARC4] = mmDCORE2_EDMA0_QM_DCCM_BASE, + [CPU_ID_EDMA_QMAN_ARC5] = mmDCORE2_EDMA1_QM_DCCM_BASE, + [CPU_ID_EDMA_QMAN_ARC6] = mmDCORE3_EDMA0_QM_DCCM_BASE, + [CPU_ID_EDMA_QMAN_ARC7] = mmDCORE3_EDMA1_QM_DCCM_BASE, + [CPU_ID_PDMA_QMAN_ARC0] = mmPDMA0_QM_ARC_DCCM_BASE, + [CPU_ID_PDMA_QMAN_ARC1] = mmPDMA1_QM_ARC_DCCM_BASE, + [CPU_ID_ROT_QMAN_ARC0] = mmROT0_QM_ARC_DCCM_BASE, + [CPU_ID_ROT_QMAN_ARC1] = mmROT1_QM_ARC_DCCM_BASE, + [CPU_ID_NIC_QMAN_ARC0] = mmNIC0_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC1] = mmNIC0_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC2] = mmNIC1_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC3] = mmNIC1_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC4] = mmNIC2_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC5] = mmNIC2_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC6] = mmNIC3_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC7] = mmNIC3_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC8] = mmNIC4_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC9] = mmNIC4_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC10] = mmNIC5_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC11] = mmNIC5_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC12] = mmNIC6_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC13] = mmNIC6_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC14] = mmNIC7_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC15] = mmNIC7_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC16] = mmNIC8_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC17] = mmNIC8_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC18] = mmNIC9_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC19] = mmNIC9_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC20] = mmNIC10_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC21] = mmNIC10_QM_DCCM1_BASE, + [CPU_ID_NIC_QMAN_ARC22] = mmNIC11_QM_DCCM0_BASE, + [CPU_ID_NIC_QMAN_ARC23] = mmNIC11_QM_DCCM1_BASE, +}; + +const u32 gaudi2_mme_ctrl_lo_blocks_bases[MME_ID_SIZE] = { + [MME_ID_DCORE0] = mmDCORE0_MME_CTRL_LO_BASE, + [MME_ID_DCORE1] = mmDCORE1_MME_CTRL_LO_BASE, + [MME_ID_DCORE2] = mmDCORE2_MME_CTRL_LO_BASE, + [MME_ID_DCORE3] = mmDCORE3_MME_CTRL_LO_BASE, +}; + +static const u32 gaudi2_queue_id_to_arc_id[GAUDI2_QUEUE_ID_SIZE] = { + [GAUDI2_QUEUE_ID_PDMA_0_0] = CPU_ID_PDMA_QMAN_ARC0, + [GAUDI2_QUEUE_ID_PDMA_0_1] = CPU_ID_PDMA_QMAN_ARC0, + [GAUDI2_QUEUE_ID_PDMA_0_2] = CPU_ID_PDMA_QMAN_ARC0, + [GAUDI2_QUEUE_ID_PDMA_0_3] = CPU_ID_PDMA_QMAN_ARC0, + [GAUDI2_QUEUE_ID_PDMA_1_0] = CPU_ID_PDMA_QMAN_ARC1, + [GAUDI2_QUEUE_ID_PDMA_1_1] = CPU_ID_PDMA_QMAN_ARC1, + [GAUDI2_QUEUE_ID_PDMA_1_2] = CPU_ID_PDMA_QMAN_ARC1, + [GAUDI2_QUEUE_ID_PDMA_1_3] = CPU_ID_PDMA_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = CPU_ID_MME_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = CPU_ID_MME_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = CPU_ID_MME_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = CPU_ID_MME_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = CPU_ID_TPC_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = CPU_ID_TPC_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = CPU_ID_TPC_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = CPU_ID_TPC_QMAN_ARC0, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = CPU_ID_TPC_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = CPU_ID_TPC_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = CPU_ID_TPC_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = CPU_ID_TPC_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = CPU_ID_TPC_QMAN_ARC2, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = CPU_ID_TPC_QMAN_ARC2, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = CPU_ID_TPC_QMAN_ARC2, + [GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = CPU_ID_TPC_QMAN_ARC2, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = CPU_ID_TPC_QMAN_ARC3, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = CPU_ID_TPC_QMAN_ARC3, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = CPU_ID_TPC_QMAN_ARC3, + [GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = CPU_ID_TPC_QMAN_ARC3, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = CPU_ID_TPC_QMAN_ARC4, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = CPU_ID_TPC_QMAN_ARC4, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = CPU_ID_TPC_QMAN_ARC4, + [GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = CPU_ID_TPC_QMAN_ARC4, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = CPU_ID_TPC_QMAN_ARC5, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = CPU_ID_TPC_QMAN_ARC5, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = CPU_ID_TPC_QMAN_ARC5, + [GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = CPU_ID_TPC_QMAN_ARC5, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = CPU_ID_TPC_QMAN_ARC24, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = CPU_ID_TPC_QMAN_ARC24, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = CPU_ID_TPC_QMAN_ARC24, + [GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = CPU_ID_TPC_QMAN_ARC24, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC2, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC2, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC2, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC2, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC3, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC3, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC3, + [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC3, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = CPU_ID_SCHED_ARC4, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = CPU_ID_SCHED_ARC4, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = CPU_ID_SCHED_ARC4, + [GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = CPU_ID_SCHED_ARC4, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = CPU_ID_TPC_QMAN_ARC6, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = CPU_ID_TPC_QMAN_ARC6, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = CPU_ID_TPC_QMAN_ARC6, + [GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = CPU_ID_TPC_QMAN_ARC6, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = CPU_ID_TPC_QMAN_ARC7, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = CPU_ID_TPC_QMAN_ARC7, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = CPU_ID_TPC_QMAN_ARC7, + [GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = CPU_ID_TPC_QMAN_ARC7, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = CPU_ID_TPC_QMAN_ARC8, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = CPU_ID_TPC_QMAN_ARC8, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = CPU_ID_TPC_QMAN_ARC8, + [GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = CPU_ID_TPC_QMAN_ARC8, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = CPU_ID_TPC_QMAN_ARC9, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = CPU_ID_TPC_QMAN_ARC9, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = CPU_ID_TPC_QMAN_ARC9, + [GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = CPU_ID_TPC_QMAN_ARC9, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = CPU_ID_TPC_QMAN_ARC10, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = CPU_ID_TPC_QMAN_ARC10, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = CPU_ID_TPC_QMAN_ARC10, + [GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = CPU_ID_TPC_QMAN_ARC10, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = CPU_ID_TPC_QMAN_ARC11, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = CPU_ID_TPC_QMAN_ARC11, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = CPU_ID_TPC_QMAN_ARC11, + [GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = CPU_ID_TPC_QMAN_ARC11, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC4, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC4, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC4, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC4, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC5, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC5, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC5, + [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC5, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = CPU_ID_MME_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = CPU_ID_MME_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = CPU_ID_MME_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = CPU_ID_MME_QMAN_ARC1, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = CPU_ID_TPC_QMAN_ARC12, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = CPU_ID_TPC_QMAN_ARC12, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = CPU_ID_TPC_QMAN_ARC12, + [GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = CPU_ID_TPC_QMAN_ARC12, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = CPU_ID_TPC_QMAN_ARC13, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = CPU_ID_TPC_QMAN_ARC13, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = CPU_ID_TPC_QMAN_ARC13, + [GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = CPU_ID_TPC_QMAN_ARC13, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = CPU_ID_TPC_QMAN_ARC14, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = CPU_ID_TPC_QMAN_ARC14, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = CPU_ID_TPC_QMAN_ARC14, + [GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = CPU_ID_TPC_QMAN_ARC14, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = CPU_ID_TPC_QMAN_ARC15, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = CPU_ID_TPC_QMAN_ARC15, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = CPU_ID_TPC_QMAN_ARC15, + [GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = CPU_ID_TPC_QMAN_ARC15, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = CPU_ID_TPC_QMAN_ARC16, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = CPU_ID_TPC_QMAN_ARC16, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = CPU_ID_TPC_QMAN_ARC16, + [GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = CPU_ID_TPC_QMAN_ARC16, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = CPU_ID_TPC_QMAN_ARC17, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = CPU_ID_TPC_QMAN_ARC17, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = CPU_ID_TPC_QMAN_ARC17, + [GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = CPU_ID_TPC_QMAN_ARC17, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC6, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC6, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC6, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC6, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC7, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC7, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC7, + [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC7, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = CPU_ID_SCHED_ARC5, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = CPU_ID_SCHED_ARC5, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = CPU_ID_SCHED_ARC5, + [GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = CPU_ID_SCHED_ARC5, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = CPU_ID_TPC_QMAN_ARC18, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = CPU_ID_TPC_QMAN_ARC18, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = CPU_ID_TPC_QMAN_ARC18, + [GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = CPU_ID_TPC_QMAN_ARC18, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = CPU_ID_TPC_QMAN_ARC19, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = CPU_ID_TPC_QMAN_ARC19, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = CPU_ID_TPC_QMAN_ARC19, + [GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = CPU_ID_TPC_QMAN_ARC19, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = CPU_ID_TPC_QMAN_ARC20, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = CPU_ID_TPC_QMAN_ARC20, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = CPU_ID_TPC_QMAN_ARC20, + [GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = CPU_ID_TPC_QMAN_ARC20, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = CPU_ID_TPC_QMAN_ARC21, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = CPU_ID_TPC_QMAN_ARC21, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = CPU_ID_TPC_QMAN_ARC21, + [GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = CPU_ID_TPC_QMAN_ARC21, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = CPU_ID_TPC_QMAN_ARC22, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = CPU_ID_TPC_QMAN_ARC22, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = CPU_ID_TPC_QMAN_ARC22, + [GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = CPU_ID_TPC_QMAN_ARC22, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = CPU_ID_TPC_QMAN_ARC23, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = CPU_ID_TPC_QMAN_ARC23, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = CPU_ID_TPC_QMAN_ARC23, + [GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = CPU_ID_TPC_QMAN_ARC23, + [GAUDI2_QUEUE_ID_NIC_0_0] = CPU_ID_NIC_QMAN_ARC0, + [GAUDI2_QUEUE_ID_NIC_0_1] = CPU_ID_NIC_QMAN_ARC0, + [GAUDI2_QUEUE_ID_NIC_0_2] = CPU_ID_NIC_QMAN_ARC0, + [GAUDI2_QUEUE_ID_NIC_0_3] = CPU_ID_NIC_QMAN_ARC0, + [GAUDI2_QUEUE_ID_NIC_1_0] = CPU_ID_NIC_QMAN_ARC1, + [GAUDI2_QUEUE_ID_NIC_1_1] = CPU_ID_NIC_QMAN_ARC1, + [GAUDI2_QUEUE_ID_NIC_1_2] = CPU_ID_NIC_QMAN_ARC1, + [GAUDI2_QUEUE_ID_NIC_1_3] = CPU_ID_NIC_QMAN_ARC1, + [GAUDI2_QUEUE_ID_NIC_2_0] = CPU_ID_NIC_QMAN_ARC2, + [GAUDI2_QUEUE_ID_NIC_2_1] = CPU_ID_NIC_QMAN_ARC2, + [GAUDI2_QUEUE_ID_NIC_2_2] = CPU_ID_NIC_QMAN_ARC2, + [GAUDI2_QUEUE_ID_NIC_2_3] = CPU_ID_NIC_QMAN_ARC2, + [GAUDI2_QUEUE_ID_NIC_3_0] = CPU_ID_NIC_QMAN_ARC3, + [GAUDI2_QUEUE_ID_NIC_3_1] = CPU_ID_NIC_QMAN_ARC3, + [GAUDI2_QUEUE_ID_NIC_3_2] = CPU_ID_NIC_QMAN_ARC3, + [GAUDI2_QUEUE_ID_NIC_3_3] = CPU_ID_NIC_QMAN_ARC3, + [GAUDI2_QUEUE_ID_NIC_4_0] = CPU_ID_NIC_QMAN_ARC4, + [GAUDI2_QUEUE_ID_NIC_4_1] = CPU_ID_NIC_QMAN_ARC4, + [GAUDI2_QUEUE_ID_NIC_4_2] = CPU_ID_NIC_QMAN_ARC4, + [GAUDI2_QUEUE_ID_NIC_4_3] = CPU_ID_NIC_QMAN_ARC4, + [GAUDI2_QUEUE_ID_NIC_5_0] = CPU_ID_NIC_QMAN_ARC5, + [GAUDI2_QUEUE_ID_NIC_5_1] = CPU_ID_NIC_QMAN_ARC5, + [GAUDI2_QUEUE_ID_NIC_5_2] = CPU_ID_NIC_QMAN_ARC5, + [GAUDI2_QUEUE_ID_NIC_5_3] = CPU_ID_NIC_QMAN_ARC5, + [GAUDI2_QUEUE_ID_NIC_6_0] = CPU_ID_NIC_QMAN_ARC6, + [GAUDI2_QUEUE_ID_NIC_6_1] = CPU_ID_NIC_QMAN_ARC6, + [GAUDI2_QUEUE_ID_NIC_6_2] = CPU_ID_NIC_QMAN_ARC6, + [GAUDI2_QUEUE_ID_NIC_6_3] = CPU_ID_NIC_QMAN_ARC6, + [GAUDI2_QUEUE_ID_NIC_7_0] = CPU_ID_NIC_QMAN_ARC7, + [GAUDI2_QUEUE_ID_NIC_7_1] = CPU_ID_NIC_QMAN_ARC7, + [GAUDI2_QUEUE_ID_NIC_7_2] = CPU_ID_NIC_QMAN_ARC7, + [GAUDI2_QUEUE_ID_NIC_7_3] = CPU_ID_NIC_QMAN_ARC7, + [GAUDI2_QUEUE_ID_NIC_8_0] = CPU_ID_NIC_QMAN_ARC8, + [GAUDI2_QUEUE_ID_NIC_8_1] = CPU_ID_NIC_QMAN_ARC8, + [GAUDI2_QUEUE_ID_NIC_8_2] = CPU_ID_NIC_QMAN_ARC8, + [GAUDI2_QUEUE_ID_NIC_8_3] = CPU_ID_NIC_QMAN_ARC8, + [GAUDI2_QUEUE_ID_NIC_9_0] = CPU_ID_NIC_QMAN_ARC9, + [GAUDI2_QUEUE_ID_NIC_9_1] = CPU_ID_NIC_QMAN_ARC9, + [GAUDI2_QUEUE_ID_NIC_9_2] = CPU_ID_NIC_QMAN_ARC9, + [GAUDI2_QUEUE_ID_NIC_9_3] = CPU_ID_NIC_QMAN_ARC9, + [GAUDI2_QUEUE_ID_NIC_10_0] = CPU_ID_NIC_QMAN_ARC10, + [GAUDI2_QUEUE_ID_NIC_10_1] = CPU_ID_NIC_QMAN_ARC10, + [GAUDI2_QUEUE_ID_NIC_10_2] = CPU_ID_NIC_QMAN_ARC10, + [GAUDI2_QUEUE_ID_NIC_10_3] = CPU_ID_NIC_QMAN_ARC10, + [GAUDI2_QUEUE_ID_NIC_11_0] = CPU_ID_NIC_QMAN_ARC11, + [GAUDI2_QUEUE_ID_NIC_11_1] = CPU_ID_NIC_QMAN_ARC11, + [GAUDI2_QUEUE_ID_NIC_11_2] = CPU_ID_NIC_QMAN_ARC11, + [GAUDI2_QUEUE_ID_NIC_11_3] = CPU_ID_NIC_QMAN_ARC11, + [GAUDI2_QUEUE_ID_NIC_12_0] = CPU_ID_NIC_QMAN_ARC12, + [GAUDI2_QUEUE_ID_NIC_12_1] = CPU_ID_NIC_QMAN_ARC12, + [GAUDI2_QUEUE_ID_NIC_12_2] = CPU_ID_NIC_QMAN_ARC12, + [GAUDI2_QUEUE_ID_NIC_12_3] = CPU_ID_NIC_QMAN_ARC12, + [GAUDI2_QUEUE_ID_NIC_13_0] = CPU_ID_NIC_QMAN_ARC13, + [GAUDI2_QUEUE_ID_NIC_13_1] = CPU_ID_NIC_QMAN_ARC13, + [GAUDI2_QUEUE_ID_NIC_13_2] = CPU_ID_NIC_QMAN_ARC13, + [GAUDI2_QUEUE_ID_NIC_13_3] = CPU_ID_NIC_QMAN_ARC13, + [GAUDI2_QUEUE_ID_NIC_14_0] = CPU_ID_NIC_QMAN_ARC14, + [GAUDI2_QUEUE_ID_NIC_14_1] = CPU_ID_NIC_QMAN_ARC14, + [GAUDI2_QUEUE_ID_NIC_14_2] = CPU_ID_NIC_QMAN_ARC14, + [GAUDI2_QUEUE_ID_NIC_14_3] = CPU_ID_NIC_QMAN_ARC14, + [GAUDI2_QUEUE_ID_NIC_15_0] = CPU_ID_NIC_QMAN_ARC15, + [GAUDI2_QUEUE_ID_NIC_15_1] = CPU_ID_NIC_QMAN_ARC15, + [GAUDI2_QUEUE_ID_NIC_15_2] = CPU_ID_NIC_QMAN_ARC15, + [GAUDI2_QUEUE_ID_NIC_15_3] = CPU_ID_NIC_QMAN_ARC15, + [GAUDI2_QUEUE_ID_NIC_16_0] = CPU_ID_NIC_QMAN_ARC16, + [GAUDI2_QUEUE_ID_NIC_16_1] = CPU_ID_NIC_QMAN_ARC16, + [GAUDI2_QUEUE_ID_NIC_16_2] = CPU_ID_NIC_QMAN_ARC16, + [GAUDI2_QUEUE_ID_NIC_16_3] = CPU_ID_NIC_QMAN_ARC16, + [GAUDI2_QUEUE_ID_NIC_17_0] = CPU_ID_NIC_QMAN_ARC17, + [GAUDI2_QUEUE_ID_NIC_17_1] = CPU_ID_NIC_QMAN_ARC17, + [GAUDI2_QUEUE_ID_NIC_17_2] = CPU_ID_NIC_QMAN_ARC17, + [GAUDI2_QUEUE_ID_NIC_17_3] = CPU_ID_NIC_QMAN_ARC17, + [GAUDI2_QUEUE_ID_NIC_18_0] = CPU_ID_NIC_QMAN_ARC18, + [GAUDI2_QUEUE_ID_NIC_18_1] = CPU_ID_NIC_QMAN_ARC18, + [GAUDI2_QUEUE_ID_NIC_18_2] = CPU_ID_NIC_QMAN_ARC18, + [GAUDI2_QUEUE_ID_NIC_18_3] = CPU_ID_NIC_QMAN_ARC18, + [GAUDI2_QUEUE_ID_NIC_19_0] = CPU_ID_NIC_QMAN_ARC19, + [GAUDI2_QUEUE_ID_NIC_19_1] = CPU_ID_NIC_QMAN_ARC19, + [GAUDI2_QUEUE_ID_NIC_19_2] = CPU_ID_NIC_QMAN_ARC19, + [GAUDI2_QUEUE_ID_NIC_19_3] = CPU_ID_NIC_QMAN_ARC19, + [GAUDI2_QUEUE_ID_NIC_20_0] = CPU_ID_NIC_QMAN_ARC20, + [GAUDI2_QUEUE_ID_NIC_20_1] = CPU_ID_NIC_QMAN_ARC20, + [GAUDI2_QUEUE_ID_NIC_20_2] = CPU_ID_NIC_QMAN_ARC20, + [GAUDI2_QUEUE_ID_NIC_20_3] = CPU_ID_NIC_QMAN_ARC20, + [GAUDI2_QUEUE_ID_NIC_21_0] = CPU_ID_NIC_QMAN_ARC21, + [GAUDI2_QUEUE_ID_NIC_21_1] = CPU_ID_NIC_QMAN_ARC21, + [GAUDI2_QUEUE_ID_NIC_21_2] = CPU_ID_NIC_QMAN_ARC21, + [GAUDI2_QUEUE_ID_NIC_21_3] = CPU_ID_NIC_QMAN_ARC21, + [GAUDI2_QUEUE_ID_NIC_22_0] = CPU_ID_NIC_QMAN_ARC22, + [GAUDI2_QUEUE_ID_NIC_22_1] = CPU_ID_NIC_QMAN_ARC22, + [GAUDI2_QUEUE_ID_NIC_22_2] = CPU_ID_NIC_QMAN_ARC22, + [GAUDI2_QUEUE_ID_NIC_22_3] = CPU_ID_NIC_QMAN_ARC22, + [GAUDI2_QUEUE_ID_NIC_23_0] = CPU_ID_NIC_QMAN_ARC23, + [GAUDI2_QUEUE_ID_NIC_23_1] = CPU_ID_NIC_QMAN_ARC23, + [GAUDI2_QUEUE_ID_NIC_23_2] = CPU_ID_NIC_QMAN_ARC23, + [GAUDI2_QUEUE_ID_NIC_23_3] = CPU_ID_NIC_QMAN_ARC23, + [GAUDI2_QUEUE_ID_ROT_0_0] = CPU_ID_ROT_QMAN_ARC0, + [GAUDI2_QUEUE_ID_ROT_0_1] = CPU_ID_ROT_QMAN_ARC0, + [GAUDI2_QUEUE_ID_ROT_0_2] = CPU_ID_ROT_QMAN_ARC0, + [GAUDI2_QUEUE_ID_ROT_0_3] = CPU_ID_ROT_QMAN_ARC0, + [GAUDI2_QUEUE_ID_ROT_1_0] = CPU_ID_ROT_QMAN_ARC1, + [GAUDI2_QUEUE_ID_ROT_1_1] = CPU_ID_ROT_QMAN_ARC1, + [GAUDI2_QUEUE_ID_ROT_1_2] = CPU_ID_ROT_QMAN_ARC1, + [GAUDI2_QUEUE_ID_ROT_1_3] = CPU_ID_ROT_QMAN_ARC1 +}; + +const u32 gaudi2_dma_core_blocks_bases[DMA_CORE_ID_SIZE] = { + [DMA_CORE_ID_PDMA0] = mmPDMA0_CORE_BASE, + [DMA_CORE_ID_PDMA1] = mmPDMA1_CORE_BASE, + [DMA_CORE_ID_EDMA0] = mmDCORE0_EDMA0_CORE_BASE, + [DMA_CORE_ID_EDMA1] = mmDCORE0_EDMA1_CORE_BASE, + [DMA_CORE_ID_EDMA2] = mmDCORE1_EDMA0_CORE_BASE, + [DMA_CORE_ID_EDMA3] = mmDCORE1_EDMA1_CORE_BASE, + [DMA_CORE_ID_EDMA4] = mmDCORE2_EDMA0_CORE_BASE, + [DMA_CORE_ID_EDMA5] = mmDCORE2_EDMA1_CORE_BASE, + [DMA_CORE_ID_EDMA6] = mmDCORE3_EDMA0_CORE_BASE, + [DMA_CORE_ID_EDMA7] = mmDCORE3_EDMA1_CORE_BASE, + [DMA_CORE_ID_KDMA] = mmARC_FARM_KDMA_BASE +}; + +const u32 gaudi2_mme_acc_blocks_bases[MME_ID_SIZE] = { + [MME_ID_DCORE0] = mmDCORE0_MME_ACC_BASE, + [MME_ID_DCORE1] = mmDCORE1_MME_ACC_BASE, + [MME_ID_DCORE2] = mmDCORE2_MME_ACC_BASE, + [MME_ID_DCORE3] = mmDCORE3_MME_ACC_BASE +}; + +static const u32 gaudi2_tpc_cfg_blocks_bases[TPC_ID_SIZE] = { + [TPC_ID_DCORE0_TPC0] = mmDCORE0_TPC0_CFG_BASE, + [TPC_ID_DCORE0_TPC1] = mmDCORE0_TPC1_CFG_BASE, + [TPC_ID_DCORE0_TPC2] = mmDCORE0_TPC2_CFG_BASE, + [TPC_ID_DCORE0_TPC3] = mmDCORE0_TPC3_CFG_BASE, + [TPC_ID_DCORE0_TPC4] = mmDCORE0_TPC4_CFG_BASE, + [TPC_ID_DCORE0_TPC5] = mmDCORE0_TPC5_CFG_BASE, + [TPC_ID_DCORE1_TPC0] = mmDCORE1_TPC0_CFG_BASE, + [TPC_ID_DCORE1_TPC1] = mmDCORE1_TPC1_CFG_BASE, + [TPC_ID_DCORE1_TPC2] = mmDCORE1_TPC2_CFG_BASE, + [TPC_ID_DCORE1_TPC3] = mmDCORE1_TPC3_CFG_BASE, + [TPC_ID_DCORE1_TPC4] = mmDCORE1_TPC4_CFG_BASE, + [TPC_ID_DCORE1_TPC5] = mmDCORE1_TPC5_CFG_BASE, + [TPC_ID_DCORE2_TPC0] = mmDCORE2_TPC0_CFG_BASE, + [TPC_ID_DCORE2_TPC1] = mmDCORE2_TPC1_CFG_BASE, + [TPC_ID_DCORE2_TPC2] = mmDCORE2_TPC2_CFG_BASE, + [TPC_ID_DCORE2_TPC3] = mmDCORE2_TPC3_CFG_BASE, + [TPC_ID_DCORE2_TPC4] = mmDCORE2_TPC4_CFG_BASE, + [TPC_ID_DCORE2_TPC5] = mmDCORE2_TPC5_CFG_BASE, + [TPC_ID_DCORE3_TPC0] = mmDCORE3_TPC0_CFG_BASE, + [TPC_ID_DCORE3_TPC1] = mmDCORE3_TPC1_CFG_BASE, + [TPC_ID_DCORE3_TPC2] = mmDCORE3_TPC2_CFG_BASE, + [TPC_ID_DCORE3_TPC3] = mmDCORE3_TPC3_CFG_BASE, + [TPC_ID_DCORE3_TPC4] = mmDCORE3_TPC4_CFG_BASE, + [TPC_ID_DCORE3_TPC5] = mmDCORE3_TPC5_CFG_BASE, + [TPC_ID_DCORE0_TPC6] = mmDCORE0_TPC6_CFG_BASE, +}; + +const u32 gaudi2_rot_blocks_bases[ROTATOR_ID_SIZE] = { + [ROTATOR_ID_0] = mmROT0_BASE, + [ROTATOR_ID_1] = mmROT1_BASE +}; + +static const u32 gaudi2_tpc_id_to_queue_id[TPC_ID_SIZE] = { + [TPC_ID_DCORE0_TPC0] = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0, + [TPC_ID_DCORE0_TPC1] = GAUDI2_QUEUE_ID_DCORE0_TPC_1_0, + [TPC_ID_DCORE0_TPC2] = GAUDI2_QUEUE_ID_DCORE0_TPC_2_0, + [TPC_ID_DCORE0_TPC3] = GAUDI2_QUEUE_ID_DCORE0_TPC_3_0, + [TPC_ID_DCORE0_TPC4] = GAUDI2_QUEUE_ID_DCORE0_TPC_4_0, + [TPC_ID_DCORE0_TPC5] = GAUDI2_QUEUE_ID_DCORE0_TPC_5_0, + [TPC_ID_DCORE1_TPC0] = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0, + [TPC_ID_DCORE1_TPC1] = GAUDI2_QUEUE_ID_DCORE1_TPC_1_0, + [TPC_ID_DCORE1_TPC2] = GAUDI2_QUEUE_ID_DCORE1_TPC_2_0, + [TPC_ID_DCORE1_TPC3] = GAUDI2_QUEUE_ID_DCORE1_TPC_3_0, + [TPC_ID_DCORE1_TPC4] = GAUDI2_QUEUE_ID_DCORE1_TPC_4_0, + [TPC_ID_DCORE1_TPC5] = GAUDI2_QUEUE_ID_DCORE1_TPC_5_0, + [TPC_ID_DCORE2_TPC0] = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0, + [TPC_ID_DCORE2_TPC1] = GAUDI2_QUEUE_ID_DCORE2_TPC_1_0, + [TPC_ID_DCORE2_TPC2] = GAUDI2_QUEUE_ID_DCORE2_TPC_2_0, + [TPC_ID_DCORE2_TPC3] = GAUDI2_QUEUE_ID_DCORE2_TPC_3_0, + [TPC_ID_DCORE2_TPC4] = GAUDI2_QUEUE_ID_DCORE2_TPC_4_0, + [TPC_ID_DCORE2_TPC5] = GAUDI2_QUEUE_ID_DCORE2_TPC_5_0, + [TPC_ID_DCORE3_TPC0] = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0, + [TPC_ID_DCORE3_TPC1] = GAUDI2_QUEUE_ID_DCORE3_TPC_1_0, + [TPC_ID_DCORE3_TPC2] = GAUDI2_QUEUE_ID_DCORE3_TPC_2_0, + [TPC_ID_DCORE3_TPC3] = GAUDI2_QUEUE_ID_DCORE3_TPC_3_0, + [TPC_ID_DCORE3_TPC4] = GAUDI2_QUEUE_ID_DCORE3_TPC_4_0, + [TPC_ID_DCORE3_TPC5] = GAUDI2_QUEUE_ID_DCORE3_TPC_5_0, + [TPC_ID_DCORE0_TPC6] = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0, +}; + +static const u32 gaudi2_rot_id_to_queue_id[ROTATOR_ID_SIZE] = { + [ROTATOR_ID_0] = GAUDI2_QUEUE_ID_ROT_0_0, + [ROTATOR_ID_1] = GAUDI2_QUEUE_ID_ROT_1_0, +}; + +const u32 edma_stream_base[NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES] = { + GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0, + GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0, + GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0, + GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0, + GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0, + GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0, + GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0, + GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0, +}; + +static const char gaudi2_vdec_irq_name[GAUDI2_VDEC_MSIX_ENTRIES][GAUDI2_MAX_STRING_LEN] = { + "gaudi2 vdec 0_0", "gaudi2 vdec 0_0 abnormal", + "gaudi2 vdec 0_1", "gaudi2 vdec 0_1 abnormal", + "gaudi2 vdec 1_0", "gaudi2 vdec 1_0 abnormal", + "gaudi2 vdec 1_1", "gaudi2 vdec 1_1 abnormal", + "gaudi2 vdec 2_0", "gaudi2 vdec 2_0 abnormal", + "gaudi2 vdec 2_1", "gaudi2 vdec 2_1 abnormal", + "gaudi2 vdec 3_0", "gaudi2 vdec 3_0 abnormal", + "gaudi2 vdec 3_1", "gaudi2 vdec 3_1 abnormal", + "gaudi2 vdec s_0", "gaudi2 vdec s_0 abnormal", + "gaudi2 vdec s_1", "gaudi2 vdec s_1 abnormal" +}; + +static const u32 rtr_coordinates_to_rtr_id[NUM_OF_RTR_PER_DCORE * NUM_OF_DCORES] = { + RTR_ID_X_Y(2, 4), + RTR_ID_X_Y(3, 4), + RTR_ID_X_Y(4, 4), + RTR_ID_X_Y(5, 4), + RTR_ID_X_Y(6, 4), + RTR_ID_X_Y(7, 4), + RTR_ID_X_Y(8, 4), + RTR_ID_X_Y(9, 4), + RTR_ID_X_Y(10, 4), + RTR_ID_X_Y(11, 4), + RTR_ID_X_Y(12, 4), + RTR_ID_X_Y(13, 4), + RTR_ID_X_Y(14, 4), + RTR_ID_X_Y(15, 4), + RTR_ID_X_Y(16, 4), + RTR_ID_X_Y(17, 4), + RTR_ID_X_Y(2, 11), + RTR_ID_X_Y(3, 11), + RTR_ID_X_Y(4, 11), + RTR_ID_X_Y(5, 11), + RTR_ID_X_Y(6, 11), + RTR_ID_X_Y(7, 11), + RTR_ID_X_Y(8, 11), + RTR_ID_X_Y(9, 11), + RTR_ID_X_Y(0, 0),/* 24 no id */ + RTR_ID_X_Y(0, 0),/* 25 no id */ + RTR_ID_X_Y(0, 0),/* 26 no id */ + RTR_ID_X_Y(0, 0),/* 27 no id */ + RTR_ID_X_Y(14, 11), + RTR_ID_X_Y(15, 11), + RTR_ID_X_Y(16, 11), + RTR_ID_X_Y(17, 11) +}; + +enum rtr_id { + DCORE0_RTR0, + DCORE0_RTR1, + DCORE0_RTR2, + DCORE0_RTR3, + DCORE0_RTR4, + DCORE0_RTR5, + DCORE0_RTR6, + DCORE0_RTR7, + DCORE1_RTR0, + DCORE1_RTR1, + DCORE1_RTR2, + DCORE1_RTR3, + DCORE1_RTR4, + DCORE1_RTR5, + DCORE1_RTR6, + DCORE1_RTR7, + DCORE2_RTR0, + DCORE2_RTR1, + DCORE2_RTR2, + DCORE2_RTR3, + DCORE2_RTR4, + DCORE2_RTR5, + DCORE2_RTR6, + DCORE2_RTR7, + DCORE3_RTR0, + DCORE3_RTR1, + DCORE3_RTR2, + DCORE3_RTR3, + DCORE3_RTR4, + DCORE3_RTR5, + DCORE3_RTR6, + DCORE3_RTR7, +}; + +static const u32 gaudi2_tpc_initiator_rtr_id[NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1] = { + DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR2, DCORE0_RTR2, DCORE0_RTR3, DCORE0_RTR3, + DCORE1_RTR6, DCORE1_RTR6, DCORE1_RTR5, DCORE1_RTR5, DCORE1_RTR4, DCORE1_RTR4, + DCORE2_RTR3, DCORE2_RTR3, DCORE2_RTR2, DCORE2_RTR2, DCORE2_RTR1, DCORE2_RTR1, + DCORE3_RTR4, DCORE3_RTR4, DCORE3_RTR5, DCORE3_RTR5, DCORE3_RTR6, DCORE3_RTR6, + DCORE0_RTR0 +}; + +static const u32 gaudi2_dec_initiator_rtr_id[NUMBER_OF_DEC] = { + DCORE0_RTR0, DCORE0_RTR0, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0, DCORE2_RTR0, + DCORE3_RTR7, DCORE3_RTR7, DCORE0_RTR0, DCORE0_RTR0 +}; + +static const u32 gaudi2_nic_initiator_rtr_id[NIC_NUMBER_OF_MACROS] = { + DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0, + DCORE2_RTR0, DCORE2_RTR0, DCORE2_RTR0, DCORE3_RTR7, DCORE3_RTR7, DCORE3_RTR7 +}; + +struct sft_info { + u8 interface_id; + u8 dcore_id; +}; + +static const struct sft_info gaudi2_edma_initiator_sft_id[NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES] = { + {0, 0}, {1, 0}, {0, 1}, {1, 1}, {1, 2}, {1, 3}, {0, 2}, {0, 3}, +}; + +static const u32 gaudi2_pdma_initiator_rtr_id[NUM_OF_PDMA] = { + DCORE0_RTR0, DCORE0_RTR0 +}; + +static const u32 gaudi2_rot_initiator_rtr_id[NUM_OF_ROT] = { + DCORE2_RTR0, DCORE3_RTR7 +}; + +struct mme_initiators_rtr_id { + u32 wap0; + u32 wap1; + u32 write; + u32 read; + u32 sbte0; + u32 sbte1; + u32 sbte2; + u32 sbte3; + u32 sbte4; +}; + +enum mme_initiators { + MME_WAP0 = 0, + MME_WAP1, + MME_WRITE, + MME_READ, + MME_SBTE0, + MME_SBTE1, + MME_SBTE2, + MME_SBTE3, + MME_SBTE4, + MME_INITIATORS_MAX +}; + +static const struct mme_initiators_rtr_id +gaudi2_mme_initiator_rtr_id[NUM_OF_MME_PER_DCORE * NUM_OF_DCORES] = { + { .wap0 = 5, .wap1 = 7, .write = 6, .read = 7, + .sbte0 = 7, .sbte1 = 4, .sbte2 = 4, .sbte3 = 5, .sbte4 = 6}, + { .wap0 = 10, .wap1 = 8, .write = 9, .read = 8, + .sbte0 = 11, .sbte1 = 11, .sbte2 = 10, .sbte3 = 9, .sbte4 = 8}, + { .wap0 = 21, .wap1 = 23, .write = 22, .read = 23, + .sbte0 = 20, .sbte1 = 20, .sbte2 = 21, .sbte3 = 22, .sbte4 = 23}, + { .wap0 = 30, .wap1 = 28, .write = 29, .read = 30, + .sbte0 = 31, .sbte1 = 31, .sbte2 = 30, .sbte3 = 29, .sbte4 = 28}, +}; + +enum razwi_event_sources { + RAZWI_TPC, + RAZWI_MME, + RAZWI_EDMA, + RAZWI_PDMA, + RAZWI_NIC, + RAZWI_DEC, + RAZWI_ROT +}; + +struct hbm_mc_error_causes { + u32 mask; + char cause[50]; +}; + +static struct hbm_mc_error_causes hbm_mc_spi[GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE] = { + {HBM_MC_SPI_TEMP_PIN_CHG_MASK, "temperature pins changed"}, + {HBM_MC_SPI_THR_ENG_MASK, "temperature-based throttling engaged"}, + {HBM_MC_SPI_THR_DIS_ENG_MASK, "temperature-based throttling disengaged"}, + {HBM_MC_SPI_IEEE1500_COMP_MASK, "IEEE1500 op comp"}, + {HBM_MC_SPI_IEEE1500_PAUSED_MASK, "IEEE1500 op paused"}, +}; + +static const char * const hbm_mc_sei_cause[GAUDI2_NUM_OF_HBM_SEI_CAUSE] = { + [HBM_SEI_CMD_PARITY_EVEN] = "SEI C/A parity even", + [HBM_SEI_CMD_PARITY_ODD] = "SEI C/A parity odd", + [HBM_SEI_READ_ERR] = "SEI read data error", + [HBM_SEI_WRITE_DATA_PARITY_ERR] = "SEI write data parity error", + [HBM_SEI_CATTRIP] = "SEI CATTRIP asserted", + [HBM_SEI_MEM_BIST_FAIL] = "SEI memory BIST fail", + [HBM_SEI_DFI] = "SEI DFI error", + [HBM_SEI_INV_TEMP_READ_OUT] = "SEI invalid temp read", + [HBM_SEI_BIST_FAIL] = "SEI BIST fail" +}; + +struct mmu_spi_sei_cause { + char cause[50]; + int clear_bit; +}; + +static const struct mmu_spi_sei_cause gaudi2_mmu_spi_sei[GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE] = { + {"page fault", 1}, /* INTERRUPT_CLR[1] */ + {"page access", 1}, /* INTERRUPT_CLR[1] */ + {"bypass ddr", 2}, /* INTERRUPT_CLR[2] */ + {"multi hit", 2}, /* INTERRUPT_CLR[2] */ + {"mmu rei0", -1}, /* no clear register bit */ + {"mmu rei1", -1}, /* no clear register bit */ + {"stlb rei0", -1}, /* no clear register bit */ + {"stlb rei1", -1}, /* no clear register bit */ + {"rr privileged write hit", 2}, /* INTERRUPT_CLR[2] */ + {"rr privileged read hit", 2}, /* INTERRUPT_CLR[2] */ + {"rr secure write hit", 2}, /* INTERRUPT_CLR[2] */ + {"rr secure read hit", 2}, /* INTERRUPT_CLR[2] */ + {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */ + {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */ + {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */ + {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */ + {"slave error", 16}, /* INTERRUPT_CLR[16] */ + {"dec error", 17}, /* INTERRUPT_CLR[17] */ + {"burst fifo full", 2} /* INTERRUPT_CLR[2] */ +}; + +struct gaudi2_cache_invld_params { + u64 start_va; + u64 end_va; + u32 inv_start_val; + u32 flags; + bool range_invalidation; +}; + +struct gaudi2_tpc_idle_data { + struct engines_data *e; + unsigned long *mask; + bool *is_idle; + const char *tpc_fmt; +}; + +struct gaudi2_tpc_mmu_data { + u32 rw_asid; +}; + +static s64 gaudi2_state_dump_specs_props[SP_MAX] = {0}; + +static int gaudi2_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val); +static bool gaudi2_is_queue_enabled(struct hl_device *hdev, u32 hw_queue_id); +static bool gaudi2_is_arc_enabled(struct hl_device *hdev, u64 arc_id); +static void gaudi2_clr_arc_id_cap(struct hl_device *hdev, u64 arc_id); +static void gaudi2_set_arc_id_cap(struct hl_device *hdev, u64 arc_id); +static void gaudi2_memset_device_lbw(struct hl_device *hdev, u32 addr, u32 size, u32 val); +static int gaudi2_send_job_to_kdma(struct hl_device *hdev, u64 src_addr, u64 dst_addr, u32 size, + bool is_memset); +static u64 gaudi2_mmu_scramble_addr(struct hl_device *hdev, u64 raw_addr); + +static void gaudi2_init_scrambler_hbm(struct hl_device *hdev) +{ + +} + +static u32 gaudi2_get_signal_cb_size(struct hl_device *hdev) +{ + return sizeof(struct packet_msg_short); +} + +static u32 gaudi2_get_wait_cb_size(struct hl_device *hdev) +{ + return sizeof(struct packet_msg_short) * 4 + sizeof(struct packet_fence); +} + +void gaudi2_iterate_tpcs(struct hl_device *hdev, struct iterate_module_ctx *ctx) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + int dcore, inst, tpc_seq; + u32 offset; + + /* init the return code */ + ctx->rc = 0; + + for (dcore = 0; dcore < NUM_OF_DCORES; dcore++) { + for (inst = 0; inst < NUM_OF_TPC_PER_DCORE; inst++) { + tpc_seq = dcore * NUM_OF_TPC_PER_DCORE + inst; + + if (!(prop->tpc_enabled_mask & BIT(tpc_seq))) + continue; + + offset = (DCORE_OFFSET * dcore) + (DCORE_TPC_OFFSET * inst); + + ctx->fn(hdev, dcore, inst, offset, ctx); + if (ctx->rc) { + dev_err(hdev->dev, "TPC iterator failed for DCORE%d TPC%d\n", + dcore, inst); + return; + } + } + } + + if (!(prop->tpc_enabled_mask & BIT(TPC_ID_DCORE0_TPC6))) + return; + + /* special check for PCI TPC (DCORE0_TPC6) */ + offset = DCORE_TPC_OFFSET * (NUM_DCORE0_TPC - 1); + ctx->fn(hdev, 0, NUM_DCORE0_TPC - 1, offset, ctx); + if (ctx->rc) + dev_err(hdev->dev, "TPC iterator failed for DCORE0 TPC6\n"); +} + +static bool gaudi2_host_phys_addr_valid(u64 addr) +{ + if ((addr < HOST_PHYS_BASE_0 + HOST_PHYS_SIZE_0) || (addr >= HOST_PHYS_BASE_1)) + return true; + + return false; +} + +static int set_number_of_functional_hbms(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u8 faulty_hbms = hweight64(hdev->dram_binning); + + /* check if all HBMs should be used */ + if (!faulty_hbms) { + dev_dbg(hdev->dev, "All HBM are in use (no binning)\n"); + prop->num_functional_hbms = GAUDI2_HBM_NUM; + return 0; + } + + /* + * check for error condition in which number of binning + * candidates is higher than the maximum supported by the + * driver (in which case binning mask shall be ignored and driver will + * set the default) + */ + if (faulty_hbms > MAX_FAULTY_HBMS) { + dev_err(hdev->dev, + "HBM binning supports max of %d faulty HBMs, supplied mask 0x%llx.\n", + MAX_FAULTY_HBMS, hdev->dram_binning); + return -EINVAL; + } + + /* + * by default, number of functional HBMs in Gaudi2 is always + * GAUDI2_HBM_NUM - 1. + */ + prop->num_functional_hbms = GAUDI2_HBM_NUM - faulty_hbms; + return 0; +} + +static int gaudi2_set_dram_properties(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u32 basic_hbm_page_size; + int rc; + + rc = set_number_of_functional_hbms(hdev); + if (rc) + return -EINVAL; + + /* + * Due to HW bug in which TLB size is x16 smaller than expected we use a workaround + * in which we are using x16 bigger page size to be able to populate the entire + * HBM mappings in the TLB + */ + basic_hbm_page_size = prop->num_functional_hbms * SZ_8M; + prop->dram_page_size = GAUDI2_COMPENSATE_TLB_PAGE_SIZE_FACTOR * basic_hbm_page_size; + prop->device_mem_alloc_default_page_size = prop->dram_page_size; + prop->dram_size = prop->num_functional_hbms * SZ_16G; + prop->dram_base_address = DRAM_PHYS_BASE; + prop->dram_end_address = prop->dram_base_address + prop->dram_size; + prop->dram_supports_virtual_memory = true; + + prop->dram_user_base_address = DRAM_PHYS_BASE + prop->dram_page_size; + prop->dram_hints_align_mask = ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK; + prop->hints_dram_reserved_va_range.start_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HBM_START; + prop->hints_dram_reserved_va_range.end_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HBM_END; + + /* since DRAM page size differs from DMMU page size we need to allocate + * DRAM memory in units of dram_page size and mapping this memory in + * units of DMMU page size. we overcome this size mismatch using a + * scrambling routine which takes a DRAM page and converts it to a DMMU + * page. + * We therefore: + * 1. partition the virtual address space to DRAM-page (whole) pages. + * (suppose we get n such pages) + * 2. limit the amount of virtual address space we got from 1 above to + * a multiple of 64M as we don't want the scrambled address to cross + * the DRAM virtual address space. + * ( m = (n * DRAM_page_size) / DMMU_page_size). + * 3. determine the and address accordingly + * end_addr = start_addr + m * 48M + * + * the DRAM address MSBs (63:48) are not part of the roundup calculation + */ + prop->dmmu.start_addr = prop->dram_base_address + + (prop->dram_page_size * + DIV_ROUND_UP_SECTOR_T(prop->dram_size, prop->dram_page_size)); + + prop->dmmu.end_addr = prop->dmmu.start_addr + prop->dram_page_size * + div_u64((VA_HBM_SPACE_END - prop->dmmu.start_addr), prop->dmmu.page_size); + + return 0; +} + +static int gaudi2_set_fixed_properties(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hw_queue_properties *q_props; + u32 num_sync_stream_queues = 0; + int i; + + prop->max_queues = GAUDI2_QUEUE_ID_SIZE; + prop->hw_queues_props = kcalloc(prop->max_queues, sizeof(struct hw_queue_properties), + GFP_KERNEL); + + if (!prop->hw_queues_props) + return -ENOMEM; + + q_props = prop->hw_queues_props; + + for (i = 0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i++) { + q_props[i].type = QUEUE_TYPE_HW; + q_props[i].driver_only = 0; + + if (i >= GAUDI2_QUEUE_ID_NIC_0_0 && i <= GAUDI2_QUEUE_ID_NIC_23_3) { + q_props[i].supports_sync_stream = 0; + } else { + q_props[i].supports_sync_stream = 1; + num_sync_stream_queues++; + } + + q_props[i].cb_alloc_flags = CB_ALLOC_USER; + } + + q_props[GAUDI2_QUEUE_ID_CPU_PQ].type = QUEUE_TYPE_CPU; + q_props[GAUDI2_QUEUE_ID_CPU_PQ].driver_only = 1; + q_props[GAUDI2_QUEUE_ID_CPU_PQ].cb_alloc_flags = CB_ALLOC_KERNEL; + + prop->cache_line_size = DEVICE_CACHE_LINE_SIZE; + prop->cfg_base_address = CFG_BASE; + prop->device_dma_offset_for_host_access = HOST_PHYS_BASE_0; + prop->host_base_address = HOST_PHYS_BASE_0; + prop->host_end_address = prop->host_base_address + HOST_PHYS_SIZE_0; + prop->max_pending_cs = GAUDI2_MAX_PENDING_CS; + prop->completion_queues_count = GAUDI2_RESERVED_CQ_NUMBER; + prop->user_dec_intr_count = NUMBER_OF_DEC; + prop->user_interrupt_count = GAUDI2_IRQ_NUM_USER_LAST - GAUDI2_IRQ_NUM_USER_FIRST + 1; + prop->completion_mode = HL_COMPLETION_MODE_CS; + prop->sync_stream_first_sob = GAUDI2_RESERVED_SOB_NUMBER; + prop->sync_stream_first_mon = GAUDI2_RESERVED_MON_NUMBER; + + prop->sram_base_address = SRAM_BASE_ADDR; + prop->sram_size = SRAM_SIZE; + prop->sram_end_address = prop->sram_base_address + prop->sram_size; + prop->sram_user_base_address = prop->sram_base_address + SRAM_USER_BASE_OFFSET; + + prop->hints_range_reservation = true; + + if (hdev->pldm) + prop->mmu_pgt_size = 0x800000; /* 8MB */ + else + prop->mmu_pgt_size = MMU_PAGE_TABLES_INITIAL_SIZE; + + prop->mmu_pte_size = HL_PTE_SIZE; + prop->mmu_hop_table_size = HOP_TABLE_SIZE_512_PTE; + prop->mmu_hop0_tables_total_size = HOP0_512_PTE_TABLES_TOTAL_SIZE; + + prop->dmmu.hop_shifts[MMU_HOP0] = DHOP0_SHIFT; + prop->dmmu.hop_shifts[MMU_HOP1] = DHOP1_SHIFT; + prop->dmmu.hop_shifts[MMU_HOP2] = DHOP2_SHIFT; + prop->dmmu.hop_shifts[MMU_HOP3] = DHOP3_SHIFT; + prop->dmmu.hop_shifts[MMU_HOP4] = DHOP4_SHIFT; + prop->dmmu.hop_masks[MMU_HOP0] = DHOP0_MASK; + prop->dmmu.hop_masks[MMU_HOP1] = DHOP1_MASK; + prop->dmmu.hop_masks[MMU_HOP2] = DHOP2_MASK; + prop->dmmu.hop_masks[MMU_HOP3] = DHOP3_MASK; + prop->dmmu.hop_masks[MMU_HOP4] = DHOP4_MASK; + prop->dmmu.page_size = PAGE_SIZE_1GB; + prop->dmmu.num_hops = MMU_ARCH_6_HOPS; + prop->dmmu.last_mask = LAST_MASK; + prop->dmmu.host_resident = 1; + /* TODO: will be duplicated until implementing per-MMU props */ + prop->dmmu.hop_table_size = prop->mmu_hop_table_size; + prop->dmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size; + + /* + * this is done in order to be able to validate FW descriptor (i.e. validating that + * the addresses and allocated space for FW image does not cross memory bounds). + * for this reason we set the DRAM size to the minimum possible and later it will + * be modified according to what reported in the cpucp info packet + */ + prop->dram_size = (GAUDI2_HBM_NUM - 1) * SZ_16G; + + hdev->pmmu_huge_range = true; + prop->pmmu.host_resident = 1; + prop->pmmu.num_hops = MMU_ARCH_6_HOPS; + prop->pmmu.last_mask = LAST_MASK; + /* TODO: will be duplicated until implementing per-MMU props */ + prop->pmmu.hop_table_size = prop->mmu_hop_table_size; + prop->pmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size; + + prop->hints_host_reserved_va_range.start_addr = RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START; + prop->hints_host_reserved_va_range.end_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HOST_END; + prop->hints_host_hpage_reserved_va_range.start_addr = + RESERVED_VA_RANGE_FOR_ARC_ON_HOST_HPAGE_START; + prop->hints_host_hpage_reserved_va_range.end_addr = + RESERVED_VA_RANGE_FOR_ARC_ON_HOST_HPAGE_END; + + if (PAGE_SIZE == SZ_64K) { + prop->pmmu.hop_shifts[MMU_HOP0] = HOP0_SHIFT_64K; + prop->pmmu.hop_shifts[MMU_HOP1] = HOP1_SHIFT_64K; + prop->pmmu.hop_shifts[MMU_HOP2] = HOP2_SHIFT_64K; + prop->pmmu.hop_shifts[MMU_HOP3] = HOP3_SHIFT_64K; + prop->pmmu.hop_shifts[MMU_HOP4] = HOP4_SHIFT_64K; + prop->pmmu.hop_shifts[MMU_HOP5] = HOP5_SHIFT_64K; + prop->pmmu.hop_masks[MMU_HOP0] = HOP0_MASK_64K; + prop->pmmu.hop_masks[MMU_HOP1] = HOP1_MASK_64K; + prop->pmmu.hop_masks[MMU_HOP2] = HOP2_MASK_64K; + prop->pmmu.hop_masks[MMU_HOP3] = HOP3_MASK_64K; + prop->pmmu.hop_masks[MMU_HOP4] = HOP4_MASK_64K; + prop->pmmu.hop_masks[MMU_HOP5] = HOP5_MASK_64K; + prop->pmmu.start_addr = VA_HOST_SPACE_PAGE_START; + prop->pmmu.end_addr = VA_HOST_SPACE_PAGE_END; + prop->pmmu.page_size = PAGE_SIZE_64KB; + + /* shifts and masks are the same in PMMU and HPMMU */ + memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu)); + prop->pmmu_huge.page_size = PAGE_SIZE_16MB; + prop->pmmu_huge.start_addr = VA_HOST_SPACE_HPAGE_START; + prop->pmmu_huge.end_addr = VA_HOST_SPACE_HPAGE_END; + } else { + prop->pmmu.hop_shifts[MMU_HOP0] = HOP0_SHIFT_4K; + prop->pmmu.hop_shifts[MMU_HOP1] = HOP1_SHIFT_4K; + prop->pmmu.hop_shifts[MMU_HOP2] = HOP2_SHIFT_4K; + prop->pmmu.hop_shifts[MMU_HOP3] = HOP3_SHIFT_4K; + prop->pmmu.hop_shifts[MMU_HOP4] = HOP4_SHIFT_4K; + prop->pmmu.hop_shifts[MMU_HOP5] = HOP5_SHIFT_4K; + prop->pmmu.hop_masks[MMU_HOP0] = HOP0_MASK_4K; + prop->pmmu.hop_masks[MMU_HOP1] = HOP1_MASK_4K; + prop->pmmu.hop_masks[MMU_HOP2] = HOP2_MASK_4K; + prop->pmmu.hop_masks[MMU_HOP3] = HOP3_MASK_4K; + prop->pmmu.hop_masks[MMU_HOP4] = HOP4_MASK_4K; + prop->pmmu.hop_masks[MMU_HOP5] = HOP5_MASK_4K; + prop->pmmu.start_addr = VA_HOST_SPACE_PAGE_START; + prop->pmmu.end_addr = VA_HOST_SPACE_PAGE_END; + prop->pmmu.page_size = PAGE_SIZE_4KB; + + /* shifts and masks are the same in PMMU and HPMMU */ + memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu)); + prop->pmmu_huge.page_size = PAGE_SIZE_2MB; + prop->pmmu_huge.start_addr = VA_HOST_SPACE_HPAGE_START; + prop->pmmu_huge.end_addr = VA_HOST_SPACE_HPAGE_END; + } + + prop->num_engine_cores = CPU_ID_MAX; + prop->cfg_size = CFG_SIZE; + prop->max_asid = MAX_ASID; + prop->num_of_events = GAUDI2_EVENT_SIZE; + + prop->dc_power_default = DC_POWER_DEFAULT; + + prop->cb_pool_cb_cnt = GAUDI2_CB_POOL_CB_CNT; + prop->cb_pool_cb_size = GAUDI2_CB_POOL_CB_SIZE; + prop->pcie_dbi_base_address = CFG_BASE + mmPCIE_DBI_BASE; + prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI; + + strncpy(prop->cpucp_info.card_name, GAUDI2_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN); + + prop->mme_master_slave_mode = 1; + + prop->first_available_user_sob[0] = GAUDI2_RESERVED_SOB_NUMBER + + (num_sync_stream_queues * HL_RSVD_SOBS); + + prop->first_available_user_mon[0] = GAUDI2_RESERVED_MON_NUMBER + + (num_sync_stream_queues * HL_RSVD_MONS); + + prop->first_available_user_interrupt = GAUDI2_IRQ_NUM_USER_FIRST; + + prop->first_available_cq[0] = GAUDI2_RESERVED_CQ_NUMBER; + + prop->fw_cpu_boot_dev_sts0_valid = false; + prop->fw_cpu_boot_dev_sts1_valid = false; + prop->hard_reset_done_by_fw = false; + prop->gic_interrupts_enable = true; + + prop->server_type = HL_SERVER_TYPE_UNKNOWN; + + prop->max_dec = NUMBER_OF_DEC; + + prop->clk_pll_index = HL_GAUDI2_MME_PLL; + + prop->dma_mask = 64; + + return 0; +} + +static int gaudi2_pci_bars_map(struct hl_device *hdev) +{ + static const char * const name[] = {"CFG_SRAM", "MSIX", "DRAM"}; + bool is_wc[3] = {false, false, true}; + int rc; + + rc = hl_pci_bars_map(hdev, name, is_wc); + if (rc) + return rc; + + hdev->rmmio = hdev->pcie_bar[SRAM_CFG_BAR_ID] + (CFG_BASE - STM_FLASH_BASE_ADDR); + + return 0; +} + +static u64 gaudi2_set_hbm_bar_base(struct hl_device *hdev, u64 addr) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + struct hl_inbound_pci_region pci_region; + u64 old_addr = addr; + int rc; + + if ((gaudi2) && (gaudi2->dram_bar_cur_addr == addr)) + return old_addr; + + if (hdev->asic_prop.iatu_done_by_fw) + return U64_MAX; + + /* Inbound Region 2 - Bar 4 - Point to DRAM */ + pci_region.mode = PCI_BAR_MATCH_MODE; + pci_region.bar = DRAM_BAR_ID; + pci_region.addr = addr; + rc = hl_pci_set_inbound_region(hdev, 2, &pci_region); + if (rc) + return U64_MAX; + + if (gaudi2) { + old_addr = gaudi2->dram_bar_cur_addr; + gaudi2->dram_bar_cur_addr = addr; + } + + return old_addr; +} + +static int gaudi2_init_iatu(struct hl_device *hdev) +{ + struct hl_inbound_pci_region inbound_region; + struct hl_outbound_pci_region outbound_region; + u32 bar_addr_low, bar_addr_high; + int rc; + + if (hdev->asic_prop.iatu_done_by_fw) + return 0; + + /* Temporary inbound Region 0 - Bar 0 - Point to CFG + * We must map this region in BAR match mode in order to + * fetch BAR physical base address + */ + inbound_region.mode = PCI_BAR_MATCH_MODE; + inbound_region.bar = SRAM_CFG_BAR_ID; + /* Base address must be aligned to Bar size which is 256 MB */ + inbound_region.addr = STM_FLASH_BASE_ADDR - STM_FLASH_ALIGNED_OFF; + rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region); + if (rc) + return rc; + + /* Fetch physical BAR address */ + bar_addr_high = RREG32(mmPCIE_DBI_BAR1_REG + STM_FLASH_ALIGNED_OFF); + bar_addr_low = RREG32(mmPCIE_DBI_BAR0_REG + STM_FLASH_ALIGNED_OFF) & ~0xF; + + hdev->pcie_bar_phys[SRAM_CFG_BAR_ID] = (u64)bar_addr_high << 32 | bar_addr_low; + + /* Inbound Region 0 - Bar 0 - Point to CFG */ + inbound_region.mode = PCI_ADDRESS_MATCH_MODE; + inbound_region.bar = SRAM_CFG_BAR_ID; + inbound_region.offset_in_bar = 0; + inbound_region.addr = STM_FLASH_BASE_ADDR; + inbound_region.size = CFG_REGION_SIZE; + rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region); + if (rc) + return rc; + + /* Inbound Region 1 - Bar 0 - Point to BAR0_RESERVED + SRAM */ + inbound_region.mode = PCI_ADDRESS_MATCH_MODE; + inbound_region.bar = SRAM_CFG_BAR_ID; + inbound_region.offset_in_bar = CFG_REGION_SIZE; + inbound_region.addr = BAR0_RSRVD_BASE_ADDR; + inbound_region.size = BAR0_RSRVD_SIZE + SRAM_SIZE; + rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region); + if (rc) + return rc; + + /* Inbound Region 2 - Bar 4 - Point to DRAM */ + inbound_region.mode = PCI_BAR_MATCH_MODE; + inbound_region.bar = DRAM_BAR_ID; + inbound_region.addr = DRAM_PHYS_BASE; + rc = hl_pci_set_inbound_region(hdev, 2, &inbound_region); + if (rc) + return rc; + + /* Outbound Region 0 - Point to Host */ + outbound_region.addr = HOST_PHYS_BASE_0; + outbound_region.size = HOST_PHYS_SIZE_0; + rc = hl_pci_set_outbound_region(hdev, &outbound_region); + + return rc; +} + +static enum hl_device_hw_state gaudi2_get_hw_state(struct hl_device *hdev) +{ + return RREG32(mmHW_STATE); +} + +static int gaudi2_tpc_binning_init_prop(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + + /* + * check for error condition in which number of binning candidates + * is higher than the maximum supported by the driver + */ + if (hweight64(hdev->tpc_binning) > MAX_CLUSTER_BINNING_FAULTY_TPCS) { + dev_err(hdev->dev, "TPC binning is supported for max of %d faulty TPCs, provided mask 0x%llx\n", + MAX_CLUSTER_BINNING_FAULTY_TPCS, + hdev->tpc_binning); + return -EINVAL; + } + + prop->tpc_binning_mask = hdev->tpc_binning; + prop->tpc_enabled_mask = GAUDI2_TPC_FULL_MASK; + + return 0; +} + +static int gaudi2_set_tpc_binning_masks(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hw_queue_properties *q_props = prop->hw_queues_props; + u64 tpc_binning_mask; + u8 subst_idx = 0; + int i, rc; + + rc = gaudi2_tpc_binning_init_prop(hdev); + if (rc) + return rc; + + tpc_binning_mask = prop->tpc_binning_mask; + + for (i = 0 ; i < MAX_FAULTY_TPCS ; i++) { + u8 subst_seq, binned, qid_base; + + if (tpc_binning_mask == 0) + break; + + if (subst_idx == 0) { + subst_seq = TPC_ID_DCORE0_TPC6; + qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0; + } else { + subst_seq = TPC_ID_DCORE3_TPC5; + qid_base = GAUDI2_QUEUE_ID_DCORE3_TPC_5_0; + } + + + /* clear bit from mask */ + binned = __ffs(tpc_binning_mask); + /* + * Coverity complains about possible out-of-bound access in + * clear_bit + */ + if (binned >= TPC_ID_SIZE) { + dev_err(hdev->dev, + "Invalid binned TPC (binning mask: %llx)\n", + tpc_binning_mask); + return -EINVAL; + } + clear_bit(binned, (unsigned long *)&tpc_binning_mask); + + /* also clear replacing TPC bit from enabled mask */ + clear_bit(subst_seq, (unsigned long *)&prop->tpc_enabled_mask); + + /* bin substite TPC's Qs */ + q_props[qid_base].binned = 1; + q_props[qid_base + 1].binned = 1; + q_props[qid_base + 2].binned = 1; + q_props[qid_base + 3].binned = 1; + + subst_idx++; + } + + return 0; +} + +static int gaudi2_set_dec_binning_masks(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u8 num_faulty; + + num_faulty = hweight32(hdev->decoder_binning); + + /* + * check for error condition in which number of binning candidates + * is higher than the maximum supported by the driver + */ + if (num_faulty > MAX_FAULTY_DECODERS) { + dev_err(hdev->dev, "decoder binning is supported for max of single faulty decoder, provided mask 0x%x\n", + hdev->decoder_binning); + return -EINVAL; + } + + prop->decoder_binning_mask = (hdev->decoder_binning & GAUDI2_DECODER_FULL_MASK); + + if (prop->decoder_binning_mask) + prop->decoder_enabled_mask = (GAUDI2_DECODER_FULL_MASK & ~BIT(DEC_ID_PCIE_VDEC1)); + else + prop->decoder_enabled_mask = GAUDI2_DECODER_FULL_MASK; + + return 0; +} + +static void gaudi2_set_dram_binning_masks(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + + /* check if we should override default binning */ + if (!hdev->dram_binning) { + prop->dram_binning_mask = 0; + prop->dram_enabled_mask = GAUDI2_DRAM_FULL_MASK; + return; + } + + /* set DRAM binning constraints */ + prop->faulty_dram_cluster_map |= hdev->dram_binning; + prop->dram_binning_mask = hdev->dram_binning; + prop->dram_enabled_mask = GAUDI2_DRAM_FULL_MASK & ~BIT(HBM_ID5); +} + +static int gaudi2_set_edma_binning_masks(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hw_queue_properties *q_props; + u8 seq, num_faulty; + + num_faulty = hweight32(hdev->edma_binning); + + /* + * check for error condition in which number of binning candidates + * is higher than the maximum supported by the driver + */ + if (num_faulty > MAX_FAULTY_EDMAS) { + dev_err(hdev->dev, + "EDMA binning is supported for max of single faulty EDMA, provided mask 0x%x\n", + hdev->edma_binning); + return -EINVAL; + } + + if (!hdev->edma_binning) { + prop->edma_binning_mask = 0; + prop->edma_enabled_mask = GAUDI2_EDMA_FULL_MASK; + return 0; + } + + seq = __ffs((unsigned long)hdev->edma_binning); + + /* set binning constraints */ + prop->faulty_dram_cluster_map |= BIT(edma_to_hbm_cluster[seq]); + prop->edma_binning_mask = hdev->edma_binning; + prop->edma_enabled_mask = GAUDI2_EDMA_FULL_MASK & ~BIT(EDMA_ID_DCORE3_INSTANCE1); + + /* bin substitute EDMA's queue */ + q_props = prop->hw_queues_props; + q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0].binned = 1; + q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1].binned = 1; + q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2].binned = 1; + q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3].binned = 1; + + return 0; +} + +static int gaudi2_set_xbar_edge_enable_mask(struct hl_device *hdev, u32 xbar_edge_iso_mask) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u8 num_faulty, seq; + + /* check if we should override default binning */ + if (!xbar_edge_iso_mask) { + prop->xbar_edge_enabled_mask = GAUDI2_XBAR_EDGE_FULL_MASK; + return 0; + } + + /* + * note that it can be set to value other than 0 only after cpucp packet (i.e. + * only the FW can set a redundancy value). for user it'll always be 0. + */ + num_faulty = hweight32(xbar_edge_iso_mask); + + /* + * check for error condition in which number of binning candidates + * is higher than the maximum supported by the driver + */ + if (num_faulty > MAX_FAULTY_XBARS) { + dev_err(hdev->dev, "we cannot have more than %d faulty XBAR EDGE\n", + MAX_FAULTY_XBARS); + return -EINVAL; + } + + seq = __ffs((unsigned long)xbar_edge_iso_mask); + + /* set binning constraints */ + prop->faulty_dram_cluster_map |= BIT(xbar_edge_to_hbm_cluster[seq]); + prop->xbar_edge_enabled_mask = (~xbar_edge_iso_mask) & GAUDI2_XBAR_EDGE_FULL_MASK; + + return 0; +} + +static int gaudi2_set_cluster_binning_masks_common(struct hl_device *hdev, u8 xbar_edge_iso_mask) +{ + int rc; + + /* + * mark all clusters as good, each component will "fail" cluster + * based on eFuse/user values. + * If more than single cluster is faulty- the chip is unusable + */ + hdev->asic_prop.faulty_dram_cluster_map = 0; + + gaudi2_set_dram_binning_masks(hdev); + + rc = gaudi2_set_edma_binning_masks(hdev); + if (rc) + return rc; + + rc = gaudi2_set_xbar_edge_enable_mask(hdev, xbar_edge_iso_mask); + if (rc) + return rc; + + + /* always initially set to full mask */ + hdev->asic_prop.hmmu_hif_enabled_mask = GAUDI2_HIF_HMMU_FULL_MASK; + + return 0; +} + +static int gaudi2_set_cluster_binning_masks(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + int rc; + + rc = gaudi2_set_cluster_binning_masks_common(hdev, prop->cpucp_info.xbar_binning_mask); + if (rc) + return rc; + + /* if we have DRAM binning reported by FW we should perform cluster config */ + if (prop->faulty_dram_cluster_map) { + u8 cluster_seq = __ffs((unsigned long)prop->faulty_dram_cluster_map); + + prop->hmmu_hif_enabled_mask = cluster_hmmu_hif_enabled_mask[cluster_seq]; + } + + return 0; +} + +static int gaudi2_cpucp_info_get(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + struct asic_fixed_properties *prop = &hdev->asic_prop; + long max_power; + u64 dram_size; + int rc; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) + return 0; + + /* No point of asking this information again when not doing hard reset, as the device + * CPU hasn't been reset + */ + if (hdev->reset_info.in_compute_reset) + return 0; + + rc = hl_fw_cpucp_handshake(hdev, mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_DEV_STS1, mmCPU_BOOT_ERR0, + mmCPU_BOOT_ERR1); + if (rc) + return rc; + + dram_size = le64_to_cpu(prop->cpucp_info.dram_size); + if (dram_size) { + /* we can have wither 5 or 6 HBMs. other values are invalid */ + + if ((dram_size != ((GAUDI2_HBM_NUM - 1) * SZ_16G)) && + (dram_size != (GAUDI2_HBM_NUM * SZ_16G))) { + dev_err(hdev->dev, + "F/W reported invalid DRAM size %llu. Trying to use default size %llu\n", + dram_size, prop->dram_size); + dram_size = prop->dram_size; + } + + prop->dram_size = dram_size; + prop->dram_end_address = prop->dram_base_address + dram_size; + } + + if (!strlen(prop->cpucp_info.card_name)) + strncpy(prop->cpucp_info.card_name, GAUDI2_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN); + + /* Overwrite binning masks with the actual binning values from F/W */ + hdev->dram_binning = prop->cpucp_info.dram_binning_mask; + hdev->edma_binning = prop->cpucp_info.edma_binning_mask; + hdev->tpc_binning = le64_to_cpu(prop->cpucp_info.tpc_binning_mask); + hdev->decoder_binning = lower_32_bits(le64_to_cpu(prop->cpucp_info.decoder_binning_mask)); + + /* + * at this point the DRAM parameters need to be updated according to data obtained + * from the FW + */ + rc = hdev->asic_funcs->set_dram_properties(hdev); + if (rc) + return rc; + + rc = gaudi2_set_cluster_binning_masks(hdev); + if (rc) + return rc; + + rc = gaudi2_set_tpc_binning_masks(hdev); + if (rc) + return rc; + + rc = gaudi2_set_dec_binning_masks(hdev); + if (rc) + return rc; + + max_power = hl_fw_get_max_power(hdev); + if (max_power < 0) + return max_power; + + prop->max_power_default = (u64) max_power; + + return 0; +} + +static int gaudi2_fetch_psoc_frequency(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u16 pll_freq_arr[HL_PLL_NUM_OUTPUTS]; + int rc; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) + return 0; + + rc = hl_fw_cpucp_pll_info_get(hdev, HL_GAUDI2_CPU_PLL, pll_freq_arr); + if (rc) + return rc; + + hdev->asic_prop.psoc_timestamp_frequency = pll_freq_arr[3]; + + return 0; +} + +static int gaudi2_early_init(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct pci_dev *pdev = hdev->pdev; + resource_size_t pci_bar_size; + int rc; + + rc = gaudi2_set_fixed_properties(hdev); + if (rc) + return rc; + + /* Check BAR sizes */ + pci_bar_size = pci_resource_len(pdev, SRAM_CFG_BAR_ID); + + if (pci_bar_size != CFG_BAR_SIZE) { + dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n", + SRAM_CFG_BAR_ID, &pci_bar_size, CFG_BAR_SIZE); + rc = -ENODEV; + goto free_queue_props; + } + + pci_bar_size = pci_resource_len(pdev, MSIX_BAR_ID); + if (pci_bar_size != MSIX_BAR_SIZE) { + dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n", + MSIX_BAR_ID, &pci_bar_size, MSIX_BAR_SIZE); + rc = -ENODEV; + goto free_queue_props; + } + + prop->dram_pci_bar_size = pci_resource_len(pdev, DRAM_BAR_ID); + hdev->dram_pci_bar_start = pci_resource_start(pdev, DRAM_BAR_ID); + + /* + * Only in pldm driver config iATU + */ + if (hdev->pldm) + hdev->asic_prop.iatu_done_by_fw = false; + else + hdev->asic_prop.iatu_done_by_fw = true; + + rc = hl_pci_init(hdev); + if (rc) + goto free_queue_props; + + /* Before continuing in the initialization, we need to read the preboot + * version to determine whether we run with a security-enabled firmware + */ + rc = hl_fw_read_preboot_status(hdev); + if (rc) { + if (hdev->reset_on_preboot_fail) + hdev->asic_funcs->hw_fini(hdev, true, false); + goto pci_fini; + } + + if (gaudi2_get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) { + dev_dbg(hdev->dev, "H/W state is dirty, must reset before initializing\n"); + hdev->asic_funcs->hw_fini(hdev, true, false); + } + + return 0; + +pci_fini: + hl_pci_fini(hdev); +free_queue_props: + kfree(hdev->asic_prop.hw_queues_props); + return rc; +} + +static int gaudi2_early_fini(struct hl_device *hdev) +{ + kfree(hdev->asic_prop.hw_queues_props); + hl_pci_fini(hdev); + + return 0; +} + +static bool gaudi2_is_arc_nic_owned(u64 arc_id) +{ + switch (arc_id) { + case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23: + return true; + default: + return false; + } +} + +static bool gaudi2_is_arc_tpc_owned(u64 arc_id) +{ + switch (arc_id) { + case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24: + return true; + default: + return false; + } +} + +static void gaudi2_init_arcs(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u64 arc_id; + u32 i; + + for (i = CPU_ID_SCHED_ARC0 ; i <= CPU_ID_SCHED_ARC3 ; i++) { + if (gaudi2_is_arc_enabled(hdev, i)) + continue; + + gaudi2_set_arc_id_cap(hdev, i); + } + + for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i += 4) { + if (!gaudi2_is_queue_enabled(hdev, i)) + continue; + + arc_id = gaudi2_queue_id_to_arc_id[i]; + if (gaudi2_is_arc_enabled(hdev, arc_id)) + continue; + + if (gaudi2_is_arc_nic_owned(arc_id) && + !(hdev->nic_ports_mask & BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0))) + continue; + + if (gaudi2_is_arc_tpc_owned(arc_id) && !(gaudi2->tpc_hw_cap_initialized & + BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0))) + continue; + + gaudi2_set_arc_id_cap(hdev, arc_id); + } +} + +static int gaudi2_scrub_arc_dccm(struct hl_device *hdev, u32 cpu_id) +{ + u32 reg_base, reg_val; + int rc; + + switch (cpu_id) { + case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC3: + /* Each ARC scheduler has 2 consecutive DCCM blocks */ + rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id], + ARC_DCCM_BLOCK_SIZE * 2, true); + if (rc) + return rc; + break; + case CPU_ID_SCHED_ARC4: + case CPU_ID_SCHED_ARC5: + case CPU_ID_MME_QMAN_ARC0: + case CPU_ID_MME_QMAN_ARC1: + reg_base = gaudi2_arc_blocks_bases[cpu_id]; + + /* Scrub lower DCCM block */ + rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id], + ARC_DCCM_BLOCK_SIZE, true); + if (rc) + return rc; + + /* Switch to upper DCCM block */ + reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_MME_ARC_UPPER_DCCM_EN_VAL_MASK, 1); + WREG32(reg_base + ARC_DCCM_UPPER_EN_OFFSET, reg_val); + + /* Scrub upper DCCM block */ + rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id], + ARC_DCCM_BLOCK_SIZE, true); + if (rc) + return rc; + + /* Switch to lower DCCM block */ + reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_MME_ARC_UPPER_DCCM_EN_VAL_MASK, 0); + WREG32(reg_base + ARC_DCCM_UPPER_EN_OFFSET, reg_val); + break; + default: + rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id], + ARC_DCCM_BLOCK_SIZE, true); + if (rc) + return rc; + } + + return 0; +} + +static void gaudi2_scrub_arcs_dccm(struct hl_device *hdev) +{ + u16 arc_id; + + for (arc_id = CPU_ID_SCHED_ARC0 ; arc_id < CPU_ID_MAX ; arc_id++) { + if (!gaudi2_is_arc_enabled(hdev, arc_id)) + continue; + + gaudi2_scrub_arc_dccm(hdev, arc_id); + } +} + +static int gaudi2_late_init(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int rc; + + hdev->asic_prop.supports_advanced_cpucp_rc = true; + + rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_ENABLE_PCI_ACCESS, + gaudi2->virt_msix_db_dma_addr); + if (rc) { + dev_err(hdev->dev, "Failed to enable PCI access from CPU\n"); + return rc; + } + + rc = gaudi2_fetch_psoc_frequency(hdev); + if (rc) { + dev_err(hdev->dev, "Failed to fetch psoc frequency\n"); + goto disable_pci_access; + } + + gaudi2_init_arcs(hdev); + gaudi2_scrub_arcs_dccm(hdev); + gaudi2_init_security(hdev); + + return 0; + +disable_pci_access: + hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0); + + return rc; +} + +static void gaudi2_late_fini(struct hl_device *hdev) +{ + hl_hwmon_release_resources(hdev); +} + +static void gaudi2_user_mapped_dec_init(struct gaudi2_device *gaudi2, u32 start_idx) +{ + struct user_mapped_block *blocks = gaudi2->mapped_blocks; + + HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE0_DEC0_CMD_BASE, HL_BLOCK_SIZE); + HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE0_DEC1_CMD_BASE, HL_BLOCK_SIZE); + HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE1_DEC0_CMD_BASE, HL_BLOCK_SIZE); + HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE1_DEC1_CMD_BASE, HL_BLOCK_SIZE); + HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE2_DEC0_CMD_BASE, HL_BLOCK_SIZE); + HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE2_DEC1_CMD_BASE, HL_BLOCK_SIZE); + HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE3_DEC0_CMD_BASE, HL_BLOCK_SIZE); + HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE3_DEC1_CMD_BASE, HL_BLOCK_SIZE); + HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmPCIE_DEC0_CMD_BASE, HL_BLOCK_SIZE); + HL_USR_MAPPED_BLK_INIT(&blocks[start_idx], mmPCIE_DEC1_CMD_BASE, HL_BLOCK_SIZE); +} + +static void gaudi2_user_mapped_blocks_init(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + struct user_mapped_block *blocks = gaudi2->mapped_blocks; + u32 block_size, umr_start_idx, num_umr_blocks; + int i; + + for (i = 0 ; i < NUM_ARC_CPUS ; i++) { + if (i >= CPU_ID_SCHED_ARC0 && i <= CPU_ID_SCHED_ARC3) + block_size = ARC_DCCM_BLOCK_SIZE * 2; + else + block_size = ARC_DCCM_BLOCK_SIZE; + + blocks[i].address = gaudi2_arc_dccm_bases[i]; + blocks[i].size = block_size; + } + + blocks[NUM_ARC_CPUS].address = mmARC_FARM_ARC0_ACP_ENG_BASE; + blocks[NUM_ARC_CPUS].size = HL_BLOCK_SIZE; + + blocks[NUM_ARC_CPUS + 1].address = mmARC_FARM_ARC1_ACP_ENG_BASE; + blocks[NUM_ARC_CPUS + 1].size = HL_BLOCK_SIZE; + + blocks[NUM_ARC_CPUS + 2].address = mmARC_FARM_ARC2_ACP_ENG_BASE; + blocks[NUM_ARC_CPUS + 2].size = HL_BLOCK_SIZE; + + blocks[NUM_ARC_CPUS + 3].address = mmARC_FARM_ARC3_ACP_ENG_BASE; + blocks[NUM_ARC_CPUS + 3].size = HL_BLOCK_SIZE; + + blocks[NUM_ARC_CPUS + 4].address = mmDCORE0_MME_QM_ARC_ACP_ENG_BASE; + blocks[NUM_ARC_CPUS + 4].size = HL_BLOCK_SIZE; + + blocks[NUM_ARC_CPUS + 5].address = mmDCORE1_MME_QM_ARC_ACP_ENG_BASE; + blocks[NUM_ARC_CPUS + 5].size = HL_BLOCK_SIZE; + + blocks[NUM_ARC_CPUS + 6].address = mmDCORE2_MME_QM_ARC_ACP_ENG_BASE; + blocks[NUM_ARC_CPUS + 6].size = HL_BLOCK_SIZE; + + blocks[NUM_ARC_CPUS + 7].address = mmDCORE3_MME_QM_ARC_ACP_ENG_BASE; + blocks[NUM_ARC_CPUS + 7].size = HL_BLOCK_SIZE; + + umr_start_idx = NUM_ARC_CPUS + NUM_OF_USER_ACP_BLOCKS; + num_umr_blocks = NIC_NUMBER_OF_ENGINES * NUM_OF_USER_NIC_UMR_BLOCKS; + for (i = 0 ; i < num_umr_blocks ; i++) { + u8 nic_id, umr_block_id; + + nic_id = i / NUM_OF_USER_NIC_UMR_BLOCKS; + umr_block_id = i % NUM_OF_USER_NIC_UMR_BLOCKS; + + blocks[umr_start_idx + i].address = + mmNIC0_UMR0_0_UNSECURE_DOORBELL0_BASE + + (nic_id / NIC_NUMBER_OF_QM_PER_MACRO) * NIC_OFFSET + + (nic_id % NIC_NUMBER_OF_QM_PER_MACRO) * NIC_QM_OFFSET + + umr_block_id * NIC_UMR_OFFSET; + blocks[umr_start_idx + i].size = HL_BLOCK_SIZE; + } + + /* Expose decoder HW configuration block to user */ + gaudi2_user_mapped_dec_init(gaudi2, USR_MAPPED_BLK_DEC_START_IDX); + + for (i = 1; i < NUM_OF_DCORES; ++i) { + blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1)].size = SM_OBJS_BLOCK_SIZE; + blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1) + 1].size = HL_BLOCK_SIZE; + + blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1)].address = + mmDCORE0_SYNC_MNGR_OBJS_BASE + i * DCORE_OFFSET; + + blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1) + 1].address = + mmDCORE0_SYNC_MNGR_GLBL_BASE + i * DCORE_OFFSET; + } +} + +static int gaudi2_alloc_cpu_accessible_dma_mem(struct hl_device *hdev) +{ + dma_addr_t dma_addr_arr[GAUDI2_ALLOC_CPU_MEM_RETRY_CNT] = {}, end_addr; + void *virt_addr_arr[GAUDI2_ALLOC_CPU_MEM_RETRY_CNT] = {}; + int i, j, rc = 0; + + /* The device ARC works with 32-bits addresses, and because there is a single HW register + * that holds the extension bits (49..28), these bits must be identical in all the allocated + * range. + */ + + for (i = 0 ; i < GAUDI2_ALLOC_CPU_MEM_RETRY_CNT ; i++) { + virt_addr_arr[i] = hl_asic_dma_alloc_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, + &dma_addr_arr[i], GFP_KERNEL | __GFP_ZERO); + if (!virt_addr_arr[i]) { + rc = -ENOMEM; + goto free_dma_mem_arr; + } + + end_addr = dma_addr_arr[i] + HL_CPU_ACCESSIBLE_MEM_SIZE - 1; + if (GAUDI2_ARC_PCI_MSB_ADDR(dma_addr_arr[i]) == GAUDI2_ARC_PCI_MSB_ADDR(end_addr)) + break; + } + + if (i == GAUDI2_ALLOC_CPU_MEM_RETRY_CNT) { + dev_err(hdev->dev, + "MSB of ARC accessible DMA memory are not identical in all range\n"); + rc = -EFAULT; + goto free_dma_mem_arr; + } + + hdev->cpu_accessible_dma_mem = virt_addr_arr[i]; + hdev->cpu_accessible_dma_address = dma_addr_arr[i]; + +free_dma_mem_arr: + for (j = 0 ; j < i ; j++) + hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, virt_addr_arr[j], + dma_addr_arr[j]); + + return rc; +} + +static void gaudi2_set_pci_memory_regions(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct pci_mem_region *region; + + /* CFG */ + region = &hdev->pci_mem_region[PCI_REGION_CFG]; + region->region_base = CFG_BASE; + region->region_size = CFG_SIZE; + region->offset_in_bar = CFG_BASE - STM_FLASH_BASE_ADDR; + region->bar_size = CFG_BAR_SIZE; + region->bar_id = SRAM_CFG_BAR_ID; + region->used = 1; + + /* SRAM */ + region = &hdev->pci_mem_region[PCI_REGION_SRAM]; + region->region_base = SRAM_BASE_ADDR; + region->region_size = SRAM_SIZE; + region->offset_in_bar = CFG_REGION_SIZE + BAR0_RSRVD_SIZE; + region->bar_size = CFG_BAR_SIZE; + region->bar_id = SRAM_CFG_BAR_ID; + region->used = 1; + + /* DRAM */ + region = &hdev->pci_mem_region[PCI_REGION_DRAM]; + region->region_base = DRAM_PHYS_BASE; + region->region_size = hdev->asic_prop.dram_size; + region->offset_in_bar = 0; + region->bar_size = prop->dram_pci_bar_size; + region->bar_id = DRAM_BAR_ID; + region->used = 1; +} + +static void gaudi2_user_interrupt_setup(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + int i, j, k; + + /* Initialize common user CQ interrupt */ + HL_USR_INTR_STRUCT_INIT(hdev->common_user_cq_interrupt, hdev, + HL_COMMON_USER_CQ_INTERRUPT_ID, false); + + /* Initialize common decoder interrupt */ + HL_USR_INTR_STRUCT_INIT(hdev->common_decoder_interrupt, hdev, + HL_COMMON_DEC_INTERRUPT_ID, true); + + /* User interrupts structure holds both decoder and user interrupts from various engines. + * We first initialize the decoder interrupts and then we add the user interrupts. + * The only limitation is that the last decoder interrupt id must be smaller + * then GAUDI2_IRQ_NUM_USER_FIRST. This is checked at compilation time. + */ + + /* Initialize decoder interrupts, expose only normal interrupts, + * error interrupts to be handled by driver + */ + for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM, j = 0 ; i <= GAUDI2_IRQ_NUM_SHARED_DEC1_NRM; + i += 2, j++) + HL_USR_INTR_STRUCT_INIT(hdev->user_interrupt[j], hdev, i, true); + + for (i = GAUDI2_IRQ_NUM_USER_FIRST, k = 0 ; k < prop->user_interrupt_count; i++, j++, k++) + HL_USR_INTR_STRUCT_INIT(hdev->user_interrupt[j], hdev, i, false); +} + +static inline int gaudi2_get_non_zero_random_int(void) +{ + int rand = get_random_u32(); + + return rand ? rand : 1; +} + +static int gaudi2_sw_init(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct gaudi2_device *gaudi2; + int i, rc; + + /* Allocate device structure */ + gaudi2 = kzalloc(sizeof(*gaudi2), GFP_KERNEL); + if (!gaudi2) + return -ENOMEM; + + for (i = 0 ; i < ARRAY_SIZE(gaudi2_irq_map_table) ; i++) { + if (gaudi2_irq_map_table[i].msg || !gaudi2_irq_map_table[i].valid) + continue; + + if (gaudi2->num_of_valid_hw_events == GAUDI2_EVENT_SIZE) { + dev_err(hdev->dev, "H/W events array exceeds the limit of %u events\n", + GAUDI2_EVENT_SIZE); + rc = -EINVAL; + goto free_gaudi2_device; + } + + gaudi2->hw_events[gaudi2->num_of_valid_hw_events++] = gaudi2_irq_map_table[i].fc_id; + } + + for (i = 0 ; i < MME_NUM_OF_LFSR_SEEDS ; i++) + gaudi2->lfsr_rand_seeds[i] = gaudi2_get_non_zero_random_int(); + + gaudi2->cpucp_info_get = gaudi2_cpucp_info_get; + + hdev->asic_specific = gaudi2; + + /* Create DMA pool for small allocations. + * Use DEVICE_CACHE_LINE_SIZE for alignment since the NIC memory-mapped + * PI/CI registers allocated from this pool have this restriction + */ + hdev->dma_pool = dma_pool_create(dev_name(hdev->dev), &hdev->pdev->dev, + GAUDI2_DMA_POOL_BLK_SIZE, DEVICE_CACHE_LINE_SIZE, 0); + if (!hdev->dma_pool) { + dev_err(hdev->dev, "failed to create DMA pool\n"); + rc = -ENOMEM; + goto free_gaudi2_device; + } + + rc = gaudi2_alloc_cpu_accessible_dma_mem(hdev); + if (rc) + goto free_dma_pool; + + hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1); + if (!hdev->cpu_accessible_dma_pool) { + dev_err(hdev->dev, "Failed to create CPU accessible DMA pool\n"); + rc = -ENOMEM; + goto free_cpu_dma_mem; + } + + rc = gen_pool_add(hdev->cpu_accessible_dma_pool, (uintptr_t) hdev->cpu_accessible_dma_mem, + HL_CPU_ACCESSIBLE_MEM_SIZE, -1); + if (rc) { + dev_err(hdev->dev, "Failed to add memory to CPU accessible DMA pool\n"); + rc = -EFAULT; + goto free_cpu_accessible_dma_pool; + } + + gaudi2->virt_msix_db_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, prop->pmmu.page_size, + &gaudi2->virt_msix_db_dma_addr); + if (!gaudi2->virt_msix_db_cpu_addr) { + dev_err(hdev->dev, "Failed to allocate DMA memory for virtual MSI-X doorbell\n"); + rc = -ENOMEM; + goto free_cpu_accessible_dma_pool; + } + + spin_lock_init(&gaudi2->hw_queues_lock); + + gaudi2->scratchpad_kernel_address = hl_asic_dma_alloc_coherent(hdev, PAGE_SIZE, + &gaudi2->scratchpad_bus_address, + GFP_KERNEL | __GFP_ZERO); + if (!gaudi2->scratchpad_kernel_address) { + rc = -ENOMEM; + goto free_virt_msix_db_mem; + } + + gaudi2_user_mapped_blocks_init(hdev); + + /* Initialize user interrupts */ + gaudi2_user_interrupt_setup(hdev); + + hdev->supports_coresight = true; + hdev->supports_sync_stream = true; + hdev->supports_cb_mapping = true; + hdev->supports_wait_for_multi_cs = false; + + prop->supports_compute_reset = true; + + hdev->asic_funcs->set_pci_memory_regions(hdev); + + return 0; + +free_virt_msix_db_mem: + hl_cpu_accessible_dma_pool_free(hdev, prop->pmmu.page_size, gaudi2->virt_msix_db_cpu_addr); +free_cpu_accessible_dma_pool: + gen_pool_destroy(hdev->cpu_accessible_dma_pool); +free_cpu_dma_mem: + hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem, + hdev->cpu_accessible_dma_address); +free_dma_pool: + dma_pool_destroy(hdev->dma_pool); +free_gaudi2_device: + kfree(gaudi2); + return rc; +} + +static int gaudi2_sw_fini(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + hl_cpu_accessible_dma_pool_free(hdev, prop->pmmu.page_size, gaudi2->virt_msix_db_cpu_addr); + + gen_pool_destroy(hdev->cpu_accessible_dma_pool); + + hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem, + hdev->cpu_accessible_dma_address); + + hl_asic_dma_free_coherent(hdev, PAGE_SIZE, gaudi2->scratchpad_kernel_address, + gaudi2->scratchpad_bus_address); + + dma_pool_destroy(hdev->dma_pool); + + kfree(gaudi2); + + return 0; +} + +static void gaudi2_stop_qman_common(struct hl_device *hdev, u32 reg_base) +{ + WREG32(reg_base + QM_GLBL_CFG1_OFFSET, QM_GLBL_CFG1_PQF_STOP | + QM_GLBL_CFG1_CQF_STOP | + QM_GLBL_CFG1_CP_STOP); + + /* stop also the ARC */ + WREG32(reg_base + QM_GLBL_CFG2_OFFSET, QM_GLBL_CFG2_ARC_CQF_STOP); +} + +static void gaudi2_flush_qman_common(struct hl_device *hdev, u32 reg_base) +{ + WREG32(reg_base + QM_GLBL_CFG1_OFFSET, QM_GLBL_CFG1_PQF_FLUSH | + QM_GLBL_CFG1_CQF_FLUSH | + QM_GLBL_CFG1_CP_FLUSH); +} + +static void gaudi2_flush_qman_arc_common(struct hl_device *hdev, u32 reg_base) +{ + WREG32(reg_base + QM_GLBL_CFG2_OFFSET, QM_GLBL_CFG2_ARC_CQF_FLUSH); +} + +/** + * gaudi2_clear_qm_fence_counters_common - clear QM's fence counters + * + * @hdev: pointer to the habanalabs device structure + * @queue_id: queue to clear fence counters to + * @skip_fence: if true set maximum fence value to all fence counters to avoid + * getting stuck on any fence value. otherwise set all fence + * counters to 0 (standard clear of fence counters) + */ +static void gaudi2_clear_qm_fence_counters_common(struct hl_device *hdev, u32 queue_id, + bool skip_fence) +{ + u32 size, reg_base; + u32 addr, val; + + reg_base = gaudi2_qm_blocks_bases[queue_id]; + + addr = reg_base + QM_CP_FENCE0_CNT_0_OFFSET; + size = mmPDMA0_QM_CP_BARRIER_CFG - mmPDMA0_QM_CP_FENCE0_CNT_0; + + /* + * in case we want to make sure that QM that is stuck on a fence will + * be released we should set the fence counter to a higher value that + * the value the QM waiting for. to comply with any fence counter of + * any value we set maximum fence value to all counters + */ + val = skip_fence ? U32_MAX : 0; + gaudi2_memset_device_lbw(hdev, addr, size, val); +} + +static void gaudi2_qman_manual_flush_common(struct hl_device *hdev, u32 queue_id) +{ + u32 reg_base = gaudi2_qm_blocks_bases[queue_id]; + + gaudi2_clear_qm_fence_counters_common(hdev, queue_id, true); + gaudi2_flush_qman_common(hdev, reg_base); + gaudi2_flush_qman_arc_common(hdev, reg_base); +} + +static void gaudi2_stop_dma_qmans(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int dcore, inst; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK)) + goto stop_edma_qmans; + + /* Stop CPs of PDMA QMANs */ + gaudi2_stop_qman_common(hdev, mmPDMA0_QM_BASE); + gaudi2_stop_qman_common(hdev, mmPDMA1_QM_BASE); + +stop_edma_qmans: + if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK)) + return; + + for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { + for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) { + u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst; + u32 qm_base; + + if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq))) + continue; + + qm_base = mmDCORE0_EDMA0_QM_BASE + dcore * DCORE_OFFSET + + inst * DCORE_EDMA_OFFSET; + + /* Stop CPs of EDMA QMANs */ + gaudi2_stop_qman_common(hdev, qm_base); + } + } +} + +static void gaudi2_stop_mme_qmans(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 offset, i; + + offset = mmDCORE1_MME_QM_BASE - mmDCORE0_MME_QM_BASE; + + for (i = 0 ; i < NUM_OF_DCORES ; i++) { + if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i))) + continue; + + gaudi2_stop_qman_common(hdev, mmDCORE0_MME_QM_BASE + (i * offset)); + } +} + +static void gaudi2_stop_tpc_qmans(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_base; + int i; + + if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK)) + return; + + for (i = 0 ; i < TPC_ID_SIZE ; i++) { + if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i))) + continue; + + reg_base = gaudi2_qm_blocks_bases[gaudi2_tpc_id_to_queue_id[i]]; + gaudi2_stop_qman_common(hdev, reg_base); + } +} + +static void gaudi2_stop_rot_qmans(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_base; + int i; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK)) + return; + + for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) { + if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i))) + continue; + + reg_base = gaudi2_qm_blocks_bases[gaudi2_rot_id_to_queue_id[i]]; + gaudi2_stop_qman_common(hdev, reg_base); + } +} + +static void gaudi2_stop_nic_qmans(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_base, queue_id; + int i; + + if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK)) + return; + + queue_id = GAUDI2_QUEUE_ID_NIC_0_0; + + for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) { + if (!(hdev->nic_ports_mask & BIT(i))) + continue; + + reg_base = gaudi2_qm_blocks_bases[queue_id]; + gaudi2_stop_qman_common(hdev, reg_base); + } +} + +static void gaudi2_stall_dma_common(struct hl_device *hdev, u32 reg_base) +{ + u32 reg_val; + + reg_val = FIELD_PREP(PDMA0_CORE_CFG_1_HALT_MASK, 0x1); + WREG32(reg_base + DMA_CORE_CFG_1_OFFSET, reg_val); +} + +static void gaudi2_dma_stall(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int dcore, inst; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK)) + goto stall_edma; + + gaudi2_stall_dma_common(hdev, mmPDMA0_CORE_BASE); + gaudi2_stall_dma_common(hdev, mmPDMA1_CORE_BASE); + +stall_edma: + if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK)) + return; + + for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { + for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) { + u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst; + u32 core_base; + + if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq))) + continue; + + core_base = mmDCORE0_EDMA0_CORE_BASE + dcore * DCORE_OFFSET + + inst * DCORE_EDMA_OFFSET; + + /* Stall CPs of EDMA QMANs */ + gaudi2_stall_dma_common(hdev, core_base); + } + } +} + +static void gaudi2_mme_stall(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 offset, i; + + offset = mmDCORE1_MME_CTRL_LO_QM_STALL - mmDCORE0_MME_CTRL_LO_QM_STALL; + + for (i = 0 ; i < NUM_OF_DCORES ; i++) + if (gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i)) + WREG32(mmDCORE0_MME_CTRL_LO_QM_STALL + (i * offset), 1); +} + +static void gaudi2_tpc_stall(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_base; + int i; + + if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK)) + return; + + for (i = 0 ; i < TPC_ID_SIZE ; i++) { + if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i))) + continue; + + reg_base = gaudi2_tpc_cfg_blocks_bases[i]; + WREG32(reg_base + TPC_CFG_STALL_OFFSET, 1); + } +} + +static void gaudi2_rotator_stall(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_val; + int i; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK)) + return; + + reg_val = FIELD_PREP(ROT_MSS_HALT_WBC_MASK, 0x1) | + FIELD_PREP(ROT_MSS_HALT_RSB_MASK, 0x1) | + FIELD_PREP(ROT_MSS_HALT_MRSB_MASK, 0x1); + + for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) { + if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i))) + continue; + + WREG32(mmROT0_MSS_HALT + i * ROT_OFFSET, reg_val); + } +} + +static void gaudi2_disable_qman_common(struct hl_device *hdev, u32 reg_base) +{ + WREG32(reg_base + QM_GLBL_CFG0_OFFSET, 0); +} + +static void gaudi2_disable_dma_qmans(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int dcore, inst; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK)) + goto stop_edma_qmans; + + gaudi2_disable_qman_common(hdev, mmPDMA0_QM_BASE); + gaudi2_disable_qman_common(hdev, mmPDMA1_QM_BASE); + +stop_edma_qmans: + if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK)) + return; + + for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { + for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) { + u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst; + u32 qm_base; + + if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq))) + continue; + + qm_base = mmDCORE0_EDMA0_QM_BASE + dcore * DCORE_OFFSET + + inst * DCORE_EDMA_OFFSET; + + /* Disable CPs of EDMA QMANs */ + gaudi2_disable_qman_common(hdev, qm_base); + } + } +} + +static void gaudi2_disable_mme_qmans(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 offset, i; + + offset = mmDCORE1_MME_QM_BASE - mmDCORE0_MME_QM_BASE; + + for (i = 0 ; i < NUM_OF_DCORES ; i++) + if (gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i)) + gaudi2_disable_qman_common(hdev, mmDCORE0_MME_QM_BASE + (i * offset)); +} + +static void gaudi2_disable_tpc_qmans(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_base; + int i; + + if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK)) + return; + + for (i = 0 ; i < TPC_ID_SIZE ; i++) { + if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i))) + continue; + + reg_base = gaudi2_qm_blocks_bases[gaudi2_tpc_id_to_queue_id[i]]; + gaudi2_disable_qman_common(hdev, reg_base); + } +} + +static void gaudi2_disable_rot_qmans(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_base; + int i; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK)) + return; + + for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) { + if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i))) + continue; + + reg_base = gaudi2_qm_blocks_bases[gaudi2_rot_id_to_queue_id[i]]; + gaudi2_disable_qman_common(hdev, reg_base); + } +} + +static void gaudi2_disable_nic_qmans(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_base, queue_id; + int i; + + if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK)) + return; + + queue_id = GAUDI2_QUEUE_ID_NIC_0_0; + + for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) { + if (!(hdev->nic_ports_mask & BIT(i))) + continue; + + reg_base = gaudi2_qm_blocks_bases[queue_id]; + gaudi2_disable_qman_common(hdev, reg_base); + } +} + +static void gaudi2_enable_timestamp(struct hl_device *hdev) +{ + /* Disable the timestamp counter */ + WREG32(mmPSOC_TIMESTAMP_BASE, 0); + + /* Zero the lower/upper parts of the 64-bit counter */ + WREG32(mmPSOC_TIMESTAMP_BASE + 0xC, 0); + WREG32(mmPSOC_TIMESTAMP_BASE + 0x8, 0); + + /* Enable the counter */ + WREG32(mmPSOC_TIMESTAMP_BASE, 1); +} + +static void gaudi2_disable_timestamp(struct hl_device *hdev) +{ + /* Disable the timestamp counter */ + WREG32(mmPSOC_TIMESTAMP_BASE, 0); +} + +static const char *gaudi2_irq_name(u16 irq_number) +{ + switch (irq_number) { + case GAUDI2_IRQ_NUM_EVENT_QUEUE: + return "gaudi2 cpu eq"; + case GAUDI2_IRQ_NUM_COMPLETION: + return "gaudi2 completion"; + case GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ... GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM: + return gaudi2_vdec_irq_name[irq_number - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM]; + case GAUDI2_IRQ_NUM_USER_FIRST ... GAUDI2_IRQ_NUM_USER_LAST: + return "gaudi2 user completion"; + default: + return "invalid"; + } +} + +static void gaudi2_dec_disable_msix(struct hl_device *hdev, u32 max_irq_num) +{ + int i, irq, relative_idx; + struct hl_dec *dec; + + for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ; i < max_irq_num ; i++) { + irq = pci_irq_vector(hdev->pdev, i); + relative_idx = i - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM; + + dec = hdev->dec + relative_idx / 2; + + /* We pass different structures depending on the irq handler. For the abnormal + * interrupt we pass hl_dec and for the regular interrupt we pass the relevant + * user_interrupt entry + */ + free_irq(irq, ((relative_idx % 2) ? + (void *) dec : + (void *) &hdev->user_interrupt[dec->core_id])); + } +} + +static int gaudi2_dec_enable_msix(struct hl_device *hdev) +{ + int rc, i, irq_init_cnt, irq, relative_idx; + irq_handler_t irq_handler; + struct hl_dec *dec; + + for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM, irq_init_cnt = 0; + i <= GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM; + i++, irq_init_cnt++) { + + irq = pci_irq_vector(hdev->pdev, i); + relative_idx = i - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM; + + irq_handler = (relative_idx % 2) ? + hl_irq_handler_dec_abnrm : + hl_irq_handler_user_interrupt; + + dec = hdev->dec + relative_idx / 2; + + /* We pass different structures depending on the irq handler. For the abnormal + * interrupt we pass hl_dec and for the regular interrupt we pass the relevant + * user_interrupt entry + */ + rc = request_irq(irq, irq_handler, 0, gaudi2_irq_name(i), + ((relative_idx % 2) ? + (void *) dec : + (void *) &hdev->user_interrupt[dec->core_id])); + if (rc) { + dev_err(hdev->dev, "Failed to request IRQ %d", irq); + goto free_dec_irqs; + } + } + + return 0; + +free_dec_irqs: + gaudi2_dec_disable_msix(hdev, (GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + irq_init_cnt)); + return rc; +} + +static int gaudi2_enable_msix(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int rc, irq, i, j, user_irq_init_cnt; + irq_handler_t irq_handler; + struct hl_cq *cq; + + if (gaudi2->hw_cap_initialized & HW_CAP_MSIX) + return 0; + + rc = pci_alloc_irq_vectors(hdev->pdev, GAUDI2_MSIX_ENTRIES, GAUDI2_MSIX_ENTRIES, + PCI_IRQ_MSIX); + if (rc < 0) { + dev_err(hdev->dev, "MSI-X: Failed to enable support -- %d/%d\n", + GAUDI2_MSIX_ENTRIES, rc); + return rc; + } + + irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION); + cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_CS_COMPLETION]; + rc = request_irq(irq, hl_irq_handler_cq, 0, gaudi2_irq_name(GAUDI2_IRQ_NUM_COMPLETION), cq); + if (rc) { + dev_err(hdev->dev, "Failed to request IRQ %d", irq); + goto free_irq_vectors; + } + + irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE); + rc = request_irq(irq, hl_irq_handler_eq, 0, gaudi2_irq_name(GAUDI2_IRQ_NUM_EVENT_QUEUE), + &hdev->event_queue); + if (rc) { + dev_err(hdev->dev, "Failed to request IRQ %d", irq); + goto free_completion_irq; + } + + rc = gaudi2_dec_enable_msix(hdev); + if (rc) { + dev_err(hdev->dev, "Failed to enable decoder IRQ"); + goto free_event_irq; + } + + for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count, user_irq_init_cnt = 0; + user_irq_init_cnt < prop->user_interrupt_count; + i++, j++, user_irq_init_cnt++) { + + irq = pci_irq_vector(hdev->pdev, i); + irq_handler = hl_irq_handler_user_interrupt; + + rc = request_irq(irq, irq_handler, 0, gaudi2_irq_name(i), &hdev->user_interrupt[j]); + if (rc) { + dev_err(hdev->dev, "Failed to request IRQ %d", irq); + goto free_user_irq; + } + } + + gaudi2->hw_cap_initialized |= HW_CAP_MSIX; + + return 0; + +free_user_irq: + for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count; + i < GAUDI2_IRQ_NUM_USER_FIRST + user_irq_init_cnt ; i++, j++) { + + irq = pci_irq_vector(hdev->pdev, i); + free_irq(irq, &hdev->user_interrupt[j]); + } + + gaudi2_dec_disable_msix(hdev, GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM + 1); + +free_event_irq: + irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE); + free_irq(irq, cq); + +free_completion_irq: + irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION); + free_irq(irq, cq); + +free_irq_vectors: + pci_free_irq_vectors(hdev->pdev); + + return rc; +} + +static void gaudi2_sync_irqs(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int i, j; + int irq; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_MSIX)) + return; + + /* Wait for all pending IRQs to be finished */ + synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION)); + + for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ; i <= GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM ; i++) { + irq = pci_irq_vector(hdev->pdev, i); + synchronize_irq(irq); + } + + for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = 0 ; j < hdev->asic_prop.user_interrupt_count; + i++, j++) { + irq = pci_irq_vector(hdev->pdev, i); + synchronize_irq(irq); + } + + synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE)); +} + +static void gaudi2_disable_msix(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + struct hl_cq *cq; + int irq, i, j, k; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_MSIX)) + return; + + gaudi2_sync_irqs(hdev); + + irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE); + free_irq(irq, &hdev->event_queue); + + gaudi2_dec_disable_msix(hdev, GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM + 1); + + for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count, k = 0; + k < hdev->asic_prop.user_interrupt_count ; i++, j++, k++) { + + irq = pci_irq_vector(hdev->pdev, i); + free_irq(irq, &hdev->user_interrupt[j]); + } + + irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION); + cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_CS_COMPLETION]; + free_irq(irq, cq); + + pci_free_irq_vectors(hdev->pdev); + + gaudi2->hw_cap_initialized &= ~HW_CAP_MSIX; +} + +static void gaudi2_stop_dcore_dec(struct hl_device *hdev, int dcore_id) +{ + u32 reg_val = FIELD_PREP(DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_STOP_MASK, 0x1); + u32 graceful_pend_mask = DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_PEND_MASK; + u32 timeout_usec, dec_id, dec_bit, offset, graceful; + int rc; + + if (hdev->pldm) + timeout_usec = GAUDI2_PLDM_VDEC_TIMEOUT_USEC; + else + timeout_usec = GAUDI2_VDEC_TIMEOUT_USEC; + + for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) { + dec_bit = dcore_id * NUM_OF_DEC_PER_DCORE + dec_id; + if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit))) + continue; + + offset = dcore_id * DCORE_OFFSET + dec_id * DCORE_VDEC_OFFSET; + + WREG32(mmDCORE0_DEC0_CMD_SWREG16 + offset, 0); + + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_GRACEFUL + offset, reg_val); + + /* Wait till all traffic from decoder stops + * before apply core reset. + */ + rc = hl_poll_timeout( + hdev, + mmDCORE0_VDEC0_BRDG_CTRL_GRACEFUL + offset, + graceful, + (graceful & graceful_pend_mask), + 100, + timeout_usec); + if (rc) + dev_err(hdev->dev, + "Failed to stop traffic from DCORE%d Decoder %d\n", + dcore_id, dec_id); + } +} + +static void gaudi2_stop_pcie_dec(struct hl_device *hdev) +{ + u32 reg_val = FIELD_PREP(DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_STOP_MASK, 0x1); + u32 graceful_pend_mask = PCIE_VDEC0_BRDG_CTRL_GRACEFUL_PEND_MASK; + u32 timeout_usec, dec_id, dec_bit, offset, graceful; + int rc; + + if (hdev->pldm) + timeout_usec = GAUDI2_PLDM_VDEC_TIMEOUT_USEC; + else + timeout_usec = GAUDI2_VDEC_TIMEOUT_USEC; + + for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) { + dec_bit = PCIE_DEC_SHIFT + dec_id; + if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit))) + continue; + + offset = dec_id * PCIE_VDEC_OFFSET; + + WREG32(mmPCIE_DEC0_CMD_SWREG16 + offset, 0); + + WREG32(mmPCIE_VDEC0_BRDG_CTRL_GRACEFUL + offset, reg_val); + + /* Wait till all traffic from decoder stops + * before apply core reset. + */ + rc = hl_poll_timeout( + hdev, + mmPCIE_VDEC0_BRDG_CTRL_GRACEFUL + offset, + graceful, + (graceful & graceful_pend_mask), + 100, + timeout_usec); + if (rc) + dev_err(hdev->dev, + "Failed to stop traffic from PCIe Decoder %d\n", + dec_id); + } +} + +static void gaudi2_stop_dec(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int dcore_id; + + if ((gaudi2->dec_hw_cap_initialized & HW_CAP_DEC_MASK) == 0) + return; + + for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) + gaudi2_stop_dcore_dec(hdev, dcore_id); + + gaudi2_stop_pcie_dec(hdev); +} + +static void gaudi2_set_arc_running_mode(struct hl_device *hdev, u32 cpu_id, u32 run_mode) +{ + u32 reg_base, reg_val; + + reg_base = gaudi2_arc_blocks_bases[cpu_id]; + if (run_mode == HL_ENGINE_CORE_RUN) + reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_RUN_REQ_MASK, 1); + else + reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_HALT_REQ_MASK, 1); + + WREG32(reg_base + ARC_HALT_REQ_OFFSET, reg_val); +} + +static void gaudi2_halt_arcs(struct hl_device *hdev) +{ + u16 arc_id; + + for (arc_id = CPU_ID_SCHED_ARC0; arc_id < CPU_ID_MAX; arc_id++) { + if (gaudi2_is_arc_enabled(hdev, arc_id)) + gaudi2_set_arc_running_mode(hdev, arc_id, HL_ENGINE_CORE_HALT); + } +} + +static int gaudi2_verify_arc_running_mode(struct hl_device *hdev, u32 cpu_id, u32 run_mode) +{ + int rc; + u32 reg_base, val, ack_mask, timeout_usec = 100000; + + if (hdev->pldm) + timeout_usec *= 100; + + reg_base = gaudi2_arc_blocks_bases[cpu_id]; + if (run_mode == HL_ENGINE_CORE_RUN) + ack_mask = ARC_FARM_ARC0_AUX_RUN_HALT_ACK_RUN_ACK_MASK; + else + ack_mask = ARC_FARM_ARC0_AUX_RUN_HALT_ACK_HALT_ACK_MASK; + + rc = hl_poll_timeout(hdev, reg_base + ARC_HALT_ACK_OFFSET, + val, ((val & ack_mask) == ack_mask), + 1000, timeout_usec); + + if (!rc) { + /* Clear */ + val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_RUN_REQ_MASK, 0); + WREG32(reg_base + ARC_HALT_REQ_OFFSET, val); + } + + return rc; +} + +static void gaudi2_reset_arcs(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u16 arc_id; + + if (!gaudi2) + return; + + for (arc_id = CPU_ID_SCHED_ARC0; arc_id < CPU_ID_MAX; arc_id++) + if (gaudi2_is_arc_enabled(hdev, arc_id)) + gaudi2_clr_arc_id_cap(hdev, arc_id); +} + +static void gaudi2_nic_qmans_manual_flush(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 queue_id; + int i; + + if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK)) + return; + + queue_id = GAUDI2_QUEUE_ID_NIC_0_0; + + for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) { + if (!(hdev->nic_ports_mask & BIT(i))) + continue; + + gaudi2_qman_manual_flush_common(hdev, queue_id); + } +} + +static int gaudi2_set_engine_cores(struct hl_device *hdev, u32 *core_ids, + u32 num_cores, u32 core_command) +{ + int i, rc; + + + for (i = 0 ; i < num_cores ; i++) { + if (gaudi2_is_arc_enabled(hdev, core_ids[i])) + gaudi2_set_arc_running_mode(hdev, core_ids[i], core_command); + } + + for (i = 0 ; i < num_cores ; i++) { + if (gaudi2_is_arc_enabled(hdev, core_ids[i])) { + rc = gaudi2_verify_arc_running_mode(hdev, core_ids[i], core_command); + + if (rc) { + dev_err(hdev->dev, "failed to %s arc: %d\n", + (core_command == HL_ENGINE_CORE_HALT) ? + "HALT" : "RUN", core_ids[i]); + return -1; + } + } + } + + return 0; +} + +static void gaudi2_halt_engines(struct hl_device *hdev, bool hard_reset, bool fw_reset) +{ + u32 wait_timeout_ms; + + if (hdev->pldm) + wait_timeout_ms = GAUDI2_PLDM_RESET_WAIT_MSEC; + else + wait_timeout_ms = GAUDI2_RESET_WAIT_MSEC; + + if (fw_reset) + goto skip_engines; + + gaudi2_stop_dma_qmans(hdev); + gaudi2_stop_mme_qmans(hdev); + gaudi2_stop_tpc_qmans(hdev); + gaudi2_stop_rot_qmans(hdev); + gaudi2_stop_nic_qmans(hdev); + msleep(wait_timeout_ms); + + gaudi2_halt_arcs(hdev); + gaudi2_dma_stall(hdev); + gaudi2_mme_stall(hdev); + gaudi2_tpc_stall(hdev); + gaudi2_rotator_stall(hdev); + + msleep(wait_timeout_ms); + + gaudi2_stop_dec(hdev); + + /* + * in case of soft reset do a manual flush for QMANs (currently called + * only for NIC QMANs + */ + if (!hard_reset) + gaudi2_nic_qmans_manual_flush(hdev); + + gaudi2_disable_dma_qmans(hdev); + gaudi2_disable_mme_qmans(hdev); + gaudi2_disable_tpc_qmans(hdev); + gaudi2_disable_rot_qmans(hdev); + gaudi2_disable_nic_qmans(hdev); + gaudi2_disable_timestamp(hdev); + +skip_engines: + if (hard_reset) { + gaudi2_disable_msix(hdev); + return; + } + + gaudi2_sync_irqs(hdev); +} + +static void gaudi2_init_firmware_preload_params(struct hl_device *hdev) +{ + struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load; + + pre_fw_load->cpu_boot_status_reg = mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS; + pre_fw_load->sts_boot_dev_sts0_reg = mmCPU_BOOT_DEV_STS0; + pre_fw_load->sts_boot_dev_sts1_reg = mmCPU_BOOT_DEV_STS1; + pre_fw_load->boot_err0_reg = mmCPU_BOOT_ERR0; + pre_fw_load->boot_err1_reg = mmCPU_BOOT_ERR1; + pre_fw_load->wait_for_preboot_timeout = GAUDI2_PREBOOT_REQ_TIMEOUT_USEC; +} + +static void gaudi2_init_firmware_loader(struct hl_device *hdev) +{ + struct fw_load_mgr *fw_loader = &hdev->fw_loader; + struct dynamic_fw_load_mgr *dynamic_loader; + struct cpu_dyn_regs *dyn_regs; + + /* fill common fields */ + fw_loader->fw_comp_loaded = FW_TYPE_NONE; + fw_loader->boot_fit_img.image_name = GAUDI2_BOOT_FIT_FILE; + fw_loader->linux_img.image_name = GAUDI2_LINUX_FW_FILE; + fw_loader->boot_fit_timeout = GAUDI2_BOOT_FIT_REQ_TIMEOUT_USEC; + fw_loader->skip_bmc = false; + fw_loader->sram_bar_id = SRAM_CFG_BAR_ID; + fw_loader->dram_bar_id = DRAM_BAR_ID; + fw_loader->cpu_timeout = GAUDI2_CPU_TIMEOUT_USEC; + + /* here we update initial values for few specific dynamic regs (as + * before reading the first descriptor from FW those value has to be + * hard-coded). in later stages of the protocol those values will be + * updated automatically by reading the FW descriptor so data there + * will always be up-to-date + */ + dynamic_loader = &hdev->fw_loader.dynamic_loader; + dyn_regs = &dynamic_loader->comm_desc.cpu_dyn_regs; + dyn_regs->kmd_msg_to_cpu = cpu_to_le32(mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU); + dyn_regs->cpu_cmd_status_to_host = cpu_to_le32(mmCPU_CMD_STATUS_TO_HOST); + dynamic_loader->wait_for_bl_timeout = GAUDI2_WAIT_FOR_BL_TIMEOUT_USEC; +} + +static int gaudi2_init_cpu(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int rc; + + if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU)) + return 0; + + if (gaudi2->hw_cap_initialized & HW_CAP_CPU) + return 0; + + rc = hl_fw_init_cpu(hdev); + if (rc) + return rc; + + gaudi2->hw_cap_initialized |= HW_CAP_CPU; + + return 0; +} + +static int gaudi2_init_cpu_queues(struct hl_device *hdev, u32 cpu_timeout) +{ + struct hl_hw_queue *cpu_pq = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ]; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + struct cpu_dyn_regs *dyn_regs; + struct hl_eq *eq; + u32 status; + int err; + + if (!hdev->cpu_queues_enable) + return 0; + + if (gaudi2->hw_cap_initialized & HW_CAP_CPU_Q) + return 0; + + eq = &hdev->event_queue; + + dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; + + WREG32(mmCPU_IF_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address)); + WREG32(mmCPU_IF_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address)); + + WREG32(mmCPU_IF_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address)); + WREG32(mmCPU_IF_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address)); + + WREG32(mmCPU_IF_CQ_BASE_ADDR_LOW, lower_32_bits(hdev->cpu_accessible_dma_address)); + WREG32(mmCPU_IF_CQ_BASE_ADDR_HIGH, upper_32_bits(hdev->cpu_accessible_dma_address)); + + WREG32(mmCPU_IF_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES); + WREG32(mmCPU_IF_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES); + WREG32(mmCPU_IF_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE); + + /* Used for EQ CI */ + WREG32(mmCPU_IF_EQ_RD_OFFS, 0); + + WREG32(mmCPU_IF_PF_PQ_PI, 0); + + WREG32(mmCPU_IF_QUEUE_INIT, PQ_INIT_STATUS_READY_FOR_CP); + + /* Let the ARC know we are ready as it is now handling those queues */ + + WREG32(le32_to_cpu(dyn_regs->gic_host_pi_upd_irq), + gaudi2_irq_map_table[GAUDI2_EVENT_CPU_PI_UPDATE].cpu_id); + + err = hl_poll_timeout( + hdev, + mmCPU_IF_QUEUE_INIT, + status, + (status == PQ_INIT_STATUS_READY_FOR_HOST), + 1000, + cpu_timeout); + + if (err) { + dev_err(hdev->dev, "Failed to communicate with device CPU (timeout)\n"); + return -EIO; + } + + /* update FW application security bits */ + if (prop->fw_cpu_boot_dev_sts0_valid) + prop->fw_app_cpu_boot_dev_sts0 = RREG32(mmCPU_BOOT_DEV_STS0); + + if (prop->fw_cpu_boot_dev_sts1_valid) + prop->fw_app_cpu_boot_dev_sts1 = RREG32(mmCPU_BOOT_DEV_STS1); + + gaudi2->hw_cap_initialized |= HW_CAP_CPU_Q; + return 0; +} + +static void gaudi2_init_qman_pq(struct hl_device *hdev, u32 reg_base, + u32 queue_id_base) +{ + struct hl_hw_queue *q; + u32 pq_id, pq_offset; + + for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) { + q = &hdev->kernel_queues[queue_id_base + pq_id]; + pq_offset = pq_id * 4; + + WREG32(reg_base + QM_PQ_BASE_LO_0_OFFSET + pq_offset, + lower_32_bits(q->bus_address)); + WREG32(reg_base + QM_PQ_BASE_HI_0_OFFSET + pq_offset, + upper_32_bits(q->bus_address)); + WREG32(reg_base + QM_PQ_SIZE_0_OFFSET + pq_offset, ilog2(HL_QUEUE_LENGTH)); + WREG32(reg_base + QM_PQ_PI_0_OFFSET + pq_offset, 0); + WREG32(reg_base + QM_PQ_CI_0_OFFSET + pq_offset, 0); + } +} + +static void gaudi2_init_qman_cp(struct hl_device *hdev, u32 reg_base) +{ + u32 cp_id, cp_offset, mtr_base_lo, mtr_base_hi, so_base_lo, so_base_hi; + + mtr_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); + mtr_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); + so_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0); + so_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0); + + for (cp_id = 0 ; cp_id < NUM_OF_CP_PER_QMAN; cp_id++) { + cp_offset = cp_id * 4; + + WREG32(reg_base + QM_CP_MSG_BASE0_ADDR_LO_0_OFFSET + cp_offset, mtr_base_lo); + WREG32(reg_base + QM_CP_MSG_BASE0_ADDR_HI_0_OFFSET + cp_offset, mtr_base_hi); + WREG32(reg_base + QM_CP_MSG_BASE1_ADDR_LO_0_OFFSET + cp_offset, so_base_lo); + WREG32(reg_base + QM_CP_MSG_BASE1_ADDR_HI_0_OFFSET + cp_offset, so_base_hi); + } + + /* allow QMANs to accept work from ARC CQF */ + WREG32(reg_base + QM_CP_CFG_OFFSET, FIELD_PREP(PDMA0_QM_CP_CFG_SWITCH_EN_MASK, 0x1)); +} + +static void gaudi2_init_qman_pqc(struct hl_device *hdev, u32 reg_base, + u32 queue_id_base) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 pq_id, pq_offset, so_base_lo, so_base_hi; + + so_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0); + so_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0); + + for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) { + pq_offset = pq_id * 4; + + /* Configure QMAN HBW to scratchpad as it is not needed */ + WREG32(reg_base + QM_PQC_HBW_BASE_LO_0_OFFSET + pq_offset, + lower_32_bits(gaudi2->scratchpad_bus_address)); + WREG32(reg_base + QM_PQC_HBW_BASE_HI_0_OFFSET + pq_offset, + upper_32_bits(gaudi2->scratchpad_bus_address)); + WREG32(reg_base + QM_PQC_SIZE_0_OFFSET + pq_offset, + ilog2(PAGE_SIZE / sizeof(struct hl_cq_entry))); + + WREG32(reg_base + QM_PQC_PI_0_OFFSET + pq_offset, 0); + WREG32(reg_base + QM_PQC_LBW_WDATA_0_OFFSET + pq_offset, QM_PQC_LBW_WDATA); + WREG32(reg_base + QM_PQC_LBW_BASE_LO_0_OFFSET + pq_offset, so_base_lo); + WREG32(reg_base + QM_PQC_LBW_BASE_HI_0_OFFSET + pq_offset, so_base_hi); + } + + /* Enable QMAN H/W completion */ + WREG32(reg_base + QM_PQC_CFG_OFFSET, 1 << PDMA0_QM_PQC_CFG_EN_SHIFT); +} + +static u32 gaudi2_get_dyn_sp_reg(struct hl_device *hdev, u32 queue_id_base) +{ + struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; + u32 sp_reg_addr; + + switch (queue_id_base) { + case GAUDI2_QUEUE_ID_PDMA_0_0...GAUDI2_QUEUE_ID_PDMA_1_3: + fallthrough; + case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3: + fallthrough; + case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3: + fallthrough; + case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3: + fallthrough; + case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3: + sp_reg_addr = le32_to_cpu(dyn_regs->gic_dma_qm_irq_ctrl); + break; + case GAUDI2_QUEUE_ID_DCORE0_MME_0_0...GAUDI2_QUEUE_ID_DCORE0_MME_0_3: + fallthrough; + case GAUDI2_QUEUE_ID_DCORE1_MME_0_0...GAUDI2_QUEUE_ID_DCORE1_MME_0_3: + fallthrough; + case GAUDI2_QUEUE_ID_DCORE2_MME_0_0...GAUDI2_QUEUE_ID_DCORE2_MME_0_3: + fallthrough; + case GAUDI2_QUEUE_ID_DCORE3_MME_0_0...GAUDI2_QUEUE_ID_DCORE3_MME_0_3: + sp_reg_addr = le32_to_cpu(dyn_regs->gic_mme_qm_irq_ctrl); + break; + case GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_6_3: + fallthrough; + case GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE1_TPC_5_3: + fallthrough; + case GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE2_TPC_5_3: + fallthrough; + case GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE3_TPC_5_3: + sp_reg_addr = le32_to_cpu(dyn_regs->gic_tpc_qm_irq_ctrl); + break; + case GAUDI2_QUEUE_ID_ROT_0_0...GAUDI2_QUEUE_ID_ROT_1_3: + sp_reg_addr = le32_to_cpu(dyn_regs->gic_rot_qm_irq_ctrl); + break; + case GAUDI2_QUEUE_ID_NIC_0_0...GAUDI2_QUEUE_ID_NIC_23_3: + sp_reg_addr = le32_to_cpu(dyn_regs->gic_nic_qm_irq_ctrl); + break; + default: + dev_err(hdev->dev, "Unexpected h/w queue %d\n", queue_id_base); + return 0; + } + + return sp_reg_addr; +} + +static void gaudi2_init_qman_common(struct hl_device *hdev, u32 reg_base, + u32 queue_id_base) +{ + u32 glbl_prot = QMAN_MAKE_TRUSTED, irq_handler_offset; + int map_table_entry; + + WREG32(reg_base + QM_GLBL_PROT_OFFSET, glbl_prot); + + irq_handler_offset = gaudi2_get_dyn_sp_reg(hdev, queue_id_base); + WREG32(reg_base + QM_GLBL_ERR_ADDR_LO_OFFSET, lower_32_bits(CFG_BASE + irq_handler_offset)); + WREG32(reg_base + QM_GLBL_ERR_ADDR_HI_OFFSET, upper_32_bits(CFG_BASE + irq_handler_offset)); + + map_table_entry = gaudi2_qman_async_event_id[queue_id_base]; + WREG32(reg_base + QM_GLBL_ERR_WDATA_OFFSET, + gaudi2_irq_map_table[map_table_entry].cpu_id); + + WREG32(reg_base + QM_ARB_ERR_MSG_EN_OFFSET, QM_ARB_ERR_MSG_EN_MASK); + + WREG32(reg_base + QM_ARB_SLV_CHOISE_WDT_OFFSET, GAUDI2_ARB_WDT_TIMEOUT); + WREG32(reg_base + QM_GLBL_CFG1_OFFSET, 0); + WREG32(reg_base + QM_GLBL_CFG2_OFFSET, 0); + + /* Enable the QMAN channel. + * PDMA QMAN configuration is different, as we do not allow user to + * access some of the CPs. + * PDMA0: CP2/3 are reserved for the ARC usage. + * PDMA1: CP1/2/3 are reserved for the ARC usage. + */ + if (reg_base == gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_1_0]) + WREG32(reg_base + QM_GLBL_CFG0_OFFSET, PDMA1_QMAN_ENABLE); + else if (reg_base == gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_0_0]) + WREG32(reg_base + QM_GLBL_CFG0_OFFSET, PDMA0_QMAN_ENABLE); + else + WREG32(reg_base + QM_GLBL_CFG0_OFFSET, QMAN_ENABLE); +} + +static void gaudi2_init_qman(struct hl_device *hdev, u32 reg_base, + u32 queue_id_base) +{ + u32 pq_id; + + for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) + hdev->kernel_queues[queue_id_base + pq_id].cq_id = GAUDI2_RESERVED_CQ_CS_COMPLETION; + + gaudi2_init_qman_pq(hdev, reg_base, queue_id_base); + gaudi2_init_qman_cp(hdev, reg_base); + gaudi2_init_qman_pqc(hdev, reg_base, queue_id_base); + gaudi2_init_qman_common(hdev, reg_base, queue_id_base); +} + +static void gaudi2_init_dma_core(struct hl_device *hdev, u32 reg_base, + u32 dma_core_id, bool is_secure) +{ + u32 prot, irq_handler_offset; + struct cpu_dyn_regs *dyn_regs; + int map_table_entry; + + prot = 1 << ARC_FARM_KDMA_PROT_ERR_VAL_SHIFT; + if (is_secure) + prot |= 1 << ARC_FARM_KDMA_PROT_VAL_SHIFT; + + WREG32(reg_base + DMA_CORE_PROT_OFFSET, prot); + + dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; + irq_handler_offset = le32_to_cpu(dyn_regs->gic_dma_core_irq_ctrl); + + WREG32(reg_base + DMA_CORE_ERRMSG_ADDR_LO_OFFSET, + lower_32_bits(CFG_BASE + irq_handler_offset)); + + WREG32(reg_base + DMA_CORE_ERRMSG_ADDR_HI_OFFSET, + upper_32_bits(CFG_BASE + irq_handler_offset)); + + map_table_entry = gaudi2_dma_core_async_event_id[dma_core_id]; + WREG32(reg_base + DMA_CORE_ERRMSG_WDATA_OFFSET, + gaudi2_irq_map_table[map_table_entry].cpu_id); + + /* Enable the DMA channel */ + WREG32(reg_base + DMA_CORE_CFG_0_OFFSET, 1 << ARC_FARM_KDMA_CFG_0_EN_SHIFT); +} + +static void gaudi2_init_kdma(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_base; + + if ((gaudi2->hw_cap_initialized & HW_CAP_KDMA) == HW_CAP_KDMA) + return; + + reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_KDMA]; + + gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_KDMA, true); + + gaudi2->hw_cap_initialized |= HW_CAP_KDMA; +} + +static void gaudi2_init_pdma(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_base; + + if ((gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK) == HW_CAP_PDMA_MASK) + return; + + reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_PDMA0]; + gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_PDMA0, false); + + reg_base = gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_0_0]; + gaudi2_init_qman(hdev, reg_base, GAUDI2_QUEUE_ID_PDMA_0_0); + + reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_PDMA1]; + gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_PDMA1, false); + + reg_base = gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_1_0]; + gaudi2_init_qman(hdev, reg_base, GAUDI2_QUEUE_ID_PDMA_1_0); + + gaudi2->hw_cap_initialized |= HW_CAP_PDMA_MASK; +} + +static void gaudi2_init_edma_instance(struct hl_device *hdev, u8 seq) +{ + u32 reg_base, base_edma_core_id, base_edma_qman_id; + + base_edma_core_id = DMA_CORE_ID_EDMA0 + seq; + base_edma_qman_id = edma_stream_base[seq]; + + reg_base = gaudi2_dma_core_blocks_bases[base_edma_core_id]; + gaudi2_init_dma_core(hdev, reg_base, base_edma_core_id, false); + + reg_base = gaudi2_qm_blocks_bases[base_edma_qman_id]; + gaudi2_init_qman(hdev, reg_base, base_edma_qman_id); +} + +static void gaudi2_init_edma(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int dcore, inst; + + if ((gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK) == HW_CAP_EDMA_MASK) + return; + + for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { + for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) { + u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst; + + if (!(prop->edma_enabled_mask & BIT(seq))) + continue; + + gaudi2_init_edma_instance(hdev, seq); + + gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_EDMA_SHIFT + seq); + } + } +} + +/* + * gaudi2_arm_monitors_for_virt_msix_db() - Arm monitors for writing to the virtual MSI-X doorbell. + * @hdev: pointer to habanalabs device structure. + * @sob_id: sync object ID. + * @first_mon_id: ID of first monitor out of 3 consecutive monitors. + * @interrupt_id: interrupt ID. + * + * Some initiators cannot have HBW address in their completion address registers, and thus cannot + * write directly to the HBW host memory of the virtual MSI-X doorbell. + * Instead, they are configured to LBW write to a sync object, and a monitor will do the HBW write. + * + * The mechanism in the sync manager block is composed of a master monitor with 3 messages. + * In addition to the HBW write, the other 2 messages are for preparing the monitor to next + * completion, by decrementing the sync object value and re-arming the monitor. + */ +static void gaudi2_arm_monitors_for_virt_msix_db(struct hl_device *hdev, u32 sob_id, + u32 first_mon_id, u32 interrupt_id) +{ + u32 sob_offset, first_mon_offset, mon_offset, payload, sob_group, mode, arm, config; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u64 addr; + u8 mask; + + /* Reset the SOB value */ + sob_offset = sob_id * sizeof(u32); + WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset, 0); + + /* Configure 3 monitors: + * 1. Write interrupt ID to the virtual MSI-X doorbell (master monitor) + * 2. Decrement SOB value by 1. + * 3. Re-arm the master monitor. + */ + + first_mon_offset = first_mon_id * sizeof(u32); + + /* 2nd monitor: Decrement SOB value by 1 */ + mon_offset = first_mon_offset + sizeof(u32); + + addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset; + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr)); + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr)); + + payload = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 0x7FFF) | /* "-1" */ + FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_SIGN_MASK, 1) | + FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1); + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload); + + /* 3rd monitor: Re-arm the master monitor */ + mon_offset = first_mon_offset + 2 * sizeof(u32); + + addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + first_mon_offset; + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr)); + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr)); + + sob_group = sob_id / 8; + mask = ~BIT(sob_id & 0x7); + mode = 0; /* comparison mode is "greater than or equal to" */ + arm = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SID_MASK, sob_group) | + FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_MASK_MASK, mask) | + FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOP_MASK, mode) | + FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOD_MASK, 1); + + payload = arm; + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload); + + /* 1st monitor (master): Write interrupt ID to the virtual MSI-X doorbell */ + mon_offset = first_mon_offset; + + config = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_WR_NUM_MASK, 2); /* "2": 3 writes */ + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + mon_offset, config); + + addr = gaudi2->virt_msix_db_dma_addr; + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr)); + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr)); + + payload = interrupt_id; + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload); + + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + mon_offset, arm); +} + +static void gaudi2_prepare_sm_for_virt_msix_db(struct hl_device *hdev) +{ + u32 decoder_id, sob_id, first_mon_id, interrupt_id; + struct asic_fixed_properties *prop = &hdev->asic_prop; + + /* Decoder normal/abnormal interrupts */ + for (decoder_id = 0 ; decoder_id < NUMBER_OF_DEC ; ++decoder_id) { + if (!(prop->decoder_enabled_mask & BIT(decoder_id))) + continue; + + sob_id = GAUDI2_RESERVED_SOB_DEC_NRM_FIRST + decoder_id; + first_mon_id = GAUDI2_RESERVED_MON_DEC_NRM_FIRST + 3 * decoder_id; + interrupt_id = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 2 * decoder_id; + gaudi2_arm_monitors_for_virt_msix_db(hdev, sob_id, first_mon_id, interrupt_id); + + sob_id = GAUDI2_RESERVED_SOB_DEC_ABNRM_FIRST + decoder_id; + first_mon_id = GAUDI2_RESERVED_MON_DEC_ABNRM_FIRST + 3 * decoder_id; + interrupt_id += 1; + gaudi2_arm_monitors_for_virt_msix_db(hdev, sob_id, first_mon_id, interrupt_id); + } +} + +static void gaudi2_init_sm(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u64 cq_address; + u32 reg_val; + int i; + + /* Enable HBW/LBW CQ for completion monitors */ + reg_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_CQ_EN_MASK, 1); + reg_val |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_LBW_EN_MASK, 1); + + for (i = 0 ; i < GAUDI2_MAX_PENDING_CS ; i++) + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + (4 * i), reg_val); + + /* Enable only HBW CQ for KDMA completion monitor */ + reg_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_CQ_EN_MASK, 1); + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + (4 * i), reg_val); + + /* Init CQ0 DB - configure the monitor to trigger MSI-X interrupt */ + WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0, lower_32_bits(gaudi2->virt_msix_db_dma_addr)); + WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0, upper_32_bits(gaudi2->virt_msix_db_dma_addr)); + WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0, GAUDI2_IRQ_NUM_COMPLETION); + + for (i = 0 ; i < GAUDI2_RESERVED_CQ_NUMBER ; i++) { + cq_address = + hdev->completion_queue[i].bus_address; + + WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + (4 * i), + lower_32_bits(cq_address)); + WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + (4 * i), + upper_32_bits(cq_address)); + WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + (4 * i), + ilog2(HL_CQ_SIZE_IN_BYTES)); + } + + /* Configure kernel ASID and MMU BP*/ + WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_SEC, 0x10000); + WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_NONE_SEC_PRIV, 0); + + /* Initialize sync objects and monitors which are used for the virtual MSI-X doorbell */ + gaudi2_prepare_sm_for_virt_msix_db(hdev); +} + +static void gaudi2_init_mme_acc(struct hl_device *hdev, u32 reg_base) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 reg_val; + int i; + + reg_val = FIELD_PREP(MME_ACC_INTR_MASK_WBC_ERR_RESP_MASK, 0); + reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_POS_INF_MASK, 1); + reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_NEG_INF_MASK, 1); + reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_NAN_MASK, 1); + reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_RESULT_POS_INF_MASK, 1); + reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_RESULT_NEG_INF_MASK, 1); + + WREG32(reg_base + MME_ACC_INTR_MASK_OFFSET, reg_val); + WREG32(reg_base + MME_ACC_AP_LFSR_POLY_OFFSET, 0x80DEADAF); + + for (i = 0 ; i < MME_NUM_OF_LFSR_SEEDS ; i++) { + WREG32(reg_base + MME_ACC_AP_LFSR_SEED_SEL_OFFSET, i); + WREG32(reg_base + MME_ACC_AP_LFSR_SEED_WDATA_OFFSET, gaudi2->lfsr_rand_seeds[i]); + } +} + +static void gaudi2_init_dcore_mme(struct hl_device *hdev, int dcore_id, + bool config_qman_only) +{ + u32 queue_id_base, reg_base; + + switch (dcore_id) { + case 0: + queue_id_base = GAUDI2_QUEUE_ID_DCORE0_MME_0_0; + break; + case 1: + queue_id_base = GAUDI2_QUEUE_ID_DCORE1_MME_0_0; + break; + case 2: + queue_id_base = GAUDI2_QUEUE_ID_DCORE2_MME_0_0; + break; + case 3: + queue_id_base = GAUDI2_QUEUE_ID_DCORE3_MME_0_0; + break; + default: + dev_err(hdev->dev, "Invalid dcore id %u\n", dcore_id); + return; + } + + if (!config_qman_only) { + reg_base = gaudi2_mme_acc_blocks_bases[dcore_id]; + gaudi2_init_mme_acc(hdev, reg_base); + } + + reg_base = gaudi2_qm_blocks_bases[queue_id_base]; + gaudi2_init_qman(hdev, reg_base, queue_id_base); +} + +static void gaudi2_init_mme(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int i; + + if ((gaudi2->hw_cap_initialized & HW_CAP_MME_MASK) == HW_CAP_MME_MASK) + return; + + for (i = 0 ; i < NUM_OF_DCORES ; i++) { + gaudi2_init_dcore_mme(hdev, i, false); + + gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_MME_SHIFT + i); + } +} + +static void gaudi2_init_tpc_cfg(struct hl_device *hdev, u32 reg_base) +{ + /* Mask arithmetic and QM interrupts in TPC */ + WREG32(reg_base + TPC_CFG_TPC_INTR_MASK_OFFSET, 0x23FFFE); + + /* Set 16 cache lines */ + WREG32(reg_base + TPC_CFG_MSS_CONFIG_OFFSET, + 2 << DCORE0_TPC0_CFG_MSS_CONFIG_ICACHE_FETCH_LINE_NUM_SHIFT); +} + +struct gaudi2_tpc_init_cfg_data { + enum gaudi2_queue_id dcore_tpc_qid_base[NUM_OF_DCORES]; +}; + +static void gaudi2_init_tpc_config(struct hl_device *hdev, int dcore, int inst, + u32 offset, struct iterate_module_ctx *ctx) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + struct gaudi2_tpc_init_cfg_data *cfg_data = ctx->data; + u32 queue_id_base; + u8 seq; + + queue_id_base = cfg_data->dcore_tpc_qid_base[dcore] + (inst * NUM_OF_PQ_PER_QMAN); + + if (dcore == 0 && inst == (NUM_DCORE0_TPC - 1)) + /* gets last sequence number */ + seq = NUM_OF_DCORES * NUM_OF_TPC_PER_DCORE; + else + seq = dcore * NUM_OF_TPC_PER_DCORE + inst; + + gaudi2_init_tpc_cfg(hdev, mmDCORE0_TPC0_CFG_BASE + offset); + gaudi2_init_qman(hdev, mmDCORE0_TPC0_QM_BASE + offset, queue_id_base); + + gaudi2->tpc_hw_cap_initialized |= BIT_ULL(HW_CAP_TPC_SHIFT + seq); +} + +static void gaudi2_init_tpc(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + struct gaudi2_tpc_init_cfg_data init_cfg_data; + struct iterate_module_ctx tpc_iter; + + if (!hdev->asic_prop.tpc_enabled_mask) + return; + + if ((gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK) == HW_CAP_TPC_MASK) + return; + + init_cfg_data.dcore_tpc_qid_base[0] = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0; + init_cfg_data.dcore_tpc_qid_base[1] = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0; + init_cfg_data.dcore_tpc_qid_base[2] = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0; + init_cfg_data.dcore_tpc_qid_base[3] = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0; + tpc_iter.fn = &gaudi2_init_tpc_config; + tpc_iter.data = &init_cfg_data; + gaudi2_iterate_tpcs(hdev, &tpc_iter); +} + +static void gaudi2_init_rotator(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 i, reg_base, queue_id; + + queue_id = GAUDI2_QUEUE_ID_ROT_0_0; + + for (i = 0 ; i < NUM_OF_ROT ; i++, queue_id += NUM_OF_PQ_PER_QMAN) { + reg_base = gaudi2_qm_blocks_bases[queue_id]; + gaudi2_init_qman(hdev, reg_base, queue_id); + + gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_ROT_SHIFT + i); + } +} + +static void gaudi2_init_vdec_brdg_ctrl(struct hl_device *hdev, u64 base_addr, u32 decoder_id) +{ + u32 sob_id; + + /* VCMD normal interrupt */ + sob_id = GAUDI2_RESERVED_SOB_DEC_NRM_FIRST + decoder_id; + WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_AWADDR, + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_id * sizeof(u32)); + WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_WDATA, GAUDI2_SOB_INCREMENT_BY_ONE); + + /* VCMD abnormal interrupt */ + sob_id = GAUDI2_RESERVED_SOB_DEC_ABNRM_FIRST + decoder_id; + WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_AWADDR, + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_id * sizeof(u32)); + WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_WDATA, GAUDI2_SOB_INCREMENT_BY_ONE); +} + +static void gaudi2_init_dec(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 dcore_id, dec_id, dec_bit; + u64 base_addr; + + if (!hdev->asic_prop.decoder_enabled_mask) + return; + + if ((gaudi2->dec_hw_cap_initialized & HW_CAP_DEC_MASK) == HW_CAP_DEC_MASK) + return; + + for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) + for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) { + dec_bit = dcore_id * NUM_OF_DEC_PER_DCORE + dec_id; + + if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit))) + continue; + + base_addr = mmDCORE0_DEC0_CMD_BASE + + BRDG_CTRL_BLOCK_OFFSET + + dcore_id * DCORE_OFFSET + + dec_id * DCORE_VDEC_OFFSET; + + gaudi2_init_vdec_brdg_ctrl(hdev, base_addr, dec_bit); + + gaudi2->dec_hw_cap_initialized |= BIT_ULL(HW_CAP_DEC_SHIFT + dec_bit); + } + + for (dec_id = 0 ; dec_id < NUM_OF_PCIE_VDEC ; dec_id++) { + dec_bit = PCIE_DEC_SHIFT + dec_id; + if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit))) + continue; + + base_addr = mmPCIE_DEC0_CMD_BASE + BRDG_CTRL_BLOCK_OFFSET + + dec_id * DCORE_VDEC_OFFSET; + + gaudi2_init_vdec_brdg_ctrl(hdev, base_addr, dec_bit); + + gaudi2->dec_hw_cap_initialized |= BIT_ULL(HW_CAP_DEC_SHIFT + dec_bit); + } +} + +static int gaudi2_mmu_update_asid_hop0_addr(struct hl_device *hdev, + u32 stlb_base, u32 asid, u64 phys_addr) +{ + u32 status, timeout_usec; + int rc; + + if (hdev->pldm || !hdev->pdev) + timeout_usec = GAUDI2_PLDM_MMU_TIMEOUT_USEC; + else + timeout_usec = MMU_CONFIG_TIMEOUT_USEC; + + WREG32(stlb_base + STLB_ASID_OFFSET, asid); + WREG32(stlb_base + STLB_HOP0_PA43_12_OFFSET, phys_addr >> MMU_HOP0_PA43_12_SHIFT); + WREG32(stlb_base + STLB_HOP0_PA63_44_OFFSET, phys_addr >> MMU_HOP0_PA63_44_SHIFT); + WREG32(stlb_base + STLB_BUSY_OFFSET, 0x80000000); + + rc = hl_poll_timeout( + hdev, + stlb_base + STLB_BUSY_OFFSET, + status, + !(status & 0x80000000), + 1000, + timeout_usec); + + if (rc) { + dev_err(hdev->dev, "Timeout during MMU hop0 config of asid %d\n", asid); + return rc; + } + + return 0; +} + +static void gaudi2_mmu_send_invalidate_cache_cmd(struct hl_device *hdev, u32 stlb_base, + u32 start_offset, u32 inv_start_val, + u32 flags) +{ + /* clear PMMU mem line cache (only needed in mmu range invalidation) */ + if (flags & MMU_OP_CLEAR_MEMCACHE) + WREG32(mmPMMU_HBW_STLB_MEM_CACHE_INVALIDATION, 0x1); + + if (flags & MMU_OP_SKIP_LOW_CACHE_INV) + return; + + WREG32(stlb_base + start_offset, inv_start_val); +} + +static int gaudi2_mmu_invalidate_cache_status_poll(struct hl_device *hdev, u32 stlb_base, + struct gaudi2_cache_invld_params *inv_params) +{ + u32 status, timeout_usec, start_offset; + int rc; + + timeout_usec = (hdev->pldm) ? GAUDI2_PLDM_MMU_TIMEOUT_USEC : + GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC; + + /* poll PMMU mem line cache (only needed in mmu range invalidation) */ + if (inv_params->flags & MMU_OP_CLEAR_MEMCACHE) { + rc = hl_poll_timeout( + hdev, + mmPMMU_HBW_STLB_MEM_CACHE_INV_STATUS, + status, + status & 0x1, + 1000, + timeout_usec); + + if (rc) + return rc; + + /* Need to manually reset the status to 0 */ + WREG32(mmPMMU_HBW_STLB_MEM_CACHE_INV_STATUS, 0x0); + } + + /* Lower cache does not work with cache lines, hence we can skip its + * invalidation upon map and invalidate only upon unmap + */ + if (inv_params->flags & MMU_OP_SKIP_LOW_CACHE_INV) + return 0; + + start_offset = inv_params->range_invalidation ? + STLB_RANGE_CACHE_INVALIDATION_OFFSET : STLB_INV_ALL_START_OFFSET; + + rc = hl_poll_timeout( + hdev, + stlb_base + start_offset, + status, + !(status & 0x1), + 1000, + timeout_usec); + + return rc; +} + +bool gaudi2_is_hmmu_enabled(struct hl_device *hdev, int dcore_id, int hmmu_id) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 hw_cap; + + hw_cap = HW_CAP_DCORE0_DMMU0 << (NUM_OF_HMMU_PER_DCORE * dcore_id + hmmu_id); + + if (gaudi2->hw_cap_initialized & hw_cap) + return true; + + return false; +} + +/* this function shall be called only for HMMUs for which capability bit is set */ +static inline u32 get_hmmu_stlb_base(int dcore_id, int hmmu_id) +{ + u32 offset; + + offset = (u32) (dcore_id * DCORE_OFFSET + hmmu_id * DCORE_HMMU_OFFSET); + return (u32)(mmDCORE0_HMMU0_STLB_BASE + offset); +} + +static void gaudi2_mmu_invalidate_cache_trigger(struct hl_device *hdev, u32 stlb_base, + struct gaudi2_cache_invld_params *inv_params) +{ + u32 start_offset; + + if (inv_params->range_invalidation) { + /* Set the addresses range + * Note: that the start address we set in register, is not included in + * the range of the invalidation, by design. + * that's why we need to set lower address than the one we actually + * want to be included in the range invalidation. + */ + u64 start = inv_params->start_va - 1; + + start_offset = STLB_RANGE_CACHE_INVALIDATION_OFFSET; + + WREG32(stlb_base + STLB_RANGE_INV_START_LSB_OFFSET, + start >> MMU_RANGE_INV_VA_LSB_SHIFT); + + WREG32(stlb_base + STLB_RANGE_INV_START_MSB_OFFSET, + start >> MMU_RANGE_INV_VA_MSB_SHIFT); + + WREG32(stlb_base + STLB_RANGE_INV_END_LSB_OFFSET, + inv_params->end_va >> MMU_RANGE_INV_VA_LSB_SHIFT); + + WREG32(stlb_base + STLB_RANGE_INV_END_MSB_OFFSET, + inv_params->end_va >> MMU_RANGE_INV_VA_MSB_SHIFT); + } else { + start_offset = STLB_INV_ALL_START_OFFSET; + } + + gaudi2_mmu_send_invalidate_cache_cmd(hdev, stlb_base, start_offset, + inv_params->inv_start_val, inv_params->flags); +} + +static inline void gaudi2_hmmu_invalidate_cache_trigger(struct hl_device *hdev, + int dcore_id, int hmmu_id, + struct gaudi2_cache_invld_params *inv_params) +{ + u32 stlb_base = get_hmmu_stlb_base(dcore_id, hmmu_id); + + gaudi2_mmu_invalidate_cache_trigger(hdev, stlb_base, inv_params); +} + +static inline int gaudi2_hmmu_invalidate_cache_status_poll(struct hl_device *hdev, + int dcore_id, int hmmu_id, + struct gaudi2_cache_invld_params *inv_params) +{ + u32 stlb_base = get_hmmu_stlb_base(dcore_id, hmmu_id); + + return gaudi2_mmu_invalidate_cache_status_poll(hdev, stlb_base, inv_params); +} + +static int gaudi2_hmmus_invalidate_cache(struct hl_device *hdev, + struct gaudi2_cache_invld_params *inv_params) +{ + int dcore_id, hmmu_id; + + /* first send all invalidation commands */ + for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) { + for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE ; hmmu_id++) { + if (!gaudi2_is_hmmu_enabled(hdev, dcore_id, hmmu_id)) + continue; + + gaudi2_hmmu_invalidate_cache_trigger(hdev, dcore_id, hmmu_id, inv_params); + } + } + + /* next, poll all invalidations status */ + for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) { + for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE ; hmmu_id++) { + int rc; + + if (!gaudi2_is_hmmu_enabled(hdev, dcore_id, hmmu_id)) + continue; + + rc = gaudi2_hmmu_invalidate_cache_status_poll(hdev, dcore_id, hmmu_id, + inv_params); + if (rc) + return rc; + } + } + + return 0; +} + +static int gaudi2_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + struct gaudi2_cache_invld_params invld_params; + int rc = 0; + + if (hdev->reset_info.hard_reset_pending) + return rc; + + invld_params.range_invalidation = false; + invld_params.inv_start_val = 1; + + if ((flags & MMU_OP_USERPTR) && (gaudi2->hw_cap_initialized & HW_CAP_PMMU)) { + invld_params.flags = flags; + gaudi2_mmu_invalidate_cache_trigger(hdev, mmPMMU_HBW_STLB_BASE, &invld_params); + rc = gaudi2_mmu_invalidate_cache_status_poll(hdev, mmPMMU_HBW_STLB_BASE, + &invld_params); + } else if (flags & MMU_OP_PHYS_PACK) { + invld_params.flags = 0; + rc = gaudi2_hmmus_invalidate_cache(hdev, &invld_params); + } + + return rc; +} + +static int gaudi2_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, + u32 flags, u32 asid, u64 va, u64 size) +{ + struct gaudi2_cache_invld_params invld_params = {0}; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u64 start_va, end_va; + u32 inv_start_val; + int rc = 0; + + if (hdev->reset_info.hard_reset_pending) + return 0; + + inv_start_val = (1 << MMU_RANGE_INV_EN_SHIFT | + 1 << MMU_RANGE_INV_ASID_EN_SHIFT | + asid << MMU_RANGE_INV_ASID_SHIFT); + start_va = va; + end_va = start_va + size; + + if ((flags & MMU_OP_USERPTR) && (gaudi2->hw_cap_initialized & HW_CAP_PMMU)) { + /* As range invalidation does not support zero address we will + * do full invalidation in this case + */ + if (start_va) { + invld_params.range_invalidation = true; + invld_params.start_va = start_va; + invld_params.end_va = end_va; + invld_params.inv_start_val = inv_start_val; + invld_params.flags = flags | MMU_OP_CLEAR_MEMCACHE; + } else { + invld_params.range_invalidation = false; + invld_params.inv_start_val = 1; + invld_params.flags = flags; + } + + + gaudi2_mmu_invalidate_cache_trigger(hdev, mmPMMU_HBW_STLB_BASE, &invld_params); + rc = gaudi2_mmu_invalidate_cache_status_poll(hdev, mmPMMU_HBW_STLB_BASE, + &invld_params); + if (rc) + return rc; + + } else if (flags & MMU_OP_PHYS_PACK) { + invld_params.start_va = gaudi2_mmu_scramble_addr(hdev, start_va); + invld_params.end_va = gaudi2_mmu_scramble_addr(hdev, end_va); + invld_params.inv_start_val = inv_start_val; + invld_params.flags = flags; + rc = gaudi2_hmmus_invalidate_cache(hdev, &invld_params); + } + + return rc; +} + +static int gaudi2_mmu_update_hop0_addr(struct hl_device *hdev, u32 stlb_base) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 hop0_addr; + u32 asid, max_asid = prop->max_asid; + int rc; + + /* it takes too much time to init all of the ASIDs on palladium */ + if (hdev->pldm) + max_asid = min((u32) 8, max_asid); + + for (asid = 0 ; asid < max_asid ; asid++) { + hop0_addr = hdev->mmu_priv.hr.mmu_asid_hop0[asid].phys_addr; + rc = gaudi2_mmu_update_asid_hop0_addr(hdev, stlb_base, asid, hop0_addr); + if (rc) { + dev_err(hdev->dev, "failed to set hop0 addr for asid %d\n", asid); + return rc; + } + } + + return 0; +} + +static int gaudi2_mmu_init_common(struct hl_device *hdev, u32 mmu_base, u32 stlb_base) +{ + u32 status, timeout_usec; + int rc; + + if (hdev->pldm || !hdev->pdev) + timeout_usec = GAUDI2_PLDM_MMU_TIMEOUT_USEC; + else + timeout_usec = GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC; + + WREG32(stlb_base + STLB_INV_ALL_START_OFFSET, 1); + + rc = hl_poll_timeout( + hdev, + stlb_base + STLB_SRAM_INIT_OFFSET, + status, + !status, + 1000, + timeout_usec); + + if (rc) + dev_notice_ratelimited(hdev->dev, "Timeout when waiting for MMU SRAM init\n"); + + rc = gaudi2_mmu_update_hop0_addr(hdev, stlb_base); + if (rc) + return rc; + + WREG32(mmu_base + MMU_BYPASS_OFFSET, 0); + + rc = hl_poll_timeout( + hdev, + stlb_base + STLB_INV_ALL_START_OFFSET, + status, + !status, + 1000, + timeout_usec); + + if (rc) + dev_notice_ratelimited(hdev->dev, "Timeout when waiting for MMU invalidate all\n"); + + WREG32(mmu_base + MMU_ENABLE_OFFSET, 1); + + return rc; +} + +static int gaudi2_pci_mmu_init(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 mmu_base, stlb_base; + int rc; + + if (gaudi2->hw_cap_initialized & HW_CAP_PMMU) + return 0; + + mmu_base = mmPMMU_HBW_MMU_BASE; + stlb_base = mmPMMU_HBW_STLB_BASE; + + RMWREG32_SHIFTED(stlb_base + STLB_HOP_CONFIGURATION_OFFSET, + (0 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_HOP_SHIFT) | + (5 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_SHIFT) | + (4 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_SHIFT) | + (5 << PMMU_HBW_STLB_HOP_CONFIGURATION_LAST_HOP_SHIFT) | + (5 << PMMU_HBW_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_SHIFT), + PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK | + PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK | + PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK | + PMMU_HBW_STLB_HOP_CONFIGURATION_LAST_HOP_MASK | + PMMU_HBW_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK); + + WREG32(stlb_base + STLB_LL_LOOKUP_MASK_63_32_OFFSET, 0); + + if (PAGE_SIZE == SZ_64K) { + /* Set page sizes to 64K on hop5 and 16M on hop4 + enable 8 bit hops */ + RMWREG32_SHIFTED(mmu_base + MMU_STATIC_MULTI_PAGE_SIZE_OFFSET, + FIELD_PREP(DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP5_PAGE_SIZE_MASK, 4) | + FIELD_PREP(DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK, 3) | + FIELD_PREP( + DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_CFG_8_BITS_HOP_MODE_EN_MASK, + 1), + DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP5_PAGE_SIZE_MASK | + DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK | + DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_CFG_8_BITS_HOP_MODE_EN_MASK); + } + + WREG32(mmu_base + MMU_SPI_SEI_MASK_OFFSET, GAUDI2_PMMU_SPI_SEI_ENABLE_MASK); + + rc = gaudi2_mmu_init_common(hdev, mmu_base, stlb_base); + if (rc) + return rc; + + gaudi2->hw_cap_initialized |= HW_CAP_PMMU; + + return 0; +} + +static int gaudi2_dcore_hmmu_init(struct hl_device *hdev, int dcore_id, + int hmmu_id) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 offset, mmu_base, stlb_base, hw_cap; + u8 dmmu_seq; + int rc; + + dmmu_seq = NUM_OF_HMMU_PER_DCORE * dcore_id + hmmu_id; + hw_cap = HW_CAP_DCORE0_DMMU0 << dmmu_seq; + + /* + * return if DMMU is already initialized or if it's not out of + * isolation (due to cluster binning) + */ + if ((gaudi2->hw_cap_initialized & hw_cap) || !(prop->hmmu_hif_enabled_mask & BIT(dmmu_seq))) + return 0; + + offset = (u32) (dcore_id * DCORE_OFFSET + hmmu_id * DCORE_HMMU_OFFSET); + mmu_base = mmDCORE0_HMMU0_MMU_BASE + offset; + stlb_base = mmDCORE0_HMMU0_STLB_BASE + offset; + + RMWREG32(mmu_base + MMU_STATIC_MULTI_PAGE_SIZE_OFFSET, 5 /* 64MB */, + MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK); + + RMWREG32_SHIFTED(stlb_base + STLB_HOP_CONFIGURATION_OFFSET, + FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK, 0) | + FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK, 3) | + FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK, 3) | + FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_LAST_HOP_MASK, 3) | + FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK, 3), + DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK | + DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK | + DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK | + DCORE0_HMMU0_STLB_HOP_CONFIGURATION_LAST_HOP_MASK | + DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK); + + RMWREG32(stlb_base + STLB_HOP_CONFIGURATION_OFFSET, 1, + STLB_HOP_CONFIGURATION_ONLY_LARGE_PAGE_MASK); + + WREG32(mmu_base + MMU_SPI_SEI_MASK_OFFSET, GAUDI2_HMMU_SPI_SEI_ENABLE_MASK); + + rc = gaudi2_mmu_init_common(hdev, mmu_base, stlb_base); + if (rc) + return rc; + + gaudi2->hw_cap_initialized |= hw_cap; + + return 0; +} + +static int gaudi2_hbm_mmu_init(struct hl_device *hdev) +{ + int rc, dcore_id, hmmu_id; + + for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) + for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE; hmmu_id++) { + rc = gaudi2_dcore_hmmu_init(hdev, dcore_id, hmmu_id); + if (rc) + return rc; + } + + return 0; +} + +static int gaudi2_mmu_init(struct hl_device *hdev) +{ + int rc; + + rc = gaudi2_pci_mmu_init(hdev); + if (rc) + return rc; + + rc = gaudi2_hbm_mmu_init(hdev); + if (rc) + return rc; + + return 0; +} + +static int gaudi2_hw_init(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int rc; + + /* Let's mark in the H/W that we have reached this point. We check + * this value in the reset_before_init function to understand whether + * we need to reset the chip before doing H/W init. This register is + * cleared by the H/W upon H/W reset + */ + WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY); + + /* Perform read from the device to make sure device is up */ + RREG32(mmHW_STATE); + + /* If iATU is done by FW, the HBM bar ALWAYS points to DRAM_PHYS_BASE. + * So we set it here and if anyone tries to move it later to + * a different address, there will be an error + */ + if (hdev->asic_prop.iatu_done_by_fw) + gaudi2->dram_bar_cur_addr = DRAM_PHYS_BASE; + + /* + * Before pushing u-boot/linux to device, need to set the hbm bar to + * base address of dram + */ + if (gaudi2_set_hbm_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) { + dev_err(hdev->dev, "failed to map HBM bar to DRAM base address\n"); + return -EIO; + } + + rc = gaudi2_init_cpu(hdev); + if (rc) { + dev_err(hdev->dev, "failed to initialize CPU\n"); + return rc; + } + + gaudi2_init_scrambler_hbm(hdev); + gaudi2_init_kdma(hdev); + + rc = gaudi2_init_cpu_queues(hdev, GAUDI2_CPU_TIMEOUT_USEC); + if (rc) { + dev_err(hdev->dev, "failed to initialize CPU H/W queues %d\n", rc); + return rc; + } + + rc = gaudi2->cpucp_info_get(hdev); + if (rc) { + dev_err(hdev->dev, "Failed to get cpucp info\n"); + return rc; + } + + rc = gaudi2_mmu_init(hdev); + if (rc) + return rc; + + gaudi2_init_pdma(hdev); + gaudi2_init_edma(hdev); + gaudi2_init_sm(hdev); + gaudi2_init_tpc(hdev); + gaudi2_init_mme(hdev); + gaudi2_init_rotator(hdev); + gaudi2_init_dec(hdev); + gaudi2_enable_timestamp(hdev); + + rc = gaudi2_coresight_init(hdev); + if (rc) + goto disable_queues; + + rc = gaudi2_enable_msix(hdev); + if (rc) + goto disable_queues; + + /* Perform read from the device to flush all configuration */ + RREG32(mmHW_STATE); + + return 0; + +disable_queues: + gaudi2_disable_dma_qmans(hdev); + gaudi2_disable_mme_qmans(hdev); + gaudi2_disable_tpc_qmans(hdev); + gaudi2_disable_rot_qmans(hdev); + gaudi2_disable_nic_qmans(hdev); + + gaudi2_disable_timestamp(hdev); + + return rc; +} + +/** + * gaudi2_send_hard_reset_cmd - common function to handle reset + * + * @hdev: pointer to the habanalabs device structure + * + * This function handles the various possible scenarios for reset. + * It considers if reset is handled by driver\FW and what FW components are loaded + */ +static void gaudi2_send_hard_reset_cmd(struct hl_device *hdev) +{ + struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; + bool heartbeat_reset, preboot_only, cpu_initialized = false; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 cpu_boot_status; + + preboot_only = (hdev->fw_loader.fw_comp_loaded == FW_TYPE_PREBOOT_CPU); + heartbeat_reset = (hdev->reset_info.curr_reset_cause == HL_RESET_CAUSE_HEARTBEAT); + + /* + * Handle corner case where failure was at cpu management app load, + * and driver didn't detect any failure while loading the FW, + * then at such scenario driver will send only HALT_MACHINE + * and no one will respond to this request since FW already back to preboot + * and it cannot handle such cmd. + * In this case next time the management app loads it'll check on events register + * which will still have the halt indication, and will reboot the device. + * The solution is to let preboot clear all relevant registers before next boot + * once driver send COMMS_RST_DEV. + */ + cpu_boot_status = RREG32(mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS); + + if (gaudi2 && (gaudi2->hw_cap_initialized & HW_CAP_CPU) && + (cpu_boot_status == CPU_BOOT_STATUS_SRAM_AVAIL)) + cpu_initialized = true; + + /* + * when Linux/Bootfit exist this write to the SP can be interpreted in 2 ways: + * 1. FW reset: FW initiate the reset sequence + * 2. driver reset: FW will start HALT sequence (the preparations for the + * reset but not the reset itself as it is not implemented + * on their part) and LKD will wait to let FW complete the + * sequence before issuing the reset + */ + if (!preboot_only && cpu_initialized) { + WREG32(le32_to_cpu(dyn_regs->gic_host_halt_irq), + gaudi2_irq_map_table[GAUDI2_EVENT_CPU_HALT_MACHINE].cpu_id); + + msleep(GAUDI2_CPU_RESET_WAIT_MSEC); + } + + /* + * When working with preboot (without Linux/Boot fit) we can + * communicate only using the COMMS commands to issue halt/reset. + * + * For the case in which we are working with Linux/Bootfit this is a hail-mary + * attempt to revive the card in the small chance that the f/w has + * experienced a watchdog event, which caused it to return back to preboot. + * In that case, triggering reset through GIC won't help. We need to + * trigger the reset as if Linux wasn't loaded. + * + * We do it only if the reset cause was HB, because that would be the + * indication of such an event. + * + * In case watchdog hasn't expired but we still got HB, then this won't + * do any damage. + */ + + if (heartbeat_reset || preboot_only || !cpu_initialized) { + if (hdev->asic_prop.hard_reset_done_by_fw) + hl_fw_ask_hard_reset_without_linux(hdev); + else + hl_fw_ask_halt_machine_without_linux(hdev); + } +} + +/** + * gaudi2_execute_hard_reset - execute hard reset by driver/FW + * + * @hdev: pointer to the habanalabs device structure + * @reset_sleep_ms: sleep time in msec after reset + * + * This function executes hard reset based on if driver/FW should do the reset + */ +static void gaudi2_execute_hard_reset(struct hl_device *hdev, u32 reset_sleep_ms) +{ + if (hdev->asic_prop.hard_reset_done_by_fw) { + gaudi2_send_hard_reset_cmd(hdev); + return; + } + + /* Set device to handle FLR by H/W as we will put the device + * CPU to halt mode + */ + WREG32(mmPCIE_AUX_FLR_CTRL, + (PCIE_AUX_FLR_CTRL_HW_CTRL_MASK | PCIE_AUX_FLR_CTRL_INT_MASK_MASK)); + + gaudi2_send_hard_reset_cmd(hdev); + + WREG32(mmPSOC_RESET_CONF_SW_ALL_RST, 1); +} + +/** + * gaudi2_execute_soft_reset - execute soft reset by driver/FW + * + * @hdev: pointer to the habanalabs device structure + * @reset_sleep_ms: sleep time in msec after reset + * @driver_performs_reset: true if driver should perform reset instead of f/w. + * + * This function executes soft reset based on if driver/FW should do the reset + */ +static void gaudi2_execute_soft_reset(struct hl_device *hdev, u32 reset_sleep_ms, + bool driver_performs_reset) +{ + struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; + + if (!driver_performs_reset) { + /* set SP to indicate reset request sent to FW */ + if (dyn_regs->cpu_rst_status) + WREG32(le32_to_cpu(dyn_regs->cpu_rst_status), CPU_RST_STATUS_NA); + else + WREG32(mmCPU_RST_STATUS_TO_HOST, CPU_RST_STATUS_NA); + + WREG32(le32_to_cpu(dyn_regs->gic_host_soft_rst_irq), + gaudi2_irq_map_table[GAUDI2_EVENT_CPU_SOFT_RESET].cpu_id); + return; + } + + /* Block access to engines, QMANs and SM during reset, these + * RRs will be reconfigured after soft reset. + * PCIE_MSIX is left unsecured to allow NIC packets processing during the reset. + */ + gaudi2_write_rr_to_all_lbw_rtrs(hdev, RR_TYPE_LONG, NUM_LONG_LBW_RR - 1, + mmDCORE0_TPC0_QM_DCCM_BASE, mmPCIE_MSIX_BASE); + + gaudi2_write_rr_to_all_lbw_rtrs(hdev, RR_TYPE_LONG, NUM_LONG_LBW_RR - 2, + mmPCIE_MSIX_BASE + HL_BLOCK_SIZE, + mmPCIE_VDEC1_MSTR_IF_RR_SHRD_HBW_BASE + HL_BLOCK_SIZE); + + WREG32(mmPSOC_RESET_CONF_SOFT_RST, 1); +} + +static void gaudi2_poll_btm_indication(struct hl_device *hdev, u32 reset_sleep_ms, + u32 poll_timeout_us) +{ + int i, rc = 0; + u32 reg_val; + + /* without this sleep reset will not work */ + msleep(reset_sleep_ms); + + /* We poll the BTM done indication multiple times after reset due to + * a HW errata 'GAUDI2_0300' + */ + for (i = 0 ; i < GAUDI2_RESET_POLL_CNT ; i++) + rc = hl_poll_timeout( + hdev, + mmPSOC_GLOBAL_CONF_BTM_FSM, + reg_val, + reg_val == 0, + 1000, + poll_timeout_us); + + if (rc) + dev_err(hdev->dev, "Timeout while waiting for device to reset 0x%x\n", reg_val); +} + +static void gaudi2_get_soft_rst_done_indication(struct hl_device *hdev, u32 poll_timeout_us) +{ + int i, rc = 0; + u32 reg_val; + + for (i = 0 ; i < GAUDI2_RESET_POLL_CNT ; i++) + rc = hl_poll_timeout( + hdev, + mmCPU_RST_STATUS_TO_HOST, + reg_val, + reg_val == CPU_RST_STATUS_SOFT_RST_DONE, + 1000, + poll_timeout_us); + + if (rc) + dev_err(hdev->dev, "Timeout while waiting for FW to complete soft reset (0x%x)\n", + reg_val); +} + +static void gaudi2_hw_fini(struct hl_device *hdev, bool hard_reset, bool fw_reset) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 poll_timeout_us, reset_sleep_ms; + bool driver_performs_reset = false; + + if (hdev->pldm) { + reset_sleep_ms = hard_reset ? GAUDI2_PLDM_HRESET_TIMEOUT_MSEC : + GAUDI2_PLDM_SRESET_TIMEOUT_MSEC; + poll_timeout_us = GAUDI2_PLDM_RESET_POLL_TIMEOUT_USEC; + } else { + reset_sleep_ms = GAUDI2_RESET_TIMEOUT_MSEC; + poll_timeout_us = GAUDI2_RESET_POLL_TIMEOUT_USEC; + } + + if (fw_reset) + goto skip_reset; + + gaudi2_reset_arcs(hdev); + + if (hard_reset) { + driver_performs_reset = !hdev->asic_prop.hard_reset_done_by_fw; + gaudi2_execute_hard_reset(hdev, reset_sleep_ms); + } else { + /* + * As we have to support also work with preboot only (which does not supports + * soft reset) we have to make sure that security is disabled before letting driver + * do the reset. user shall control the BFE flags to avoid asking soft reset in + * secured device with preboot only. + */ + driver_performs_reset = (hdev->fw_components == FW_TYPE_PREBOOT_CPU && + !hdev->asic_prop.fw_security_enabled); + gaudi2_execute_soft_reset(hdev, reset_sleep_ms, driver_performs_reset); + } + +skip_reset: + if (driver_performs_reset || hard_reset) + /* + * Instead of waiting for BTM indication we should wait for preboot ready: + * Consider the below scenario: + * 1. FW update is being triggered + * - setting the dirty bit + * 2. hard reset will be triggered due to the dirty bit + * 3. FW initiates the reset: + * - dirty bit cleared + * - BTM indication cleared + * - preboot ready indication cleared + * 4. during hard reset: + * - BTM indication will be set + * - BIST test performed and another reset triggered + * 5. only after this reset the preboot will set the preboot ready + * + * when polling on BTM indication alone we can lose sync with FW while trying to + * communicate with FW that is during reset. + * to overcome this we will always wait to preboot ready indication + */ + if ((hdev->fw_components & FW_TYPE_PREBOOT_CPU)) { + msleep(reset_sleep_ms); + hl_fw_wait_preboot_ready(hdev); + } else { + gaudi2_poll_btm_indication(hdev, reset_sleep_ms, poll_timeout_us); + } + else + gaudi2_get_soft_rst_done_indication(hdev, poll_timeout_us); + + if (!gaudi2) + return; + + gaudi2->dec_hw_cap_initialized &= ~(HW_CAP_DEC_MASK); + gaudi2->tpc_hw_cap_initialized &= ~(HW_CAP_TPC_MASK); + + /* + * Clear NIC capability mask in order for driver to re-configure + * NIC QMANs. NIC ports will not be re-configured during soft + * reset as we call gaudi2_nic_init only during hard reset + */ + gaudi2->nic_hw_cap_initialized &= ~(HW_CAP_NIC_MASK); + + if (hard_reset) { + gaudi2->hw_cap_initialized &= + ~(HW_CAP_DRAM | HW_CAP_CLK_GATE | HW_CAP_HBM_SCRAMBLER_MASK | + HW_CAP_PMMU | HW_CAP_CPU | HW_CAP_CPU_Q | + HW_CAP_SRAM_SCRAMBLER | HW_CAP_DMMU_MASK | + HW_CAP_PDMA_MASK | HW_CAP_EDMA_MASK | HW_CAP_KDMA | + HW_CAP_MME_MASK | HW_CAP_ROT_MASK); + + memset(gaudi2->events_stat, 0, sizeof(gaudi2->events_stat)); + } else { + gaudi2->hw_cap_initialized &= + ~(HW_CAP_CLK_GATE | HW_CAP_HBM_SCRAMBLER_SW_RESET | + HW_CAP_PDMA_MASK | HW_CAP_EDMA_MASK | HW_CAP_MME_MASK | + HW_CAP_ROT_MASK); + } +} + +static int gaudi2_suspend(struct hl_device *hdev) +{ + int rc; + + rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0); + if (rc) + dev_err(hdev->dev, "Failed to disable PCI access from CPU\n"); + + return rc; +} + +static int gaudi2_resume(struct hl_device *hdev) +{ + return gaudi2_init_iatu(hdev); +} + +static int gaudi2_mmap(struct hl_device *hdev, struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size) +{ + int rc; + + vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | + VM_DONTCOPY | VM_NORESERVE; + +#ifdef _HAS_DMA_MMAP_COHERENT + + rc = dma_mmap_coherent(hdev->dev, vma, cpu_addr, dma_addr, size); + if (rc) + dev_err(hdev->dev, "dma_mmap_coherent error %d", rc); + +#else + + rc = remap_pfn_range(vma, vma->vm_start, + virt_to_phys(cpu_addr) >> PAGE_SHIFT, + size, vma->vm_page_prot); + if (rc) + dev_err(hdev->dev, "remap_pfn_range error %d", rc); + +#endif + + return rc; +} + +static bool gaudi2_is_queue_enabled(struct hl_device *hdev, u32 hw_queue_id) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u64 hw_cap_mask = 0; + u64 hw_tpc_cap_bit = 0; + u64 hw_nic_cap_bit = 0; + u64 hw_test_cap_bit = 0; + + switch (hw_queue_id) { + case GAUDI2_QUEUE_ID_PDMA_0_0: + case GAUDI2_QUEUE_ID_PDMA_0_1: + case GAUDI2_QUEUE_ID_PDMA_1_0: + hw_cap_mask = HW_CAP_PDMA_MASK; + break; + case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3: + hw_test_cap_bit = HW_CAP_EDMA_SHIFT + + ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0) >> 2); + break; + case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3: + hw_test_cap_bit = HW_CAP_EDMA_SHIFT + NUM_OF_EDMA_PER_DCORE + + ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0) >> 2); + break; + case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3: + hw_test_cap_bit = HW_CAP_EDMA_SHIFT + 2 * NUM_OF_EDMA_PER_DCORE + + ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0) >> 2); + break; + case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3: + hw_test_cap_bit = HW_CAP_EDMA_SHIFT + 3 * NUM_OF_EDMA_PER_DCORE + + ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0) >> 2); + break; + + case GAUDI2_QUEUE_ID_DCORE0_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE0_MME_0_3: + hw_test_cap_bit = HW_CAP_MME_SHIFT; + break; + + case GAUDI2_QUEUE_ID_DCORE1_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE1_MME_0_3: + hw_test_cap_bit = HW_CAP_MME_SHIFT + 1; + break; + + case GAUDI2_QUEUE_ID_DCORE2_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE2_MME_0_3: + hw_test_cap_bit = HW_CAP_MME_SHIFT + 2; + break; + + case GAUDI2_QUEUE_ID_DCORE3_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE3_MME_0_3: + hw_test_cap_bit = HW_CAP_MME_SHIFT + 3; + break; + + case GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_5_3: + hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + + ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE0_TPC_0_0) >> 2); + + /* special case where cap bit refers to the first queue id */ + if (!hw_tpc_cap_bit) + return !!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(0)); + break; + + case GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE1_TPC_5_3: + hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + NUM_OF_TPC_PER_DCORE + + ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE1_TPC_0_0) >> 2); + break; + + case GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE2_TPC_5_3: + hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (2 * NUM_OF_TPC_PER_DCORE) + + ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE2_TPC_0_0) >> 2); + break; + + case GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE3_TPC_5_3: + hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (3 * NUM_OF_TPC_PER_DCORE) + + ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE3_TPC_0_0) >> 2); + break; + + case GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_6_3: + hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (4 * NUM_OF_TPC_PER_DCORE); + break; + + case GAUDI2_QUEUE_ID_ROT_0_0 ... GAUDI2_QUEUE_ID_ROT_1_3: + hw_test_cap_bit = HW_CAP_ROT_SHIFT + ((hw_queue_id - GAUDI2_QUEUE_ID_ROT_0_0) >> 2); + break; + + case GAUDI2_QUEUE_ID_NIC_0_0 ... GAUDI2_QUEUE_ID_NIC_23_3: + hw_nic_cap_bit = HW_CAP_NIC_SHIFT + ((hw_queue_id - GAUDI2_QUEUE_ID_NIC_0_0) >> 2); + + /* special case where cap bit refers to the first queue id */ + if (!hw_nic_cap_bit) + return !!(gaudi2->nic_hw_cap_initialized & BIT_ULL(0)); + break; + + case GAUDI2_QUEUE_ID_CPU_PQ: + return !!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q); + + default: + return false; + } + + if (hw_tpc_cap_bit) + return !!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(hw_tpc_cap_bit)); + + if (hw_nic_cap_bit) + return !!(gaudi2->nic_hw_cap_initialized & BIT_ULL(hw_nic_cap_bit)); + + if (hw_test_cap_bit) + hw_cap_mask = BIT_ULL(hw_test_cap_bit); + + return !!(gaudi2->hw_cap_initialized & hw_cap_mask); +} + +static bool gaudi2_is_arc_enabled(struct hl_device *hdev, u64 arc_id) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + switch (arc_id) { + case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5: + case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1: + return !!(gaudi2->active_hw_arc & BIT_ULL(arc_id)); + + case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24: + return !!(gaudi2->active_tpc_arc & BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0)); + + case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23: + return !!(gaudi2->active_nic_arc & BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0)); + + default: + return false; + } +} + +static void gaudi2_clr_arc_id_cap(struct hl_device *hdev, u64 arc_id) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + switch (arc_id) { + case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5: + case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1: + gaudi2->active_hw_arc &= ~(BIT_ULL(arc_id)); + break; + + case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24: + gaudi2->active_tpc_arc &= ~(BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0)); + break; + + case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23: + gaudi2->active_nic_arc &= ~(BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0)); + break; + + default: + return; + } +} + +static void gaudi2_set_arc_id_cap(struct hl_device *hdev, u64 arc_id) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + switch (arc_id) { + case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5: + case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1: + gaudi2->active_hw_arc |= BIT_ULL(arc_id); + break; + + case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24: + gaudi2->active_tpc_arc |= BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0); + break; + + case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23: + gaudi2->active_nic_arc |= BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0); + break; + + default: + return; + } +} + +static void gaudi2_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi) +{ + struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; + u32 pq_offset, reg_base, db_reg_offset, db_value; + + if (hw_queue_id != GAUDI2_QUEUE_ID_CPU_PQ) { + /* + * QMAN has 4 successive PQ_PI registers, 1 for each of the QMAN PQs. + * Masking the H/W queue ID with 0x3 extracts the QMAN internal PQ + * number. + */ + pq_offset = (hw_queue_id & 0x3) * 4; + reg_base = gaudi2_qm_blocks_bases[hw_queue_id]; + db_reg_offset = reg_base + QM_PQ_PI_0_OFFSET + pq_offset; + } else { + db_reg_offset = mmCPU_IF_PF_PQ_PI; + } + + db_value = pi; + + /* ring the doorbell */ + WREG32(db_reg_offset, db_value); + + if (hw_queue_id == GAUDI2_QUEUE_ID_CPU_PQ) { + /* make sure device CPU will read latest data from host */ + mb(); + WREG32(le32_to_cpu(dyn_regs->gic_host_pi_upd_irq), + gaudi2_irq_map_table[GAUDI2_EVENT_CPU_PI_UPDATE].cpu_id); + } +} + +static void gaudi2_pqe_write(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd) +{ + __le64 *pbd = (__le64 *) bd; + + /* The QMANs are on the host memory so a simple copy suffice */ + pqe[0] = pbd[0]; + pqe[1] = pbd[1]; +} + +static void *gaudi2_dma_alloc_coherent(struct hl_device *hdev, size_t size, + dma_addr_t *dma_handle, gfp_t flags) +{ + return dma_alloc_coherent(&hdev->pdev->dev, size, dma_handle, flags); +} + +static void gaudi2_dma_free_coherent(struct hl_device *hdev, size_t size, + void *cpu_addr, dma_addr_t dma_handle) +{ + dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, dma_handle); +} + +static int gaudi2_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len, + u32 timeout, u64 *result) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) { + if (result) + *result = 0; + return 0; + } + + if (!timeout) + timeout = GAUDI2_MSG_TO_CPU_TIMEOUT_USEC; + + return hl_fw_send_cpu_message(hdev, GAUDI2_QUEUE_ID_CPU_PQ, msg, len, timeout, result); +} + +static void *gaudi2_dma_pool_zalloc(struct hl_device *hdev, size_t size, + gfp_t mem_flags, dma_addr_t *dma_handle) +{ + if (size > GAUDI2_DMA_POOL_BLK_SIZE) + return NULL; + + return dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle); +} + +static void gaudi2_dma_pool_free(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr) +{ + dma_pool_free(hdev->dma_pool, vaddr, dma_addr); +} + +static void *gaudi2_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, + dma_addr_t *dma_handle) +{ + return hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle); +} + +static void gaudi2_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr) +{ + hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr); +} + +static dma_addr_t gaudi2_dma_map_single(struct hl_device *hdev, void *addr, int len, + enum dma_data_direction dir) +{ + dma_addr_t dma_addr; + + dma_addr = dma_map_single(&hdev->pdev->dev, addr, len, dir); + if (unlikely(dma_mapping_error(&hdev->pdev->dev, dma_addr))) + return 0; + + return dma_addr; +} + +static void gaudi2_dma_unmap_single(struct hl_device *hdev, dma_addr_t addr, int len, + enum dma_data_direction dir) +{ + dma_unmap_single(&hdev->pdev->dev, addr, len, dir); +} + +static int gaudi2_validate_cb_address(struct hl_device *hdev, struct hl_cs_parser *parser) +{ + struct asic_fixed_properties *asic_prop = &hdev->asic_prop; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + if (!gaudi2_is_queue_enabled(hdev, parser->hw_queue_id)) { + dev_err(hdev->dev, "h/w queue %d is disabled\n", parser->hw_queue_id); + return -EINVAL; + } + + /* Just check if CB address is valid */ + + if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, + parser->user_cb_size, + asic_prop->sram_user_base_address, + asic_prop->sram_end_address)) + return 0; + + if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, + parser->user_cb_size, + asic_prop->dram_user_base_address, + asic_prop->dram_end_address)) + return 0; + + if ((gaudi2->hw_cap_initialized & HW_CAP_DMMU_MASK) && + hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, + parser->user_cb_size, + asic_prop->dmmu.start_addr, + asic_prop->dmmu.end_addr)) + return 0; + + if (gaudi2->hw_cap_initialized & HW_CAP_PMMU) { + if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, + parser->user_cb_size, + asic_prop->pmmu.start_addr, + asic_prop->pmmu.end_addr) || + hl_mem_area_inside_range( + (u64) (uintptr_t) parser->user_cb, + parser->user_cb_size, + asic_prop->pmmu_huge.start_addr, + asic_prop->pmmu_huge.end_addr)) + return 0; + + } else if (gaudi2_host_phys_addr_valid((u64) (uintptr_t) parser->user_cb)) { + if (!hdev->pdev) + return 0; + + if (!device_iommu_mapped(&hdev->pdev->dev)) + return 0; + } + + dev_err(hdev->dev, "CB address %p + 0x%x for internal QMAN is not valid\n", + parser->user_cb, parser->user_cb_size); + + return -EFAULT; +} + +static int gaudi2_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + if (!parser->is_kernel_allocated_cb) + return gaudi2_validate_cb_address(hdev, parser); + + if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU)) { + dev_err(hdev->dev, "PMMU not initialized - Unsupported mode in Gaudi2\n"); + return -EINVAL; + } + + return 0; +} + +static int gaudi2_send_heartbeat(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) + return 0; + + return hl_fw_send_heartbeat(hdev); +} + +/* This is an internal helper function, used to update the KDMA mmu props. + * Should be called with a proper kdma lock. + */ +static void gaudi2_kdma_set_mmbp_asid(struct hl_device *hdev, + bool mmu_bypass, u32 asid) +{ + u32 rw_asid, rw_mmu_bp; + + rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) | + (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT); + + rw_mmu_bp = (!!mmu_bypass << ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_RD_SHIFT) | + (!!mmu_bypass << ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_WR_SHIFT); + + WREG32(mmARC_FARM_KDMA_CTX_AXUSER_HB_ASID, rw_asid); + WREG32(mmARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP, rw_mmu_bp); +} + +static void gaudi2_arm_cq_monitor(struct hl_device *hdev, u32 sob_id, u32 mon_id, u32 cq_id, + u32 mon_payload, u32 sync_value) +{ + u32 sob_offset, mon_offset, sync_group_id, mode, mon_arm; + u8 mask; + + sob_offset = sob_id * 4; + mon_offset = mon_id * 4; + + /* Reset the SOB value */ + WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset, 0); + + /* Configure this address with CQ_ID 0 because CQ_EN is set */ + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, cq_id); + + /* Configure this address with CS index because CQ_EN is set */ + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, mon_payload); + + sync_group_id = sob_id / 8; + mask = ~(1 << (sob_id & 0x7)); + mode = 1; /* comparison mode is "equal to" */ + + mon_arm = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOD_MASK, sync_value); + mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOP_MASK, mode); + mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_MASK_MASK, mask); + mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SID_MASK, sync_group_id); + WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + mon_offset, mon_arm); +} + +/* This is an internal helper function used by gaudi2_send_job_to_kdma only */ +static int gaudi2_send_job_to_kdma(struct hl_device *hdev, + u64 src_addr, u64 dst_addr, + u32 size, bool is_memset) +{ + u32 comp_val, commit_mask, *polling_addr, timeout, status = 0; + struct hl_cq_entry *cq_base; + struct hl_cq *cq; + u64 comp_addr; + int rc; + + gaudi2_arm_cq_monitor(hdev, GAUDI2_RESERVED_SOB_KDMA_COMPLETION, + GAUDI2_RESERVED_MON_KDMA_COMPLETION, + GAUDI2_RESERVED_CQ_KDMA_COMPLETION, 1, 1); + + comp_addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + + (GAUDI2_RESERVED_SOB_KDMA_COMPLETION * sizeof(u32)); + + comp_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1) | + FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 1); + + WREG32(mmARC_FARM_KDMA_CTX_SRC_BASE_LO, lower_32_bits(src_addr)); + WREG32(mmARC_FARM_KDMA_CTX_SRC_BASE_HI, upper_32_bits(src_addr)); + WREG32(mmARC_FARM_KDMA_CTX_DST_BASE_LO, lower_32_bits(dst_addr)); + WREG32(mmARC_FARM_KDMA_CTX_DST_BASE_HI, upper_32_bits(dst_addr)); + WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_ADDR_LO, lower_32_bits(comp_addr)); + WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_ADDR_HI, upper_32_bits(comp_addr)); + WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_WDATA, comp_val); + WREG32(mmARC_FARM_KDMA_CTX_DST_TSIZE_0, size); + + commit_mask = FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_LIN_MASK, 1) | + FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_WR_COMP_EN_MASK, 1); + + if (is_memset) + commit_mask |= FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_MEM_SET_MASK, 1); + + WREG32(mmARC_FARM_KDMA_CTX_COMMIT, commit_mask); + + /* Wait for completion */ + cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_KDMA_COMPLETION]; + cq_base = cq->kernel_address; + polling_addr = (u32 *)&cq_base[cq->ci]; + + if (hdev->pldm) + /* for each 1MB 20 second of timeout */ + timeout = ((size / SZ_1M) + 1) * USEC_PER_SEC * 20; + else + timeout = KDMA_TIMEOUT_USEC; + + /* Polling */ + rc = hl_poll_timeout_memory( + hdev, + polling_addr, + status, + (status == 1), + 1000, + timeout, + true); + + *polling_addr = 0; + + if (rc) { + dev_err(hdev->dev, "Timeout while waiting for KDMA to be idle\n"); + WREG32(mmARC_FARM_KDMA_CFG_1, 1 << ARC_FARM_KDMA_CFG_1_HALT_SHIFT); + return rc; + } + + cq->ci = hl_cq_inc_ptr(cq->ci); + + return 0; +} + +static void gaudi2_memset_device_lbw(struct hl_device *hdev, u32 addr, u32 size, u32 val) +{ + u32 i; + + for (i = 0 ; i < size ; i += sizeof(u32)) + WREG32(addr + i, val); +} + +static void gaudi2_qman_set_test_mode(struct hl_device *hdev, u32 hw_queue_id, bool enable) +{ + u32 reg_base = gaudi2_qm_blocks_bases[hw_queue_id]; + + if (enable) { + WREG32(reg_base + QM_GLBL_PROT_OFFSET, QMAN_MAKE_TRUSTED_TEST_MODE); + WREG32(reg_base + QM_PQC_CFG_OFFSET, 0); + } else { + WREG32(reg_base + QM_GLBL_PROT_OFFSET, QMAN_MAKE_TRUSTED); + WREG32(reg_base + QM_PQC_CFG_OFFSET, 1 << PDMA0_QM_PQC_CFG_EN_SHIFT); + } +} + +static int gaudi2_test_queue(struct hl_device *hdev, u32 hw_queue_id) +{ + u32 sob_offset = hdev->asic_prop.first_available_user_sob[0] * 4; + u32 sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset; + u32 timeout_usec, tmp, sob_base = 1, sob_val = 0x5a5a; + struct packet_msg_short *msg_short_pkt; + dma_addr_t pkt_dma_addr; + size_t pkt_size; + int rc; + + if (hdev->pldm) + timeout_usec = GAUDI2_PLDM_TEST_QUEUE_WAIT_USEC; + else + timeout_usec = GAUDI2_TEST_QUEUE_WAIT_USEC; + + pkt_size = sizeof(*msg_short_pkt); + msg_short_pkt = hl_asic_dma_pool_zalloc(hdev, pkt_size, GFP_KERNEL, &pkt_dma_addr); + if (!msg_short_pkt) { + dev_err(hdev->dev, "Failed to allocate packet for H/W queue %d testing\n", + hw_queue_id); + return -ENOMEM; + } + + tmp = (PACKET_MSG_SHORT << GAUDI2_PKT_CTL_OPCODE_SHIFT) | + (1 << GAUDI2_PKT_CTL_EB_SHIFT) | + (1 << GAUDI2_PKT_CTL_MB_SHIFT) | + (sob_base << GAUDI2_PKT_SHORT_CTL_BASE_SHIFT) | + (sob_offset << GAUDI2_PKT_SHORT_CTL_ADDR_SHIFT); + + msg_short_pkt->value = cpu_to_le32(sob_val); + msg_short_pkt->ctl = cpu_to_le32(tmp); + + /* Reset the SOB value */ + WREG32(sob_addr, 0); + + rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, pkt_size, pkt_dma_addr); + if (rc) { + dev_err(hdev->dev, "Failed to send msg_short packet to H/W queue %d\n", + hw_queue_id); + goto free_pkt; + } + + rc = hl_poll_timeout( + hdev, + sob_addr, + tmp, + (tmp == sob_val), + 1000, + timeout_usec); + + if (rc == -ETIMEDOUT) { + dev_err(hdev->dev, "H/W queue %d test failed (SOB_OBJ_0 == 0x%x)\n", + hw_queue_id, tmp); + rc = -EIO; + } + + /* Reset the SOB value */ + WREG32(sob_addr, 0); + +free_pkt: + hl_asic_dma_pool_free(hdev, (void *) msg_short_pkt, pkt_dma_addr); + return rc; +} + +static int gaudi2_test_cpu_queue(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + /* + * check capability here as send_cpu_message() won't update the result + * value if no capability + */ + if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) + return 0; + + return hl_fw_test_cpu_queue(hdev); +} + +static int gaudi2_test_queues(struct hl_device *hdev) +{ + int i, rc, ret_val = 0; + + for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ; i++) { + if (!gaudi2_is_queue_enabled(hdev, i)) + continue; + + gaudi2_qman_set_test_mode(hdev, i, true); + rc = gaudi2_test_queue(hdev, i); + gaudi2_qman_set_test_mode(hdev, i, false); + + if (rc) { + ret_val = -EINVAL; + goto done; + } + } + + rc = gaudi2_test_cpu_queue(hdev); + if (rc) { + ret_val = -EINVAL; + goto done; + } + +done: + return ret_val; +} + +static int gaudi2_compute_reset_late_init(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + size_t irq_arr_size; + + /* TODO: missing gaudi2_nic_resume. + * Until implemented nic_hw_cap_initialized will remain zeroed + */ + gaudi2_init_arcs(hdev); + gaudi2_scrub_arcs_dccm(hdev); + gaudi2_init_security(hdev); + + /* Unmask all IRQs since some could have been received during the soft reset */ + irq_arr_size = gaudi2->num_of_valid_hw_events * sizeof(gaudi2->hw_events[0]); + return hl_fw_unmask_irq_arr(hdev, gaudi2->hw_events, irq_arr_size); +} + +static void gaudi2_is_tpc_engine_idle(struct hl_device *hdev, int dcore, int inst, u32 offset, + struct iterate_module_ctx *ctx) +{ + struct gaudi2_tpc_idle_data *idle_data = ctx->data; + u32 tpc_cfg_sts, qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts; + bool is_eng_idle; + int engine_idx; + + if ((dcore == 0) && (inst == (NUM_DCORE0_TPC - 1))) + engine_idx = GAUDI2_DCORE0_ENGINE_ID_TPC_6; + else + engine_idx = GAUDI2_DCORE0_ENGINE_ID_TPC_0 + + dcore * GAUDI2_ENGINE_ID_DCORE_OFFSET + inst; + + tpc_cfg_sts = RREG32(mmDCORE0_TPC0_CFG_STATUS + offset); + qm_glbl_sts0 = RREG32(mmDCORE0_TPC0_QM_GLBL_STS0 + offset); + qm_glbl_sts1 = RREG32(mmDCORE0_TPC0_QM_GLBL_STS1 + offset); + qm_cgm_sts = RREG32(mmDCORE0_TPC0_QM_CGM_STS + offset); + + is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) && + IS_TPC_IDLE(tpc_cfg_sts); + *(idle_data->is_idle) &= is_eng_idle; + + if (idle_data->mask && !is_eng_idle) + set_bit(engine_idx, idle_data->mask); + + if (idle_data->e) + hl_engine_data_sprintf(idle_data->e, + idle_data->tpc_fmt, dcore, inst, + is_eng_idle ? "Y" : "N", + qm_glbl_sts0, qm_cgm_sts, tpc_cfg_sts); +} + +static bool gaudi2_is_device_idle(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, + struct engines_data *e) +{ + u32 qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts, dma_core_idle_ind_mask, + mme_arch_sts, dec_swreg15, dec_enabled_bit; + struct asic_fixed_properties *prop = &hdev->asic_prop; + const char *rot_fmt = "%-6d%-5d%-9s%#-14x%#-12x%s\n"; + unsigned long *mask = (unsigned long *) mask_arr; + const char *edma_fmt = "%-6d%-6d%-9s%#-14x%#x\n"; + const char *mme_fmt = "%-5d%-6s%-9s%#-14x%#x\n"; + const char *nic_fmt = "%-5d%-9s%#-14x%#-12x\n"; + const char *pdma_fmt = "%-6d%-9s%#-14x%#x\n"; + const char *pcie_dec_fmt = "%-10d%-9s%#x\n"; + const char *dec_fmt = "%-6d%-5d%-9s%#x\n"; + bool is_idle = true, is_eng_idle; + u64 offset; + + struct gaudi2_tpc_idle_data tpc_idle_data = { + .tpc_fmt = "%-6d%-5d%-9s%#-14x%#-12x%#x\n", + .e = e, + .mask = mask, + .is_idle = &is_idle, + }; + struct iterate_module_ctx tpc_iter = { + .fn = &gaudi2_is_tpc_engine_idle, + .data = &tpc_idle_data, + }; + + int engine_idx, i, j; + + /* EDMA, Two engines per Dcore */ + if (e) + hl_engine_data_sprintf(e, + "\nCORE EDMA is_idle QM_GLBL_STS0 DMA_CORE_IDLE_IND_MASK\n" + "---- ---- ------- ------------ ----------------------\n"); + + for (i = 0; i < NUM_OF_DCORES; i++) { + for (j = 0 ; j < NUM_OF_EDMA_PER_DCORE ; j++) { + int seq = i * NUM_OF_EDMA_PER_DCORE + j; + + if (!(prop->edma_enabled_mask & BIT(seq))) + continue; + + engine_idx = GAUDI2_DCORE0_ENGINE_ID_EDMA_0 + + i * GAUDI2_ENGINE_ID_DCORE_OFFSET + j; + offset = i * DCORE_OFFSET + j * DCORE_EDMA_OFFSET; + + dma_core_idle_ind_mask = + RREG32(mmDCORE0_EDMA0_CORE_IDLE_IND_MASK + offset); + + qm_glbl_sts0 = RREG32(mmDCORE0_EDMA0_QM_GLBL_STS0 + offset); + qm_glbl_sts1 = RREG32(mmDCORE0_EDMA0_QM_GLBL_STS1 + offset); + qm_cgm_sts = RREG32(mmDCORE0_EDMA0_QM_CGM_STS + offset); + + is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) && + IS_DMA_IDLE(dma_core_idle_ind_mask); + is_idle &= is_eng_idle; + + if (mask && !is_eng_idle) + set_bit(engine_idx, mask); + + if (e) + hl_engine_data_sprintf(e, edma_fmt, i, j, + is_eng_idle ? "Y" : "N", + qm_glbl_sts0, + dma_core_idle_ind_mask); + } + } + + /* PDMA, Two engines in Full chip */ + if (e) + hl_engine_data_sprintf(e, + "\nPDMA is_idle QM_GLBL_STS0 DMA_CORE_IDLE_IND_MASK\n" + "---- ------- ------------ ----------------------\n"); + + for (i = 0 ; i < NUM_OF_PDMA ; i++) { + engine_idx = GAUDI2_ENGINE_ID_PDMA_0 + i; + offset = i * PDMA_OFFSET; + dma_core_idle_ind_mask = RREG32(mmPDMA0_CORE_IDLE_IND_MASK + offset); + + qm_glbl_sts0 = RREG32(mmPDMA0_QM_GLBL_STS0 + offset); + qm_glbl_sts1 = RREG32(mmPDMA0_QM_GLBL_STS1 + offset); + qm_cgm_sts = RREG32(mmPDMA0_QM_CGM_STS + offset); + + is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) && + IS_DMA_IDLE(dma_core_idle_ind_mask); + is_idle &= is_eng_idle; + + if (mask && !is_eng_idle) + set_bit(engine_idx, mask); + + if (e) + hl_engine_data_sprintf(e, pdma_fmt, i, is_eng_idle ? "Y" : "N", + qm_glbl_sts0, dma_core_idle_ind_mask); + } + + /* NIC, twelve macros in Full chip */ + if (e && hdev->nic_ports_mask) + hl_engine_data_sprintf(e, + "\nNIC is_idle QM_GLBL_STS0 QM_CGM_STS\n" + "--- ------- ------------ ----------\n"); + + for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) { + if (!(i & 1)) + offset = i / 2 * NIC_OFFSET; + else + offset += NIC_QM_OFFSET; + + if (!(hdev->nic_ports_mask & BIT(i))) + continue; + + engine_idx = GAUDI2_ENGINE_ID_NIC0_0 + i; + + + qm_glbl_sts0 = RREG32(mmNIC0_QM0_GLBL_STS0 + offset); + qm_glbl_sts1 = RREG32(mmNIC0_QM0_GLBL_STS1 + offset); + qm_cgm_sts = RREG32(mmNIC0_QM0_CGM_STS + offset); + + is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts); + is_idle &= is_eng_idle; + + if (mask && !is_eng_idle) + set_bit(engine_idx, mask); + + if (e) + hl_engine_data_sprintf(e, nic_fmt, i, is_eng_idle ? "Y" : "N", + qm_glbl_sts0, qm_cgm_sts); + } + + if (e) + hl_engine_data_sprintf(e, + "\nMME Stub is_idle QM_GLBL_STS0 MME_ARCH_STATUS\n" + "--- ---- ------- ------------ ---------------\n"); + /* MME, one per Dcore */ + for (i = 0 ; i < NUM_OF_DCORES ; i++) { + engine_idx = GAUDI2_DCORE0_ENGINE_ID_MME + i * GAUDI2_ENGINE_ID_DCORE_OFFSET; + offset = i * DCORE_OFFSET; + + qm_glbl_sts0 = RREG32(mmDCORE0_MME_QM_GLBL_STS0 + offset); + qm_glbl_sts1 = RREG32(mmDCORE0_MME_QM_GLBL_STS1 + offset); + qm_cgm_sts = RREG32(mmDCORE0_MME_QM_CGM_STS + offset); + + is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts); + is_idle &= is_eng_idle; + + mme_arch_sts = RREG32(mmDCORE0_MME_CTRL_LO_ARCH_STATUS + offset); + is_eng_idle &= IS_MME_IDLE(mme_arch_sts); + is_idle &= is_eng_idle; + + if (e) + hl_engine_data_sprintf(e, mme_fmt, i, "N", + is_eng_idle ? "Y" : "N", + qm_glbl_sts0, + mme_arch_sts); + + if (mask && !is_eng_idle) + set_bit(engine_idx, mask); + } + + /* + * TPC + */ + if (e && prop->tpc_enabled_mask) + hl_engine_data_sprintf(e, + "\nCORE TPC is_idle QM_GLBL_STS0 QM_CGM_STS DMA_CORE_IDLE_IND_MASK\n" + "---- --- -------- ------------ ---------- ----------------------\n"); + + gaudi2_iterate_tpcs(hdev, &tpc_iter); + + /* Decoders, two each Dcore and two shared PCIe decoders */ + if (e && (prop->decoder_enabled_mask & (~PCIE_DEC_EN_MASK))) + hl_engine_data_sprintf(e, + "\nCORE DEC is_idle VSI_CMD_SWREG15\n" + "---- --- ------- ---------------\n"); + + for (i = 0 ; i < NUM_OF_DCORES ; i++) { + for (j = 0 ; j < NUM_OF_DEC_PER_DCORE ; j++) { + dec_enabled_bit = 1 << (i * NUM_OF_DEC_PER_DCORE + j); + if (!(prop->decoder_enabled_mask & dec_enabled_bit)) + continue; + + engine_idx = GAUDI2_DCORE0_ENGINE_ID_DEC_0 + + i * GAUDI2_ENGINE_ID_DCORE_OFFSET + j; + offset = i * DCORE_OFFSET + j * DCORE_DEC_OFFSET; + + dec_swreg15 = RREG32(mmDCORE0_DEC0_CMD_SWREG15 + offset); + is_eng_idle = IS_DEC_IDLE(dec_swreg15); + is_idle &= is_eng_idle; + + if (mask && !is_eng_idle) + set_bit(engine_idx, mask); + + if (e) + hl_engine_data_sprintf(e, dec_fmt, i, j, + is_eng_idle ? "Y" : "N", dec_swreg15); + } + } + + if (e && (prop->decoder_enabled_mask & PCIE_DEC_EN_MASK)) + hl_engine_data_sprintf(e, + "\nPCIe DEC is_idle VSI_CMD_SWREG15\n" + "-------- ------- ---------------\n"); + + /* Check shared(PCIe) decoders */ + for (i = 0 ; i < NUM_OF_DEC_PER_DCORE ; i++) { + dec_enabled_bit = PCIE_DEC_SHIFT + i; + if (!(prop->decoder_enabled_mask & BIT(dec_enabled_bit))) + continue; + + engine_idx = GAUDI2_PCIE_ENGINE_ID_DEC_0 + i; + offset = i * DCORE_DEC_OFFSET; + dec_swreg15 = RREG32(mmPCIE_DEC0_CMD_SWREG15 + offset); + is_eng_idle = IS_DEC_IDLE(dec_swreg15); + is_idle &= is_eng_idle; + + if (mask && !is_eng_idle) + set_bit(engine_idx, mask); + + if (e) + hl_engine_data_sprintf(e, pcie_dec_fmt, i, + is_eng_idle ? "Y" : "N", dec_swreg15); + } + + if (e) + hl_engine_data_sprintf(e, + "\nCORE ROT is_idle QM_GLBL_STS0 QM_CGM_STS DMA_CORE_STS0\n" + "---- ---- ------- ------------ ---------- -------------\n"); + + for (i = 0 ; i < NUM_OF_ROT ; i++) { + engine_idx = GAUDI2_ENGINE_ID_ROT_0 + i; + + offset = i * ROT_OFFSET; + + qm_glbl_sts0 = RREG32(mmROT0_QM_GLBL_STS0 + offset); + qm_glbl_sts1 = RREG32(mmROT0_QM_GLBL_STS1 + offset); + qm_cgm_sts = RREG32(mmROT0_QM_CGM_STS + offset); + + is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts); + is_idle &= is_eng_idle; + + if (mask && !is_eng_idle) + set_bit(engine_idx, mask); + + if (e) + hl_engine_data_sprintf(e, rot_fmt, i, 0, is_eng_idle ? "Y" : "N", + qm_glbl_sts0, qm_cgm_sts, "-"); + } + + return is_idle; +} + +static void gaudi2_hw_queues_lock(struct hl_device *hdev) + __acquires(&gaudi2->hw_queues_lock) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + spin_lock(&gaudi2->hw_queues_lock); +} + +static void gaudi2_hw_queues_unlock(struct hl_device *hdev) + __releases(&gaudi2->hw_queues_lock) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + spin_unlock(&gaudi2->hw_queues_lock); +} + +static u32 gaudi2_get_pci_id(struct hl_device *hdev) +{ + return hdev->pdev->device; +} + +static int gaudi2_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) + return 0; + + return hl_fw_get_eeprom_data(hdev, data, max_size); +} + +static void gaudi2_update_eq_ci(struct hl_device *hdev, u32 val) +{ + WREG32(mmCPU_IF_EQ_RD_OFFS, val); +} + +static void *gaudi2_get_events_stat(struct hl_device *hdev, bool aggregate, u32 *size) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + if (aggregate) { + *size = (u32) sizeof(gaudi2->events_stat_aggregate); + return gaudi2->events_stat_aggregate; + } + + *size = (u32) sizeof(gaudi2->events_stat); + return gaudi2->events_stat; +} + +static void gaudi2_mmu_vdec_dcore_prepare(struct hl_device *hdev, int dcore_id, + int dcore_vdec_id, u32 rw_asid, u32 rw_mmu_bp) +{ + u32 offset = (mmDCORE0_VDEC1_BRDG_CTRL_BASE - mmDCORE0_VDEC0_BRDG_CTRL_BASE) * + dcore_vdec_id + DCORE_OFFSET * dcore_id; + + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_ASID + offset, rw_asid); + + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_ASID + offset, rw_asid); + + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_ASID + offset, rw_asid); + + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_ASID + offset, rw_asid); + + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_ASID + offset, rw_asid); +} + +static void gaudi2_mmu_dcore_prepare(struct hl_device *hdev, int dcore_id, u32 asid) +{ + u32 rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) | + (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT); + struct asic_fixed_properties *prop = &hdev->asic_prop; + u32 dcore_offset = dcore_id * DCORE_OFFSET; + u32 vdec_id, i, ports_offset, reg_val; + u8 edma_seq_base; + + /* EDMA */ + edma_seq_base = dcore_id * NUM_OF_EDMA_PER_DCORE; + if (prop->edma_enabled_mask & BIT(edma_seq_base)) { + WREG32(mmDCORE0_EDMA0_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0); + WREG32(mmDCORE0_EDMA0_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid); + WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + dcore_offset, 0); + WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_ASID + dcore_offset, rw_asid); + } + + if (prop->edma_enabled_mask & BIT(edma_seq_base + 1)) { + WREG32(mmDCORE0_EDMA1_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0); + WREG32(mmDCORE0_EDMA1_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid); + WREG32(mmDCORE0_EDMA1_CORE_CTX_AXUSER_HB_ASID + dcore_offset, rw_asid); + WREG32(mmDCORE0_EDMA1_CORE_CTX_AXUSER_HB_MMU_BP + dcore_offset, 0); + } + + /* Sync Mngr */ + WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_NONE_SEC_PRIV + dcore_offset, asid); + /* + * Sync Mngrs on dcores 1 - 3 are exposed to user, so must use user ASID + * for any access type + */ + if (dcore_id > 0) { + reg_val = (asid << DCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID_RD_SHIFT) | + (asid << DCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID_WR_SHIFT); + WREG32(mmDCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID + dcore_offset, reg_val); + WREG32(mmDCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_MMU_BP + dcore_offset, 0); + } + + WREG32(mmDCORE0_MME_CTRL_LO_MME_AXUSER_HB_MMU_BP + dcore_offset, 0); + WREG32(mmDCORE0_MME_CTRL_LO_MME_AXUSER_HB_ASID + dcore_offset, rw_asid); + + for (i = 0 ; i < NUM_OF_MME_SBTE_PORTS ; i++) { + ports_offset = i * DCORE_MME_SBTE_OFFSET; + WREG32(mmDCORE0_MME_SBTE0_MSTR_IF_AXUSER_HB_MMU_BP + + dcore_offset + ports_offset, 0); + WREG32(mmDCORE0_MME_SBTE0_MSTR_IF_AXUSER_HB_ASID + + dcore_offset + ports_offset, rw_asid); + } + + for (i = 0 ; i < NUM_OF_MME_WB_PORTS ; i++) { + ports_offset = i * DCORE_MME_WB_OFFSET; + WREG32(mmDCORE0_MME_WB0_MSTR_IF_AXUSER_HB_MMU_BP + + dcore_offset + ports_offset, 0); + WREG32(mmDCORE0_MME_WB0_MSTR_IF_AXUSER_HB_ASID + + dcore_offset + ports_offset, rw_asid); + } + + WREG32(mmDCORE0_MME_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0); + WREG32(mmDCORE0_MME_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid); + + /* + * Decoders + */ + for (vdec_id = 0 ; vdec_id < NUM_OF_DEC_PER_DCORE ; vdec_id++) { + if (prop->decoder_enabled_mask & BIT(dcore_id * NUM_OF_DEC_PER_DCORE + vdec_id)) + gaudi2_mmu_vdec_dcore_prepare(hdev, dcore_id, vdec_id, rw_asid, 0); + } +} + +static void gudi2_mmu_vdec_shared_prepare(struct hl_device *hdev, + int shared_vdec_id, u32 rw_asid, u32 rw_mmu_bp) +{ + u32 offset = (mmPCIE_VDEC1_BRDG_CTRL_BASE - mmPCIE_VDEC0_BRDG_CTRL_BASE) * shared_vdec_id; + + WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_ASID + offset, rw_asid); + + WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_ASID + offset, rw_asid); + + WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_ASID + offset, rw_asid); + + WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_ASID + offset, rw_asid); + + WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_ASID + offset, rw_asid); +} + +static void gudi2_mmu_arc_farm_arc_dup_eng_prepare(struct hl_device *hdev, int arc_farm_id, + u32 rw_asid, u32 rw_mmu_bp) +{ + u32 offset = (mmARC_FARM_ARC1_DUP_ENG_BASE - mmARC_FARM_ARC0_DUP_ENG_BASE) * arc_farm_id; + + WREG32(mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_MMU_BP + offset, rw_mmu_bp); + WREG32(mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_ASID + offset, rw_asid); +} + +static void gaudi2_arc_mmu_prepare(struct hl_device *hdev, u32 cpu_id, u32 asid) +{ + u32 reg_base, reg_offset, reg_val = 0; + + reg_base = gaudi2_arc_blocks_bases[cpu_id]; + + /* Enable MMU and configure asid for all relevant ARC regions */ + reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_ARC_REGION_CFG_MMU_BP_MASK, 0); + reg_val |= FIELD_PREP(ARC_FARM_ARC0_AUX_ARC_REGION_CFG_0_ASID_MASK, asid); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION3_GENERAL); + WREG32(reg_base + reg_offset, reg_val); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION4_HBM0_FW); + WREG32(reg_base + reg_offset, reg_val); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION5_HBM1_GC_DATA); + WREG32(reg_base + reg_offset, reg_val); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION6_HBM2_GC_DATA); + WREG32(reg_base + reg_offset, reg_val); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION7_HBM3_GC_DATA); + WREG32(reg_base + reg_offset, reg_val); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION9_PCIE); + WREG32(reg_base + reg_offset, reg_val); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION10_GENERAL); + WREG32(reg_base + reg_offset, reg_val); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION11_GENERAL); + WREG32(reg_base + reg_offset, reg_val); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION12_GENERAL); + WREG32(reg_base + reg_offset, reg_val); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION13_GENERAL); + WREG32(reg_base + reg_offset, reg_val); + + reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION14_GENERAL); + WREG32(reg_base + reg_offset, reg_val); +} + +static int gaudi2_arc_mmu_prepare_all(struct hl_device *hdev, u32 asid) +{ + int i; + + if (hdev->fw_components & FW_TYPE_BOOT_CPU) + return hl_fw_cpucp_engine_core_asid_set(hdev, asid); + + for (i = CPU_ID_SCHED_ARC0 ; i < NUM_OF_ARC_FARMS_ARC ; i++) + gaudi2_arc_mmu_prepare(hdev, i, asid); + + for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i += 4) { + if (!gaudi2_is_queue_enabled(hdev, i)) + continue; + + gaudi2_arc_mmu_prepare(hdev, gaudi2_queue_id_to_arc_id[i], asid); + } + + return 0; +} + +static int gaudi2_mmu_shared_prepare(struct hl_device *hdev, u32 asid) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u32 rw_asid, offset; + int rc, i; + + rw_asid = FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_MASK, asid) | + FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_MASK, asid); + + WREG32(mmPDMA0_QM_AXUSER_NONSECURED_HB_ASID, rw_asid); + WREG32(mmPDMA0_QM_AXUSER_NONSECURED_HB_MMU_BP, 0); + WREG32(mmPDMA0_CORE_CTX_AXUSER_HB_ASID, rw_asid); + WREG32(mmPDMA0_CORE_CTX_AXUSER_HB_MMU_BP, 0); + + WREG32(mmPDMA1_QM_AXUSER_NONSECURED_HB_ASID, rw_asid); + WREG32(mmPDMA1_QM_AXUSER_NONSECURED_HB_MMU_BP, 0); + WREG32(mmPDMA1_CORE_CTX_AXUSER_HB_ASID, rw_asid); + WREG32(mmPDMA1_CORE_CTX_AXUSER_HB_MMU_BP, 0); + + /* ROT */ + for (i = 0 ; i < NUM_OF_ROT ; i++) { + offset = i * ROT_OFFSET; + WREG32(mmROT0_QM_AXUSER_NONSECURED_HB_ASID + offset, rw_asid); + WREG32(mmROT0_QM_AXUSER_NONSECURED_HB_MMU_BP + offset, 0); + RMWREG32(mmROT0_CPL_QUEUE_AWUSER + offset, asid, MMUBP_ASID_MASK); + RMWREG32(mmROT0_DESC_HBW_ARUSER_LO + offset, asid, MMUBP_ASID_MASK); + RMWREG32(mmROT0_DESC_HBW_AWUSER_LO + offset, asid, MMUBP_ASID_MASK); + } + + /* Shared Decoders are the last bits in the decoders mask */ + if (prop->decoder_enabled_mask & BIT(NUM_OF_DCORES * NUM_OF_DEC_PER_DCORE + 0)) + gudi2_mmu_vdec_shared_prepare(hdev, 0, rw_asid, 0); + + if (prop->decoder_enabled_mask & BIT(NUM_OF_DCORES * NUM_OF_DEC_PER_DCORE + 1)) + gudi2_mmu_vdec_shared_prepare(hdev, 1, rw_asid, 0); + + /* arc farm arc dup eng */ + for (i = 0 ; i < NUM_OF_ARC_FARMS_ARC ; i++) + gudi2_mmu_arc_farm_arc_dup_eng_prepare(hdev, i, rw_asid, 0); + + rc = gaudi2_arc_mmu_prepare_all(hdev, asid); + if (rc) + return rc; + + return 0; +} + +static void gaudi2_tpc_mmu_prepare(struct hl_device *hdev, int dcore, int inst, u32 offset, + struct iterate_module_ctx *ctx) +{ + struct gaudi2_tpc_mmu_data *mmu_data = ctx->data; + + WREG32(mmDCORE0_TPC0_CFG_AXUSER_HB_MMU_BP + offset, 0); + WREG32(mmDCORE0_TPC0_CFG_AXUSER_HB_ASID + offset, mmu_data->rw_asid); + WREG32(mmDCORE0_TPC0_QM_AXUSER_NONSECURED_HB_MMU_BP + offset, 0); + WREG32(mmDCORE0_TPC0_QM_AXUSER_NONSECURED_HB_ASID + offset, mmu_data->rw_asid); +} + +/* zero the MMUBP and set the ASID */ +static int gaudi2_mmu_prepare(struct hl_device *hdev, u32 asid) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + struct gaudi2_tpc_mmu_data tpc_mmu_data; + struct iterate_module_ctx tpc_iter = { + .fn = &gaudi2_tpc_mmu_prepare, + .data = &tpc_mmu_data, + }; + int rc, i; + + if (asid & ~DCORE0_HMMU0_STLB_ASID_ASID_MASK) { + dev_crit(hdev->dev, "asid %u is too big\n", asid); + return -EINVAL; + } + + if (!(gaudi2->hw_cap_initialized & HW_CAP_MMU_MASK)) + return 0; + + rc = gaudi2_mmu_shared_prepare(hdev, asid); + if (rc) + return rc; + + /* configure DCORE MMUs */ + tpc_mmu_data.rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) | + (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT); + gaudi2_iterate_tpcs(hdev, &tpc_iter); + for (i = 0 ; i < NUM_OF_DCORES ; i++) + gaudi2_mmu_dcore_prepare(hdev, i, asid); + + return 0; +} + +static inline bool is_info_event(u32 event) +{ + switch (event) { + case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_CAUSE: + case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S ... GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E: + + /* return in case of NIC status event - these events are received periodically and not as + * an indication to an error. + */ + case GAUDI2_EVENT_CPU0_STATUS_NIC0_ENG0 ... GAUDI2_EVENT_CPU11_STATUS_NIC11_ENG1: + return true; + default: + return false; + } +} + +static void gaudi2_print_event(struct hl_device *hdev, u16 event_type, + bool ratelimited, const char *fmt, ...) +{ + struct va_format vaf; + va_list args; + + va_start(args, fmt); + vaf.fmt = fmt; + vaf.va = &args; + + if (ratelimited) + dev_err_ratelimited(hdev->dev, "%s: %pV\n", + gaudi2_irq_map_table[event_type].valid ? + gaudi2_irq_map_table[event_type].name : "N/A Event", &vaf); + else + dev_err(hdev->dev, "%s: %pV\n", + gaudi2_irq_map_table[event_type].valid ? + gaudi2_irq_map_table[event_type].name : "N/A Event", &vaf); + + va_end(args); +} + +static bool gaudi2_handle_ecc_event(struct hl_device *hdev, u16 event_type, + struct hl_eq_ecc_data *ecc_data) +{ + u64 ecc_address = 0, ecc_syndrom = 0; + u8 memory_wrapper_idx = 0; + + ecc_address = le64_to_cpu(ecc_data->ecc_address); + ecc_syndrom = le64_to_cpu(ecc_data->ecc_syndrom); + memory_wrapper_idx = ecc_data->memory_wrapper_idx; + + gaudi2_print_event(hdev, event_type, !ecc_data->is_critical, + "ECC error detected. address: %#llx. Syndrom: %#llx. block id %u. critical %u.\n", + ecc_address, ecc_syndrom, memory_wrapper_idx, ecc_data->is_critical); + + return !!ecc_data->is_critical; +} + +/* + * gaudi2_queue_idx_dec - decrement queue index (pi/ci) and handle wrap + * + * @idx: the current pi/ci value + * @q_len: the queue length (power of 2) + * + * @return the cyclically decremented index + */ +static inline u32 gaudi2_queue_idx_dec(u32 idx, u32 q_len) +{ + u32 mask = q_len - 1; + + /* + * modular decrement is equivalent to adding (queue_size -1) + * later we take LSBs to make sure the value is in the + * range [0, queue_len - 1] + */ + return (idx + q_len - 1) & mask; +} + +/** + * gaudi2_print_sw_config_stream_data - print SW config stream data + * + * @hdev: pointer to the habanalabs device structure + * @stream: the QMAN's stream + * @qman_base: base address of QMAN registers block + */ +static void gaudi2_print_sw_config_stream_data(struct hl_device *hdev, + u32 stream, u64 qman_base) +{ + u64 cq_ptr_lo, cq_ptr_hi, cq_tsize, cq_ptr; + u32 cq_ptr_lo_off, size; + + cq_ptr_lo_off = mmDCORE0_TPC0_QM_CQ_PTR_LO_1 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0; + + cq_ptr_lo = qman_base + (mmDCORE0_TPC0_QM_CQ_PTR_LO_0 - mmDCORE0_TPC0_QM_BASE) + + stream * cq_ptr_lo_off; + + cq_ptr_hi = cq_ptr_lo + (mmDCORE0_TPC0_QM_CQ_PTR_HI_0 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0); + + cq_tsize = cq_ptr_lo + (mmDCORE0_TPC0_QM_CQ_TSIZE_0 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0); + + cq_ptr = (((u64) RREG32(cq_ptr_hi)) << 32) | RREG32(cq_ptr_lo); + size = RREG32(cq_tsize); + dev_info(hdev->dev, "stop on err: stream: %u, addr: %#llx, size: %x\n", + stream, cq_ptr, size); +} + +/** + * gaudi2_print_last_pqes_on_err - print last PQEs on error + * + * @hdev: pointer to the habanalabs device structure + * @qid_base: first QID of the QMAN (out of 4 streams) + * @stream: the QMAN's stream + * @qman_base: base address of QMAN registers block + * @pr_sw_conf: if true print the SW config stream data (CQ PTR and SIZE) + */ +static void gaudi2_print_last_pqes_on_err(struct hl_device *hdev, u32 qid_base, u32 stream, + u64 qman_base, bool pr_sw_conf) +{ + u32 ci, qm_ci_stream_off; + struct hl_hw_queue *q; + u64 pq_ci; + int i; + + q = &hdev->kernel_queues[qid_base + stream]; + + qm_ci_stream_off = mmDCORE0_TPC0_QM_PQ_CI_1 - mmDCORE0_TPC0_QM_PQ_CI_0; + pq_ci = qman_base + (mmDCORE0_TPC0_QM_PQ_CI_0 - mmDCORE0_TPC0_QM_BASE) + + stream * qm_ci_stream_off; + + hdev->asic_funcs->hw_queues_lock(hdev); + + if (pr_sw_conf) + gaudi2_print_sw_config_stream_data(hdev, stream, qman_base); + + ci = RREG32(pq_ci); + + /* we should start printing form ci -1 */ + ci = gaudi2_queue_idx_dec(ci, HL_QUEUE_LENGTH); + + for (i = 0; i < PQ_FETCHER_CACHE_SIZE; i++) { + struct hl_bd *bd; + u64 addr; + u32 len; + + bd = q->kernel_address; + bd += ci; + + len = le32_to_cpu(bd->len); + /* len 0 means uninitialized entry- break */ + if (!len) + break; + + addr = le64_to_cpu(bd->ptr); + + dev_info(hdev->dev, "stop on err PQE(stream %u): ci: %u, addr: %#llx, size: %x\n", + stream, ci, addr, len); + + /* get previous ci, wrap if needed */ + ci = gaudi2_queue_idx_dec(ci, HL_QUEUE_LENGTH); + } + + hdev->asic_funcs->hw_queues_unlock(hdev); +} + +/** + * print_qman_data_on_err - extract QMAN data on error + * + * @hdev: pointer to the habanalabs device structure + * @qid_base: first QID of the QMAN (out of 4 streams) + * @stream: the QMAN's stream + * @qman_base: base address of QMAN registers block + * + * This function attempt to extract as much data as possible on QMAN error. + * On upper CP print the SW config stream data and last 8 PQEs. + * On lower CP print SW config data and last PQEs of ALL 4 upper CPs + */ +static void print_qman_data_on_err(struct hl_device *hdev, u32 qid_base, u32 stream, u64 qman_base) +{ + u32 i; + + if (stream != QMAN_STREAMS) { + gaudi2_print_last_pqes_on_err(hdev, qid_base, stream, qman_base, true); + return; + } + + gaudi2_print_sw_config_stream_data(hdev, stream, qman_base); + + for (i = 0 ; i < QMAN_STREAMS ; i++) + gaudi2_print_last_pqes_on_err(hdev, qid_base, i, qman_base, false); +} + +static int gaudi2_handle_qman_err_generic(struct hl_device *hdev, u16 event_type, + u64 qman_base, u32 qid_base) +{ + u32 i, j, glbl_sts_val, arb_err_val, num_error_causes, error_count = 0; + u64 glbl_sts_addr, arb_err_addr; + char reg_desc[32]; + + glbl_sts_addr = qman_base + (mmDCORE0_TPC0_QM_GLBL_ERR_STS_0 - mmDCORE0_TPC0_QM_BASE); + arb_err_addr = qman_base + (mmDCORE0_TPC0_QM_ARB_ERR_CAUSE - mmDCORE0_TPC0_QM_BASE); + + /* Iterate through all stream GLBL_ERR_STS registers + Lower CP */ + for (i = 0 ; i < QMAN_STREAMS + 1 ; i++) { + glbl_sts_val = RREG32(glbl_sts_addr + 4 * i); + + if (!glbl_sts_val) + continue; + + if (i == QMAN_STREAMS) { + snprintf(reg_desc, ARRAY_SIZE(reg_desc), "LowerCP"); + num_error_causes = GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE; + } else { + snprintf(reg_desc, ARRAY_SIZE(reg_desc), "stream%u", i); + num_error_causes = GAUDI2_NUM_OF_QM_ERR_CAUSE; + } + + for (j = 0 ; j < num_error_causes ; j++) + if (glbl_sts_val & BIT(j)) { + gaudi2_print_event(hdev, event_type, true, + "%s. err cause: %s", reg_desc, + i == QMAN_STREAMS ? + gaudi2_qman_lower_cp_error_cause[j] : + gaudi2_qman_error_cause[j]); + error_count++; + } + + print_qman_data_on_err(hdev, qid_base, i, qman_base); + } + + arb_err_val = RREG32(arb_err_addr); + + if (!arb_err_val) + goto out; + + for (j = 0 ; j < GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE ; j++) { + if (arb_err_val & BIT(j)) { + gaudi2_print_event(hdev, event_type, true, + "ARB_ERR. err cause: %s", + gaudi2_qman_arb_error_cause[j]); + error_count++; + } + } + +out: + return error_count; +} + +static void gaudi2_razwi_rr_hbw_shared_printf_info(struct hl_device *hdev, + u64 rtr_mstr_if_base_addr, bool is_write, char *name, + bool read_razwi_regs, struct hl_eq_razwi_info *razwi_info, + enum gaudi2_engine_id id, u64 *event_mask) +{ + u32 razwi_hi, razwi_lo, razwi_xy; + u16 eng_id = id; + u8 rd_wr_flag; + + if (is_write) { + if (read_razwi_regs) { + razwi_hi = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HI); + razwi_lo = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_LO); + razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_XY); + } else { + razwi_hi = le32_to_cpu(razwi_info->hbw.rr_aw_razwi_hi_reg); + razwi_lo = le32_to_cpu(razwi_info->hbw.rr_aw_razwi_lo_reg); + razwi_xy = le32_to_cpu(razwi_info->hbw.rr_aw_razwi_id_reg); + } + rd_wr_flag = HL_RAZWI_WRITE; + } else { + if (read_razwi_regs) { + razwi_hi = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HI); + razwi_lo = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_LO); + razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_XY); + } else { + razwi_hi = le32_to_cpu(razwi_info->hbw.rr_ar_razwi_hi_reg); + razwi_lo = le32_to_cpu(razwi_info->hbw.rr_ar_razwi_lo_reg); + razwi_xy = le32_to_cpu(razwi_info->hbw.rr_ar_razwi_id_reg); + } + rd_wr_flag = HL_RAZWI_READ; + } + + hl_handle_razwi(hdev, (u64)razwi_hi << 32 | razwi_lo, &eng_id, 1, + rd_wr_flag | HL_RAZWI_HBW, event_mask); + + dev_err_ratelimited(hdev->dev, + "%s-RAZWI SHARED RR HBW %s error, address %#llx, Initiator coordinates 0x%x\n", + name, is_write ? "WR" : "RD", (u64)razwi_hi << 32 | razwi_lo, razwi_xy); +} + +static void gaudi2_razwi_rr_lbw_shared_printf_info(struct hl_device *hdev, + u64 rtr_mstr_if_base_addr, bool is_write, char *name, + bool read_razwi_regs, struct hl_eq_razwi_info *razwi_info, + enum gaudi2_engine_id id, u64 *event_mask) +{ + u32 razwi_addr, razwi_xy; + u16 eng_id = id; + u8 rd_wr_flag; + + if (is_write) { + if (read_razwi_regs) { + razwi_addr = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI); + razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_XY); + } else { + razwi_addr = le32_to_cpu(razwi_info->lbw.rr_aw_razwi_reg); + razwi_xy = le32_to_cpu(razwi_info->lbw.rr_aw_razwi_id_reg); + } + + rd_wr_flag = HL_RAZWI_WRITE; + } else { + if (read_razwi_regs) { + razwi_addr = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI); + razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_XY); + } else { + razwi_addr = le32_to_cpu(razwi_info->lbw.rr_ar_razwi_reg); + razwi_xy = le32_to_cpu(razwi_info->lbw.rr_ar_razwi_id_reg); + } + + rd_wr_flag = HL_RAZWI_READ; + } + + hl_handle_razwi(hdev, razwi_addr, &eng_id, 1, rd_wr_flag | HL_RAZWI_LBW, event_mask); + dev_err_ratelimited(hdev->dev, + "%s-RAZWI SHARED RR LBW %s error, mstr_if 0x%llx, captured address 0x%x Initiator coordinates 0x%x\n", + name, is_write ? "WR" : "RD", rtr_mstr_if_base_addr, razwi_addr, + razwi_xy); +} + +static enum gaudi2_engine_id gaudi2_razwi_calc_engine_id(struct hl_device *hdev, + enum razwi_event_sources module, u8 module_idx) +{ + switch (module) { + case RAZWI_TPC: + if (module_idx == (NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES)) + return GAUDI2_DCORE0_ENGINE_ID_TPC_6; + return (((module_idx / NUM_OF_TPC_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) + + (module_idx % NUM_OF_TPC_PER_DCORE) + + (GAUDI2_DCORE0_ENGINE_ID_TPC_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0)); + + case RAZWI_MME: + return ((GAUDI2_DCORE0_ENGINE_ID_MME - GAUDI2_DCORE0_ENGINE_ID_EDMA_0) + + (module_idx * ENGINE_ID_DCORE_OFFSET)); + + case RAZWI_EDMA: + return (((module_idx / NUM_OF_EDMA_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) + + (module_idx % NUM_OF_EDMA_PER_DCORE)); + + case RAZWI_PDMA: + return (GAUDI2_ENGINE_ID_PDMA_0 + module_idx); + + case RAZWI_NIC: + return (GAUDI2_ENGINE_ID_NIC0_0 + (NIC_NUMBER_OF_QM_PER_MACRO * module_idx)); + + case RAZWI_DEC: + if (module_idx == 8) + return GAUDI2_PCIE_ENGINE_ID_DEC_0; + + if (module_idx == 9) + return GAUDI2_PCIE_ENGINE_ID_DEC_1; + ; + return (((module_idx / NUM_OF_DEC_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) + + (module_idx % NUM_OF_DEC_PER_DCORE) + + (GAUDI2_DCORE0_ENGINE_ID_DEC_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0)); + + case RAZWI_ROT: + return GAUDI2_ENGINE_ID_ROT_0 + module_idx; + + default: + return GAUDI2_ENGINE_ID_SIZE; + } +} + +/* + * This function handles RR(Range register) hit events. + * raised be initiators not PSOC RAZWI. + */ +static void gaudi2_ack_module_razwi_event_handler(struct hl_device *hdev, + enum razwi_event_sources module, u8 module_idx, + u8 module_sub_idx, struct hl_eq_razwi_info *razwi_info, + u64 *event_mask) +{ + bool via_sft = false, read_razwi_regs = false; + u32 rtr_id, dcore_id, dcore_rtr_id, sft_id, eng_id; + u64 rtr_mstr_if_base_addr; + u32 hbw_shrd_aw = 0, hbw_shrd_ar = 0; + u32 lbw_shrd_aw = 0, lbw_shrd_ar = 0; + char initiator_name[64]; + + if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX) || !razwi_info) + read_razwi_regs = true; + + switch (module) { + case RAZWI_TPC: + rtr_id = gaudi2_tpc_initiator_rtr_id[module_idx]; + sprintf(initiator_name, "TPC_%u", module_idx); + break; + case RAZWI_MME: + sprintf(initiator_name, "MME_%u", module_idx); + switch (module_sub_idx) { + case MME_WAP0: + rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].wap0; + break; + case MME_WAP1: + rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].wap1; + break; + case MME_WRITE: + rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].write; + break; + case MME_READ: + rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].read; + break; + case MME_SBTE0: + rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte0; + break; + case MME_SBTE1: + rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte1; + break; + case MME_SBTE2: + rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte2; + break; + case MME_SBTE3: + rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte3; + break; + case MME_SBTE4: + rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte4; + break; + default: + return; + } + break; + case RAZWI_EDMA: + sft_id = gaudi2_edma_initiator_sft_id[module_idx].interface_id; + dcore_id = gaudi2_edma_initiator_sft_id[module_idx].dcore_id; + via_sft = true; + sprintf(initiator_name, "EDMA_%u", module_idx); + break; + case RAZWI_PDMA: + rtr_id = gaudi2_pdma_initiator_rtr_id[module_idx]; + sprintf(initiator_name, "PDMA_%u", module_idx); + break; + case RAZWI_NIC: + rtr_id = gaudi2_nic_initiator_rtr_id[module_idx]; + sprintf(initiator_name, "NIC_%u", module_idx); + break; + case RAZWI_DEC: + rtr_id = gaudi2_dec_initiator_rtr_id[module_idx]; + sprintf(initiator_name, "DEC_%u", module_idx); + break; + case RAZWI_ROT: + rtr_id = gaudi2_rot_initiator_rtr_id[module_idx]; + sprintf(initiator_name, "ROT_%u", module_idx); + break; + default: + return; + } + + if (!read_razwi_regs) { + if (le32_to_cpu(razwi_info->razwi_happened_mask) & RAZWI_HAPPENED_HBW) { + hbw_shrd_aw = le32_to_cpu(razwi_info->razwi_happened_mask) & + RAZWI_HAPPENED_AW; + hbw_shrd_ar = le32_to_cpu(razwi_info->razwi_happened_mask) & + RAZWI_HAPPENED_AR; + } else if (le32_to_cpu(razwi_info->razwi_happened_mask) & RAZWI_HAPPENED_LBW) { + lbw_shrd_aw = le32_to_cpu(razwi_info->razwi_happened_mask) & + RAZWI_HAPPENED_AW; + lbw_shrd_ar = le32_to_cpu(razwi_info->razwi_happened_mask) & + RAZWI_HAPPENED_AR; + } + rtr_mstr_if_base_addr = 0; + + goto dump_info; + } + + /* Find router mstr_if register base */ + if (via_sft) { + rtr_mstr_if_base_addr = mmSFT0_HBW_RTR_IF0_RTR_CTRL_BASE + + dcore_id * SFT_DCORE_OFFSET + + sft_id * SFT_IF_OFFSET + + RTR_MSTR_IF_OFFSET; + } else { + dcore_id = rtr_id / NUM_OF_RTR_PER_DCORE; + dcore_rtr_id = rtr_id % NUM_OF_RTR_PER_DCORE; + rtr_mstr_if_base_addr = mmDCORE0_RTR0_CTRL_BASE + + dcore_id * DCORE_OFFSET + + dcore_rtr_id * DCORE_RTR_OFFSET + + RTR_MSTR_IF_OFFSET; + } + + /* Find out event cause by reading "RAZWI_HAPPENED" registers */ + hbw_shrd_aw = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED); + + hbw_shrd_ar = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED); + + if (via_sft) { + /* SFT has separate MSTR_IF for LBW, only there we can + * read the LBW razwi related registers + */ + u64 base; + + base = mmSFT0_HBW_RTR_IF0_RTR_CTRL_BASE + dcore_id * SFT_DCORE_OFFSET + + RTR_LBW_MSTR_IF_OFFSET; + + lbw_shrd_aw = RREG32(base + RR_SHRD_LBW_AW_RAZWI_HAPPENED); + + lbw_shrd_ar = RREG32(base + RR_SHRD_LBW_AR_RAZWI_HAPPENED); + } else { + lbw_shrd_aw = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED); + + lbw_shrd_ar = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED); + } + +dump_info: + /* check if there is no RR razwi indication at all */ + if (!hbw_shrd_aw && !hbw_shrd_ar && !lbw_shrd_aw && !lbw_shrd_ar) + return; + + eng_id = gaudi2_razwi_calc_engine_id(hdev, module, module_idx); + if (hbw_shrd_aw) { + gaudi2_razwi_rr_hbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, true, + initiator_name, read_razwi_regs, razwi_info, + eng_id, event_mask); + + /* Clear event indication */ + if (read_razwi_regs) + WREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED, hbw_shrd_aw); + } + + if (hbw_shrd_ar) { + gaudi2_razwi_rr_hbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, false, + initiator_name, read_razwi_regs, razwi_info, + eng_id, event_mask); + + /* Clear event indication */ + if (read_razwi_regs) + WREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED, hbw_shrd_ar); + } + + if (lbw_shrd_aw) { + gaudi2_razwi_rr_lbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, true, + initiator_name, read_razwi_regs, razwi_info, + eng_id, event_mask); + + /* Clear event indication */ + if (read_razwi_regs) + WREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED, lbw_shrd_aw); + } + + if (lbw_shrd_ar) { + gaudi2_razwi_rr_lbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, false, + initiator_name, read_razwi_regs, razwi_info, + eng_id, event_mask); + + /* Clear event indication */ + if (read_razwi_regs) + WREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED, lbw_shrd_ar); + } +} + +static void gaudi2_check_if_razwi_happened(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u8 mod_idx, sub_mod; + + /* check all TPCs */ + for (mod_idx = 0 ; mod_idx < (NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1) ; mod_idx++) { + if (prop->tpc_enabled_mask & BIT(mod_idx)) + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_TPC, mod_idx, 0, NULL, + NULL); + } + + /* check all MMEs */ + for (mod_idx = 0 ; mod_idx < (NUM_OF_MME_PER_DCORE * NUM_OF_DCORES) ; mod_idx++) + for (sub_mod = MME_WAP0 ; sub_mod < MME_INITIATORS_MAX ; sub_mod++) + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mod_idx, + sub_mod, NULL, NULL); + + /* check all EDMAs */ + for (mod_idx = 0 ; mod_idx < (NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES) ; mod_idx++) + if (prop->edma_enabled_mask & BIT(mod_idx)) + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_EDMA, mod_idx, 0, NULL, + NULL); + + /* check all PDMAs */ + for (mod_idx = 0 ; mod_idx < NUM_OF_PDMA ; mod_idx++) + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_PDMA, mod_idx, 0, NULL, + NULL); + + /* check all NICs */ + for (mod_idx = 0 ; mod_idx < NIC_NUMBER_OF_PORTS ; mod_idx++) + if (hdev->nic_ports_mask & BIT(mod_idx)) + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_NIC, mod_idx >> 1, 0, + NULL, NULL); + + /* check all DECs */ + for (mod_idx = 0 ; mod_idx < NUMBER_OF_DEC ; mod_idx++) + if (prop->decoder_enabled_mask & BIT(mod_idx)) + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_DEC, mod_idx, 0, NULL, + NULL); + + /* check all ROTs */ + for (mod_idx = 0 ; mod_idx < NUM_OF_ROT ; mod_idx++) + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ROT, mod_idx, 0, NULL, NULL); +} + +static const char *gaudi2_get_initiators_name(u32 rtr_id) +{ + switch (rtr_id) { + case DCORE0_RTR0: + return "DEC0/1/8/9, TPC24, PDMA0/1, PMMU, PCIE_IF, EDMA0/2, HMMU0/2/4/6, CPU"; + case DCORE0_RTR1: + return "TPC0/1"; + case DCORE0_RTR2: + return "TPC2/3"; + case DCORE0_RTR3: + return "TPC4/5"; + case DCORE0_RTR4: + return "MME0_SBTE0/1"; + case DCORE0_RTR5: + return "MME0_WAP0/SBTE2"; + case DCORE0_RTR6: + return "MME0_CTRL_WR/SBTE3"; + case DCORE0_RTR7: + return "MME0_WAP1/CTRL_RD/SBTE4"; + case DCORE1_RTR0: + return "MME1_WAP1/CTRL_RD/SBTE4"; + case DCORE1_RTR1: + return "MME1_CTRL_WR/SBTE3"; + case DCORE1_RTR2: + return "MME1_WAP0/SBTE2"; + case DCORE1_RTR3: + return "MME1_SBTE0/1"; + case DCORE1_RTR4: + return "TPC10/11"; + case DCORE1_RTR5: + return "TPC8/9"; + case DCORE1_RTR6: + return "TPC6/7"; + case DCORE1_RTR7: + return "DEC2/3, NIC0/1/2/3/4, ARC_FARM, KDMA, EDMA1/3, HMMU1/3/5/7"; + case DCORE2_RTR0: + return "DEC4/5, NIC5/6/7/8, EDMA4/6, HMMU8/10/12/14, ROT0"; + case DCORE2_RTR1: + return "TPC16/17"; + case DCORE2_RTR2: + return "TPC14/15"; + case DCORE2_RTR3: + return "TPC12/13"; + case DCORE2_RTR4: + return "MME2_SBTE0/1"; + case DCORE2_RTR5: + return "MME2_WAP0/SBTE2"; + case DCORE2_RTR6: + return "MME2_CTRL_WR/SBTE3"; + case DCORE2_RTR7: + return "MME2_WAP1/CTRL_RD/SBTE4"; + case DCORE3_RTR0: + return "MME3_WAP1/CTRL_RD/SBTE4"; + case DCORE3_RTR1: + return "MME3_CTRL_WR/SBTE3"; + case DCORE3_RTR2: + return "MME3_WAP0/SBTE2"; + case DCORE3_RTR3: + return "MME3_SBTE0/1"; + case DCORE3_RTR4: + return "TPC18/19"; + case DCORE3_RTR5: + return "TPC20/21"; + case DCORE3_RTR6: + return "TPC22/23"; + case DCORE3_RTR7: + return "DEC6/7, NIC9/10/11, EDMA5/7, HMMU9/11/13/15, ROT1, PSOC"; + default: + return "N/A"; + } +} + +static u16 gaudi2_get_razwi_initiators(u32 rtr_id, u16 *engines) +{ + switch (rtr_id) { + case DCORE0_RTR0: + engines[0] = GAUDI2_DCORE0_ENGINE_ID_DEC_0; + engines[1] = GAUDI2_DCORE0_ENGINE_ID_DEC_1; + engines[2] = GAUDI2_PCIE_ENGINE_ID_DEC_0; + engines[3] = GAUDI2_PCIE_ENGINE_ID_DEC_1; + engines[4] = GAUDI2_DCORE0_ENGINE_ID_TPC_6; + engines[5] = GAUDI2_ENGINE_ID_PDMA_0; + engines[6] = GAUDI2_ENGINE_ID_PDMA_1; + engines[7] = GAUDI2_ENGINE_ID_PCIE; + engines[8] = GAUDI2_DCORE0_ENGINE_ID_EDMA_0; + engines[9] = GAUDI2_DCORE1_ENGINE_ID_EDMA_0; + engines[10] = GAUDI2_ENGINE_ID_PSOC; + return 11; + + case DCORE0_RTR1: + engines[0] = GAUDI2_DCORE0_ENGINE_ID_TPC_0; + engines[1] = GAUDI2_DCORE0_ENGINE_ID_TPC_1; + return 2; + + case DCORE0_RTR2: + engines[0] = GAUDI2_DCORE0_ENGINE_ID_TPC_2; + engines[1] = GAUDI2_DCORE0_ENGINE_ID_TPC_3; + return 2; + + case DCORE0_RTR3: + engines[0] = GAUDI2_DCORE0_ENGINE_ID_TPC_4; + engines[1] = GAUDI2_DCORE0_ENGINE_ID_TPC_5; + return 2; + + case DCORE0_RTR4: + case DCORE0_RTR5: + case DCORE0_RTR6: + case DCORE0_RTR7: + engines[0] = GAUDI2_DCORE0_ENGINE_ID_MME; + return 1; + + case DCORE1_RTR0: + case DCORE1_RTR1: + case DCORE1_RTR2: + case DCORE1_RTR3: + engines[0] = GAUDI2_DCORE1_ENGINE_ID_MME; + return 1; + + case DCORE1_RTR4: + engines[0] = GAUDI2_DCORE1_ENGINE_ID_TPC_4; + engines[1] = GAUDI2_DCORE1_ENGINE_ID_TPC_5; + return 2; + + case DCORE1_RTR5: + engines[0] = GAUDI2_DCORE1_ENGINE_ID_TPC_2; + engines[1] = GAUDI2_DCORE1_ENGINE_ID_TPC_3; + return 2; + + case DCORE1_RTR6: + engines[0] = GAUDI2_DCORE1_ENGINE_ID_TPC_0; + engines[1] = GAUDI2_DCORE1_ENGINE_ID_TPC_1; + return 2; + + case DCORE1_RTR7: + engines[0] = GAUDI2_DCORE1_ENGINE_ID_DEC_0; + engines[1] = GAUDI2_DCORE1_ENGINE_ID_DEC_1; + engines[2] = GAUDI2_ENGINE_ID_NIC0_0; + engines[3] = GAUDI2_ENGINE_ID_NIC1_0; + engines[4] = GAUDI2_ENGINE_ID_NIC2_0; + engines[5] = GAUDI2_ENGINE_ID_NIC3_0; + engines[6] = GAUDI2_ENGINE_ID_NIC4_0; + engines[7] = GAUDI2_ENGINE_ID_ARC_FARM; + engines[8] = GAUDI2_ENGINE_ID_KDMA; + engines[9] = GAUDI2_DCORE0_ENGINE_ID_EDMA_1; + engines[10] = GAUDI2_DCORE1_ENGINE_ID_EDMA_1; + return 11; + + case DCORE2_RTR0: + engines[0] = GAUDI2_DCORE2_ENGINE_ID_DEC_0; + engines[1] = GAUDI2_DCORE2_ENGINE_ID_DEC_1; + engines[2] = GAUDI2_ENGINE_ID_NIC5_0; + engines[3] = GAUDI2_ENGINE_ID_NIC6_0; + engines[4] = GAUDI2_ENGINE_ID_NIC7_0; + engines[5] = GAUDI2_ENGINE_ID_NIC8_0; + engines[6] = GAUDI2_DCORE2_ENGINE_ID_EDMA_0; + engines[7] = GAUDI2_DCORE3_ENGINE_ID_EDMA_0; + engines[8] = GAUDI2_ENGINE_ID_ROT_0; + return 9; + + case DCORE2_RTR1: + engines[0] = GAUDI2_DCORE2_ENGINE_ID_TPC_4; + engines[1] = GAUDI2_DCORE2_ENGINE_ID_TPC_5; + return 2; + + case DCORE2_RTR2: + engines[0] = GAUDI2_DCORE2_ENGINE_ID_TPC_2; + engines[1] = GAUDI2_DCORE2_ENGINE_ID_TPC_3; + return 2; + + case DCORE2_RTR3: + engines[0] = GAUDI2_DCORE2_ENGINE_ID_TPC_0; + engines[1] = GAUDI2_DCORE2_ENGINE_ID_TPC_1; + return 2; + + case DCORE2_RTR4: + case DCORE2_RTR5: + case DCORE2_RTR6: + case DCORE2_RTR7: + engines[0] = GAUDI2_DCORE2_ENGINE_ID_MME; + return 1; + case DCORE3_RTR0: + case DCORE3_RTR1: + case DCORE3_RTR2: + case DCORE3_RTR3: + engines[0] = GAUDI2_DCORE3_ENGINE_ID_MME; + return 1; + case DCORE3_RTR4: + engines[0] = GAUDI2_DCORE3_ENGINE_ID_TPC_0; + engines[1] = GAUDI2_DCORE3_ENGINE_ID_TPC_1; + return 2; + case DCORE3_RTR5: + engines[0] = GAUDI2_DCORE3_ENGINE_ID_TPC_2; + engines[1] = GAUDI2_DCORE3_ENGINE_ID_TPC_3; + return 2; + case DCORE3_RTR6: + engines[0] = GAUDI2_DCORE3_ENGINE_ID_TPC_4; + engines[1] = GAUDI2_DCORE3_ENGINE_ID_TPC_5; + return 2; + case DCORE3_RTR7: + engines[0] = GAUDI2_DCORE3_ENGINE_ID_DEC_0; + engines[1] = GAUDI2_DCORE3_ENGINE_ID_DEC_1; + engines[2] = GAUDI2_ENGINE_ID_NIC9_0; + engines[3] = GAUDI2_ENGINE_ID_NIC10_0; + engines[4] = GAUDI2_ENGINE_ID_NIC11_0; + engines[5] = GAUDI2_DCORE2_ENGINE_ID_EDMA_1; + engines[6] = GAUDI2_DCORE3_ENGINE_ID_EDMA_1; + engines[7] = GAUDI2_ENGINE_ID_ROT_1; + engines[8] = GAUDI2_ENGINE_ID_ROT_0; + return 9; + default: + return 0; + } +} + +static void gaudi2_razwi_unmapped_addr_hbw_printf_info(struct hl_device *hdev, u32 rtr_id, + u64 rtr_ctrl_base_addr, bool is_write, + u64 *event_mask) +{ + u16 engines[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR], num_of_eng; + u32 razwi_hi, razwi_lo; + u8 rd_wr_flag; + + num_of_eng = gaudi2_get_razwi_initiators(rtr_id, &engines[0]); + + if (is_write) { + razwi_hi = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_ADDR_HI); + razwi_lo = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_ADDR_LO); + rd_wr_flag = HL_RAZWI_WRITE; + + /* Clear set indication */ + WREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_SET, 0x1); + } else { + razwi_hi = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_ADDR_HI); + razwi_lo = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_ADDR_LO); + rd_wr_flag = HL_RAZWI_READ; + + /* Clear set indication */ + WREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_SET, 0x1); + } + + hl_handle_razwi(hdev, (u64)razwi_hi << 32 | razwi_lo, &engines[0], num_of_eng, + rd_wr_flag | HL_RAZWI_HBW, event_mask); + dev_err_ratelimited(hdev->dev, + "RAZWI PSOC unmapped HBW %s error, rtr id %u, address %#llx\n", + is_write ? "WR" : "RD", rtr_id, (u64)razwi_hi << 32 | razwi_lo); + + dev_err_ratelimited(hdev->dev, + "Initiators: %s\n", gaudi2_get_initiators_name(rtr_id)); +} + +static void gaudi2_razwi_unmapped_addr_lbw_printf_info(struct hl_device *hdev, u32 rtr_id, + u64 rtr_ctrl_base_addr, bool is_write, + u64 *event_mask) +{ + u16 engines[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR], num_of_eng; + u32 razwi_addr; + u8 rd_wr_flag; + + num_of_eng = gaudi2_get_razwi_initiators(rtr_id, &engines[0]); + + if (is_write) { + razwi_addr = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_ADDR); + rd_wr_flag = HL_RAZWI_WRITE; + + /* Clear set indication */ + WREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_SET, 0x1); + } else { + razwi_addr = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_ADDR); + rd_wr_flag = HL_RAZWI_READ; + + /* Clear set indication */ + WREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_SET, 0x1); + } + + hl_handle_razwi(hdev, razwi_addr, &engines[0], num_of_eng, rd_wr_flag | HL_RAZWI_LBW, + event_mask); + dev_err_ratelimited(hdev->dev, + "RAZWI PSOC unmapped LBW %s error, rtr id %u, address %#x\n", + is_write ? "WR" : "RD", rtr_id, razwi_addr); + + dev_err_ratelimited(hdev->dev, + "Initiators: %s\n", gaudi2_get_initiators_name(rtr_id)); +} + +/* PSOC RAZWI interrupt occurs only when trying to access a bad address */ +static int gaudi2_ack_psoc_razwi_event_handler(struct hl_device *hdev, u64 *event_mask) +{ + u32 hbw_aw_set, hbw_ar_set, lbw_aw_set, lbw_ar_set, rtr_id, dcore_id, dcore_rtr_id, xy, + razwi_mask_info, razwi_intr = 0, error_count = 0; + int rtr_map_arr_len = NUM_OF_RTR_PER_DCORE * NUM_OF_DCORES; + u64 rtr_ctrl_base_addr; + + if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX)) { + razwi_intr = RREG32(mmPSOC_GLOBAL_CONF_RAZWI_INTERRUPT); + if (!razwi_intr) + return 0; + } + + razwi_mask_info = RREG32(mmPSOC_GLOBAL_CONF_RAZWI_MASK_INFO); + xy = FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_AXUSER_L_MASK, razwi_mask_info); + + dev_err_ratelimited(hdev->dev, + "PSOC RAZWI interrupt: Mask %d, AR %d, AW %d, AXUSER_L 0x%x AXUSER_H 0x%x\n", + FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_MASK_MASK, razwi_mask_info), + FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_WAS_AR_MASK, razwi_mask_info), + FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_WAS_AW_MASK, razwi_mask_info), + xy, + FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_AXUSER_H_MASK, razwi_mask_info)); + + if (xy == 0) { + dev_err_ratelimited(hdev->dev, + "PSOC RAZWI interrupt: received event from 0 rtr coordinates\n"); + goto clear; + } + + /* Find router id by router coordinates */ + for (rtr_id = 0 ; rtr_id < rtr_map_arr_len ; rtr_id++) + if (rtr_coordinates_to_rtr_id[rtr_id] == xy) + break; + + if (rtr_id == rtr_map_arr_len) { + dev_err_ratelimited(hdev->dev, + "PSOC RAZWI interrupt: invalid rtr coordinates (0x%x)\n", xy); + goto clear; + } + + /* Find router mstr_if register base */ + dcore_id = rtr_id / NUM_OF_RTR_PER_DCORE; + dcore_rtr_id = rtr_id % NUM_OF_RTR_PER_DCORE; + rtr_ctrl_base_addr = mmDCORE0_RTR0_CTRL_BASE + dcore_id * DCORE_OFFSET + + dcore_rtr_id * DCORE_RTR_OFFSET; + + hbw_aw_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_SET); + hbw_ar_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_SET); + lbw_aw_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_SET); + lbw_ar_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_SET); + + if (hbw_aw_set) + gaudi2_razwi_unmapped_addr_hbw_printf_info(hdev, rtr_id, + rtr_ctrl_base_addr, true, event_mask); + + if (hbw_ar_set) + gaudi2_razwi_unmapped_addr_hbw_printf_info(hdev, rtr_id, + rtr_ctrl_base_addr, false, event_mask); + + if (lbw_aw_set) + gaudi2_razwi_unmapped_addr_lbw_printf_info(hdev, rtr_id, + rtr_ctrl_base_addr, true, event_mask); + + if (lbw_ar_set) + gaudi2_razwi_unmapped_addr_lbw_printf_info(hdev, rtr_id, + rtr_ctrl_base_addr, false, event_mask); + + error_count++; + +clear: + /* Clear Interrupts only on pldm or if f/w doesn't handle interrupts */ + if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX)) + WREG32(mmPSOC_GLOBAL_CONF_RAZWI_INTERRUPT, razwi_intr); + + return error_count; +} + +static int _gaudi2_handle_qm_sei_err(struct hl_device *hdev, u64 qman_base, u16 event_type) +{ + u32 i, sts_val, sts_clr_val = 0, error_count = 0; + + sts_val = RREG32(qman_base + QM_SEI_STATUS_OFFSET); + + for (i = 0 ; i < GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE ; i++) { + if (sts_val & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", gaudi2_qm_sei_error_cause[i]); + sts_clr_val |= BIT(i); + error_count++; + } + } + + WREG32(qman_base + QM_SEI_STATUS_OFFSET, sts_clr_val); + + return error_count; +} + +static int gaudi2_handle_qm_sei_err(struct hl_device *hdev, u16 event_type, + struct hl_eq_razwi_info *razwi_info, u64 *event_mask) +{ + enum razwi_event_sources module; + u32 error_count = 0; + u64 qman_base; + u8 index; + + switch (event_type) { + case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC23_AXI_ERR_RSP: + index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP; + qman_base = mmDCORE0_TPC0_QM_BASE + + (index / NUM_OF_TPC_PER_DCORE) * DCORE_OFFSET + + (index % NUM_OF_TPC_PER_DCORE) * DCORE_TPC_OFFSET; + module = RAZWI_TPC; + break; + case GAUDI2_EVENT_TPC24_AXI_ERR_RSP: + qman_base = mmDCORE0_TPC6_QM_BASE; + module = RAZWI_TPC; + break; + case GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE: + case GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE: + case GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE: + case GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE: + index = (event_type - GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE) / + (GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE - + GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE); + qman_base = mmDCORE0_MME_QM_BASE + index * DCORE_OFFSET; + module = RAZWI_MME; + break; + case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP: + case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP: + index = event_type - GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP; + qman_base = mmPDMA0_QM_BASE + index * PDMA_OFFSET; + module = RAZWI_PDMA; + break; + case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE: + case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE: + index = event_type - GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE; + qman_base = mmROT0_QM_BASE + index * ROT_OFFSET; + module = RAZWI_ROT; + break; + default: + return 0; + } + + error_count = _gaudi2_handle_qm_sei_err(hdev, qman_base, event_type); + + /* There is a single event per NIC macro, so should check its both QMAN blocks */ + if (event_type >= GAUDI2_EVENT_NIC0_AXI_ERROR_RESPONSE && + event_type <= GAUDI2_EVENT_NIC11_AXI_ERROR_RESPONSE) + error_count += _gaudi2_handle_qm_sei_err(hdev, + qman_base + NIC_QM_OFFSET, event_type); + + /* check if RAZWI happened */ + if (razwi_info) + gaudi2_ack_module_razwi_event_handler(hdev, module, 0, 0, razwi_info, event_mask); + + return error_count; +} + +static int gaudi2_handle_qman_err(struct hl_device *hdev, u16 event_type) +{ + u32 qid_base, error_count = 0; + u64 qman_base; + u8 index; + + switch (event_type) { + case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_TPC5_QM: + index = event_type - GAUDI2_EVENT_TPC0_QM; + qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 + index * QMAN_STREAMS; + qman_base = mmDCORE0_TPC0_QM_BASE + index * DCORE_TPC_OFFSET; + break; + case GAUDI2_EVENT_TPC6_QM ... GAUDI2_EVENT_TPC11_QM: + index = event_type - GAUDI2_EVENT_TPC6_QM; + qid_base = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 + index * QMAN_STREAMS; + qman_base = mmDCORE1_TPC0_QM_BASE + index * DCORE_TPC_OFFSET; + break; + case GAUDI2_EVENT_TPC12_QM ... GAUDI2_EVENT_TPC17_QM: + index = event_type - GAUDI2_EVENT_TPC12_QM; + qid_base = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 + index * QMAN_STREAMS; + qman_base = mmDCORE2_TPC0_QM_BASE + index * DCORE_TPC_OFFSET; + break; + case GAUDI2_EVENT_TPC18_QM ... GAUDI2_EVENT_TPC23_QM: + index = event_type - GAUDI2_EVENT_TPC18_QM; + qid_base = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 + index * QMAN_STREAMS; + qman_base = mmDCORE3_TPC0_QM_BASE + index * DCORE_TPC_OFFSET; + break; + case GAUDI2_EVENT_TPC24_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0; + qman_base = mmDCORE0_TPC6_QM_BASE; + break; + case GAUDI2_EVENT_MME0_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE0_MME_0_0; + qman_base = mmDCORE0_MME_QM_BASE; + break; + case GAUDI2_EVENT_MME1_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE1_MME_0_0; + qman_base = mmDCORE1_MME_QM_BASE; + break; + case GAUDI2_EVENT_MME2_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE2_MME_0_0; + qman_base = mmDCORE2_MME_QM_BASE; + break; + case GAUDI2_EVENT_MME3_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE3_MME_0_0; + qman_base = mmDCORE3_MME_QM_BASE; + break; + case GAUDI2_EVENT_HDMA0_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0; + qman_base = mmDCORE0_EDMA0_QM_BASE; + break; + case GAUDI2_EVENT_HDMA1_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0; + qman_base = mmDCORE0_EDMA1_QM_BASE; + break; + case GAUDI2_EVENT_HDMA2_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0; + qman_base = mmDCORE1_EDMA0_QM_BASE; + break; + case GAUDI2_EVENT_HDMA3_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0; + qman_base = mmDCORE1_EDMA1_QM_BASE; + break; + case GAUDI2_EVENT_HDMA4_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0; + qman_base = mmDCORE2_EDMA0_QM_BASE; + break; + case GAUDI2_EVENT_HDMA5_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0; + qman_base = mmDCORE2_EDMA1_QM_BASE; + break; + case GAUDI2_EVENT_HDMA6_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0; + qman_base = mmDCORE3_EDMA0_QM_BASE; + break; + case GAUDI2_EVENT_HDMA7_QM: + qid_base = GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0; + qman_base = mmDCORE3_EDMA1_QM_BASE; + break; + case GAUDI2_EVENT_PDMA0_QM: + qid_base = GAUDI2_QUEUE_ID_PDMA_0_0; + qman_base = mmPDMA0_QM_BASE; + break; + case GAUDI2_EVENT_PDMA1_QM: + qid_base = GAUDI2_QUEUE_ID_PDMA_1_0; + qman_base = mmPDMA1_QM_BASE; + break; + case GAUDI2_EVENT_ROTATOR0_ROT0_QM: + qid_base = GAUDI2_QUEUE_ID_ROT_0_0; + qman_base = mmROT0_QM_BASE; + break; + case GAUDI2_EVENT_ROTATOR1_ROT1_QM: + qid_base = GAUDI2_QUEUE_ID_ROT_1_0; + qman_base = mmROT1_QM_BASE; + break; + default: + return 0; + } + + error_count = gaudi2_handle_qman_err_generic(hdev, event_type, qman_base, qid_base); + + /* Handle EDMA QM SEI here because there is no AXI error response event for EDMA */ + if (event_type >= GAUDI2_EVENT_HDMA2_QM && event_type <= GAUDI2_EVENT_HDMA5_QM) + error_count += _gaudi2_handle_qm_sei_err(hdev, qman_base, event_type); + + return error_count; +} + +static int gaudi2_handle_arc_farm_sei_err(struct hl_device *hdev, u16 event_type) +{ + u32 i, sts_val, sts_clr_val = 0, error_count = 0; + + sts_val = RREG32(mmARC_FARM_ARC0_AUX_ARC_SEI_INTR_STS); + + for (i = 0 ; i < GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE ; i++) { + if (sts_val & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", gaudi2_arc_sei_error_cause[i]); + sts_clr_val |= BIT(i); + error_count++; + } + } + + WREG32(mmARC_FARM_ARC0_AUX_ARC_SEI_INTR_CLR, sts_clr_val); + + return error_count; +} + +static int gaudi2_handle_cpu_sei_err(struct hl_device *hdev, u16 event_type) +{ + u32 i, sts_val, sts_clr_val = 0, error_count = 0; + + sts_val = RREG32(mmCPU_IF_CPU_SEI_INTR_STS); + + for (i = 0 ; i < GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE ; i++) { + if (sts_val & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", gaudi2_cpu_sei_error_cause[i]); + sts_clr_val |= BIT(i); + error_count++; + } + } + + WREG32(mmCPU_IF_CPU_SEI_INTR_CLR, sts_clr_val); + + return error_count; +} + +static int gaudi2_handle_rot_err(struct hl_device *hdev, u8 rot_index, u16 event_type, + struct hl_eq_razwi_with_intr_cause *razwi_with_intr_cause, + u64 *event_mask) +{ + u64 intr_cause_data = le64_to_cpu(razwi_with_intr_cause->intr_cause.intr_cause_data); + u32 error_count = 0; + int i; + + for (i = 0 ; i < GAUDI2_NUM_OF_ROT_ERR_CAUSE ; i++) + if (intr_cause_data & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", guadi2_rot_error_cause[i]); + error_count++; + } + + /* check if RAZWI happened */ + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ROT, rot_index, 0, + &razwi_with_intr_cause->razwi_info, event_mask); + + return error_count; +} + +static int gaudi2_tpc_ack_interrupts(struct hl_device *hdev, u8 tpc_index, u16 event_type, + struct hl_eq_razwi_with_intr_cause *razwi_with_intr_cause, + u64 *event_mask) +{ + u64 intr_cause_data = le64_to_cpu(razwi_with_intr_cause->intr_cause.intr_cause_data); + u32 error_count = 0; + int i; + + for (i = 0 ; i < GAUDI2_NUM_OF_TPC_INTR_CAUSE ; i++) + if (intr_cause_data & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "interrupt cause: %s", gaudi2_tpc_interrupts_cause[i]); + error_count++; + } + + /* check if RAZWI happened */ + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_TPC, tpc_index, 0, + &razwi_with_intr_cause->razwi_info, event_mask); + + return error_count; +} + +static int gaudi2_handle_dec_err(struct hl_device *hdev, u8 dec_index, u16 event_type, + struct hl_eq_razwi_info *razwi_info, u64 *event_mask) +{ + u32 sts_addr, sts_val, sts_clr_val = 0, error_count = 0; + int i; + + if (dec_index < NUM_OF_VDEC_PER_DCORE * NUM_OF_DCORES) + /* DCORE DEC */ + sts_addr = mmDCORE0_VDEC0_BRDG_CTRL_CAUSE_INTR + + DCORE_OFFSET * (dec_index / NUM_OF_DEC_PER_DCORE) + + DCORE_VDEC_OFFSET * (dec_index % NUM_OF_DEC_PER_DCORE); + else + /* PCIE DEC */ + sts_addr = mmPCIE_VDEC0_BRDG_CTRL_CAUSE_INTR + PCIE_VDEC_OFFSET * + (dec_index - NUM_OF_VDEC_PER_DCORE * NUM_OF_DCORES); + + sts_val = RREG32(sts_addr); + + for (i = 0 ; i < GAUDI2_NUM_OF_DEC_ERR_CAUSE ; i++) { + if (sts_val & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", gaudi2_dec_error_cause[i]); + sts_clr_val |= BIT(i); + error_count++; + } + } + + /* check if RAZWI happened */ + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_DEC, dec_index, 0, razwi_info, + event_mask); + + /* Write 1 clear errors */ + WREG32(sts_addr, sts_clr_val); + + return error_count; +} + +static int gaudi2_handle_mme_err(struct hl_device *hdev, u8 mme_index, u16 event_type, + struct hl_eq_razwi_info *razwi_info, u64 *event_mask) +{ + u32 sts_addr, sts_val, sts_clr_addr, sts_clr_val = 0, error_count = 0; + int i; + + sts_addr = mmDCORE0_MME_CTRL_LO_INTR_CAUSE + DCORE_OFFSET * mme_index; + sts_clr_addr = mmDCORE0_MME_CTRL_LO_INTR_CLEAR + DCORE_OFFSET * mme_index; + + sts_val = RREG32(sts_addr); + + for (i = 0 ; i < GAUDI2_NUM_OF_MME_ERR_CAUSE ; i++) { + if (sts_val & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", guadi2_mme_error_cause[i]); + sts_clr_val |= BIT(i); + error_count++; + } + } + + /* check if RAZWI happened */ + for (i = MME_WRITE ; i < MME_INITIATORS_MAX ; i++) + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, i, razwi_info, + event_mask); + + WREG32(sts_clr_addr, sts_clr_val); + + return error_count; +} + +static int gaudi2_handle_mme_sbte_err(struct hl_device *hdev, u16 event_type, + u64 intr_cause_data) +{ + int i, error_count = 0; + + for (i = 0 ; i < GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE ; i++) + if (intr_cause_data & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", guadi2_mme_sbte_error_cause[i]); + error_count++; + } + + return error_count; +} + +static int gaudi2_handle_mme_wap_err(struct hl_device *hdev, u8 mme_index, u16 event_type, + struct hl_eq_razwi_info *razwi_info, u64 *event_mask) +{ + u32 sts_addr, sts_val, sts_clr_addr, sts_clr_val = 0, error_count = 0; + int i; + + sts_addr = mmDCORE0_MME_ACC_INTR_CAUSE + DCORE_OFFSET * mme_index; + sts_clr_addr = mmDCORE0_MME_ACC_INTR_CLEAR + DCORE_OFFSET * mme_index; + + sts_val = RREG32(sts_addr); + + for (i = 0 ; i < GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE ; i++) { + if (sts_val & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", guadi2_mme_wap_error_cause[i]); + sts_clr_val |= BIT(i); + error_count++; + } + } + + /* check if RAZWI happened on WAP0/1 */ + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, MME_WAP0, razwi_info, + event_mask); + gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, MME_WAP1, razwi_info, + event_mask); + + WREG32(sts_clr_addr, sts_clr_val); + + return error_count; +} + +static int gaudi2_handle_kdma_core_event(struct hl_device *hdev, u16 event_type, + u64 intr_cause_data) +{ + u32 error_count = 0; + int i; + + /* If an AXI read or write error is received, an error is reported and + * interrupt message is sent. Due to an HW errata, when reading the cause + * register of the KDMA engine, the reported error is always HBW even if + * the actual error caused by a LBW KDMA transaction. + */ + for (i = 0 ; i < GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE ; i++) + if (intr_cause_data & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", gaudi2_kdma_core_interrupts_cause[i]); + error_count++; + } + + return error_count; +} + +static int gaudi2_handle_dma_core_event(struct hl_device *hdev, u16 event_type, + u64 intr_cause_data) +{ + u32 error_count = 0; + int i; + + for (i = 0 ; i < GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE ; i++) + if (intr_cause_data & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", gaudi2_dma_core_interrupts_cause[i]); + error_count++; + } + + return error_count; +} + +static void gaudi2_print_pcie_mstr_rr_mstr_if_razwi_info(struct hl_device *hdev, u64 *event_mask) +{ + u32 mstr_if_base_addr = mmPCIE_MSTR_RR_MSTR_IF_RR_SHRD_HBW_BASE, razwi_happened_addr; + + razwi_happened_addr = mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED; + if (RREG32(razwi_happened_addr)) { + gaudi2_razwi_rr_hbw_shared_printf_info(hdev, mstr_if_base_addr, true, "PCIE", true, + NULL, GAUDI2_ENGINE_ID_PCIE, event_mask); + WREG32(razwi_happened_addr, 0x1); + } + + razwi_happened_addr = mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED; + if (RREG32(razwi_happened_addr)) { + gaudi2_razwi_rr_hbw_shared_printf_info(hdev, mstr_if_base_addr, false, "PCIE", true, + NULL, GAUDI2_ENGINE_ID_PCIE, event_mask); + WREG32(razwi_happened_addr, 0x1); + } + + razwi_happened_addr = mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED; + if (RREG32(razwi_happened_addr)) { + gaudi2_razwi_rr_lbw_shared_printf_info(hdev, mstr_if_base_addr, true, "PCIE", true, + NULL, GAUDI2_ENGINE_ID_PCIE, event_mask); + WREG32(razwi_happened_addr, 0x1); + } + + razwi_happened_addr = mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED; + if (RREG32(razwi_happened_addr)) { + gaudi2_razwi_rr_lbw_shared_printf_info(hdev, mstr_if_base_addr, false, "PCIE", true, + NULL, GAUDI2_ENGINE_ID_PCIE, event_mask); + WREG32(razwi_happened_addr, 0x1); + } +} + +static int gaudi2_print_pcie_addr_dec_info(struct hl_device *hdev, u16 event_type, + u64 intr_cause_data, u64 *event_mask) +{ + u32 error_count = 0; + int i; + + for (i = 0 ; i < GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE ; i++) { + if (!(intr_cause_data & BIT_ULL(i))) + continue; + + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", gaudi2_pcie_addr_dec_error_cause[i]); + error_count++; + + switch (intr_cause_data & BIT_ULL(i)) { + case PCIE_WRAP_PCIE_IC_SEI_INTR_IND_AXI_LBW_ERR_INTR_MASK: + break; + case PCIE_WRAP_PCIE_IC_SEI_INTR_IND_BAD_ACCESS_INTR_MASK: + gaudi2_print_pcie_mstr_rr_mstr_if_razwi_info(hdev, event_mask); + break; + } + } + + return error_count; +} + +static int gaudi2_handle_pif_fatal(struct hl_device *hdev, u16 event_type, + u64 intr_cause_data) + +{ + u32 error_count = 0; + int i; + + for (i = 0 ; i < GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE ; i++) { + if (intr_cause_data & BIT_ULL(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", gaudi2_pmmu_fatal_interrupts_cause[i]); + error_count++; + } + } + + return error_count; +} + +static int gaudi2_handle_hif_fatal(struct hl_device *hdev, u16 event_type, u64 intr_cause_data) +{ + u32 error_count = 0; + int i; + + for (i = 0 ; i < GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE ; i++) { + if (intr_cause_data & BIT_ULL(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", gaudi2_hif_fatal_interrupts_cause[i]); + error_count++; + } + } + + return error_count; +} + +static void gaudi2_handle_page_error(struct hl_device *hdev, u64 mmu_base, bool is_pmmu, + u64 *event_mask) +{ + u32 valid, val; + u64 addr; + + valid = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID)); + + if (!(valid & DCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID_PAGE_ERR_VALID_ENTRY_MASK)) + return; + + val = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE)); + addr = val & DCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE_VA_63_32_MASK; + addr <<= 32; + addr |= RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE_VA)); + + dev_err_ratelimited(hdev->dev, "%s page fault on va 0x%llx\n", + is_pmmu ? "PMMU" : "HMMU", addr); + hl_handle_page_fault(hdev, addr, 0, is_pmmu, event_mask); + + WREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE), 0); +} + +static void gaudi2_handle_access_error(struct hl_device *hdev, u64 mmu_base, bool is_pmmu) +{ + u32 valid, val; + u64 addr; + + valid = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID)); + + if (!(valid & DCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID_ACCESS_ERR_VALID_ENTRY_MASK)) + return; + + val = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE)); + addr = val & DCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE_VA_63_32_MASK; + addr <<= 32; + addr |= RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE_VA)); + + dev_err_ratelimited(hdev->dev, "%s access error on va 0x%llx\n", + is_pmmu ? "PMMU" : "HMMU", addr); + WREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE), 0); +} + +static int gaudi2_handle_mmu_spi_sei_generic(struct hl_device *hdev, u16 event_type, + u64 mmu_base, bool is_pmmu, u64 *event_mask) +{ + u32 spi_sei_cause, interrupt_clr = 0x0, error_count = 0; + int i; + + spi_sei_cause = RREG32(mmu_base + MMU_SPI_SEI_CAUSE_OFFSET); + + for (i = 0 ; i < GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE ; i++) { + if (spi_sei_cause & BIT(i)) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", gaudi2_mmu_spi_sei[i].cause); + + if (i == 0) + gaudi2_handle_page_error(hdev, mmu_base, is_pmmu, event_mask); + else if (i == 1) + gaudi2_handle_access_error(hdev, mmu_base, is_pmmu); + + if (gaudi2_mmu_spi_sei[i].clear_bit >= 0) + interrupt_clr |= BIT(gaudi2_mmu_spi_sei[i].clear_bit); + + error_count++; + } + } + + /* Clear cause */ + WREG32_AND(mmu_base + MMU_SPI_SEI_CAUSE_OFFSET, ~spi_sei_cause); + + /* Clear interrupt */ + WREG32(mmu_base + MMU_INTERRUPT_CLR_OFFSET, interrupt_clr); + + return error_count; +} + +static int gaudi2_handle_sm_err(struct hl_device *hdev, u16 event_type, u8 sm_index) +{ + u32 sei_cause_addr, sei_cause_val, sei_cause_cause, sei_cause_log, + cq_intr_addr, cq_intr_val, cq_intr_queue_index, error_count = 0; + int i; + + sei_cause_addr = mmDCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE + DCORE_OFFSET * sm_index; + cq_intr_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_INTR + DCORE_OFFSET * sm_index; + + sei_cause_val = RREG32(sei_cause_addr); + sei_cause_cause = FIELD_GET(DCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE_CAUSE_MASK, sei_cause_val); + cq_intr_val = RREG32(cq_intr_addr); + + /* SEI interrupt */ + if (sei_cause_cause) { + /* There are corresponding SEI_CAUSE_log bits for every SEI_CAUSE_cause bit */ + sei_cause_log = FIELD_GET(DCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE_LOG_MASK, + sei_cause_val); + + for (i = 0 ; i < GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE ; i++) { + if (!(sei_cause_cause & BIT(i))) + continue; + + gaudi2_print_event(hdev, event_type, true, + "err cause: %s. %s: 0x%X\n", + gaudi2_sm_sei_cause[i].cause_name, + gaudi2_sm_sei_cause[i].log_name, + sei_cause_log & gaudi2_sm_sei_cause[i].log_mask); + error_count++; + break; + } + + /* Clear SM_SEI_CAUSE */ + WREG32(sei_cause_addr, 0); + } + + /* CQ interrupt */ + if (cq_intr_val & DCORE0_SYNC_MNGR_GLBL_CQ_INTR_CQ_SEC_INTR_MASK) { + cq_intr_queue_index = + FIELD_GET(DCORE0_SYNC_MNGR_GLBL_CQ_INTR_CQ_INTR_QUEUE_INDEX_MASK, + cq_intr_val); + + dev_err_ratelimited(hdev->dev, "SM%u err. err cause: CQ_INTR. queue index: %u\n", + sm_index, cq_intr_queue_index); + error_count++; + + /* Clear CQ_INTR */ + WREG32(cq_intr_addr, 0); + } + + return error_count; +} + +static int gaudi2_handle_mmu_spi_sei_err(struct hl_device *hdev, u16 event_type, u64 *event_mask) +{ + bool is_pmmu = false; + u32 error_count = 0; + u64 mmu_base; + u8 index; + + switch (event_type) { + case GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM ... GAUDI2_EVENT_HMMU3_SECURITY_ERROR: + index = (event_type - GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM) / 3; + mmu_base = mmDCORE0_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET; + break; + case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_3_AXI_ERR_RSP: + index = (event_type - GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP); + mmu_base = mmDCORE0_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET; + break; + case GAUDI2_EVENT_HMMU8_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU11_SECURITY_ERROR: + index = (event_type - GAUDI2_EVENT_HMMU8_PAGE_FAULT_WR_PERM) / 3; + mmu_base = mmDCORE1_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET; + break; + case GAUDI2_EVENT_HMMU_8_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_11_AXI_ERR_RSP: + index = (event_type - GAUDI2_EVENT_HMMU_8_AXI_ERR_RSP); + mmu_base = mmDCORE1_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET; + break; + case GAUDI2_EVENT_HMMU7_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU4_SECURITY_ERROR: + index = (event_type - GAUDI2_EVENT_HMMU7_PAGE_FAULT_WR_PERM) / 3; + mmu_base = mmDCORE2_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET; + break; + case GAUDI2_EVENT_HMMU_7_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_4_AXI_ERR_RSP: + index = (event_type - GAUDI2_EVENT_HMMU_7_AXI_ERR_RSP); + mmu_base = mmDCORE2_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET; + break; + case GAUDI2_EVENT_HMMU15_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR: + index = (event_type - GAUDI2_EVENT_HMMU15_PAGE_FAULT_WR_PERM) / 3; + mmu_base = mmDCORE3_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET; + break; + case GAUDI2_EVENT_HMMU_15_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP: + index = (event_type - GAUDI2_EVENT_HMMU_15_AXI_ERR_RSP); + mmu_base = mmDCORE3_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET; + break; + case GAUDI2_EVENT_PMMU0_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_PMMU0_SECURITY_ERROR: + case GAUDI2_EVENT_PMMU_AXI_ERR_RSP_0: + is_pmmu = true; + mmu_base = mmPMMU_HBW_MMU_BASE; + break; + default: + return 0; + } + + error_count = gaudi2_handle_mmu_spi_sei_generic(hdev, event_type, mmu_base, + is_pmmu, event_mask); + + return error_count; +} + + +/* returns true if hard reset is required (ECC DERR or Read parity), false otherwise (ECC SERR) */ +static bool gaudi2_hbm_sei_handle_read_err(struct hl_device *hdev, + struct hl_eq_hbm_sei_read_err_intr_info *rd_err_data, u32 err_cnt) +{ + u32 addr, beat, beat_shift; + bool rc = false; + + dev_err_ratelimited(hdev->dev, + "READ ERROR count: ECC SERR: %d, ECC DERR: %d, RD_PARITY: %d\n", + FIELD_GET(HBM_ECC_SERR_CNTR_MASK, err_cnt), + FIELD_GET(HBM_ECC_DERR_CNTR_MASK, err_cnt), + FIELD_GET(HBM_RD_PARITY_CNTR_MASK, err_cnt)); + + addr = le32_to_cpu(rd_err_data->dbg_rd_err_addr.rd_addr_val); + dev_err_ratelimited(hdev->dev, + "READ ERROR address: sid(%u), bg(%u), ba(%u), col(%u), row(%u)\n", + FIELD_GET(HBM_RD_ADDR_SID_MASK, addr), + FIELD_GET(HBM_RD_ADDR_BG_MASK, addr), + FIELD_GET(HBM_RD_ADDR_BA_MASK, addr), + FIELD_GET(HBM_RD_ADDR_COL_MASK, addr), + FIELD_GET(HBM_RD_ADDR_ROW_MASK, addr)); + + /* For each beat (RDQS edge), look for possible errors and print relevant info */ + for (beat = 0 ; beat < 4 ; beat++) { + if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) & + (HBM_RD_ERR_SERR_BEAT0_MASK << beat)) + dev_err_ratelimited(hdev->dev, "Beat%d ECC SERR: DM: %#x, Syndrome: %#x\n", + beat, + le32_to_cpu(rd_err_data->dbg_rd_err_dm), + le32_to_cpu(rd_err_data->dbg_rd_err_syndrome)); + + if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) & + (HBM_RD_ERR_DERR_BEAT0_MASK << beat)) { + dev_err_ratelimited(hdev->dev, "Beat%d ECC DERR: DM: %#x, Syndrome: %#x\n", + beat, + le32_to_cpu(rd_err_data->dbg_rd_err_dm), + le32_to_cpu(rd_err_data->dbg_rd_err_syndrome)); + rc |= true; + } + + beat_shift = beat * HBM_RD_ERR_BEAT_SHIFT; + if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) & + (HBM_RD_ERR_PAR_ERR_BEAT0_MASK << beat_shift)) { + dev_err_ratelimited(hdev->dev, + "Beat%d read PARITY: DM: %#x, PAR data: %#x\n", + beat, + le32_to_cpu(rd_err_data->dbg_rd_err_dm), + (le32_to_cpu(rd_err_data->dbg_rd_err_misc) & + (HBM_RD_ERR_PAR_DATA_BEAT0_MASK << beat_shift)) >> + (HBM_RD_ERR_PAR_DATA_BEAT0_SHIFT + beat_shift)); + rc |= true; + } + + dev_err_ratelimited(hdev->dev, "Beat%d DQ data:\n", beat); + dev_err_ratelimited(hdev->dev, "\t0x%08x\n", + le32_to_cpu(rd_err_data->dbg_rd_err_data[beat * 2])); + dev_err_ratelimited(hdev->dev, "\t0x%08x\n", + le32_to_cpu(rd_err_data->dbg_rd_err_data[beat * 2 + 1])); + } + + return rc; +} + +static void gaudi2_hbm_sei_print_wr_par_info(struct hl_device *hdev, + struct hl_eq_hbm_sei_wr_par_intr_info *wr_par_err_data, u32 err_cnt) +{ + struct hbm_sei_wr_cmd_address *wr_cmd_addr = wr_par_err_data->dbg_last_wr_cmds; + u32 i, curr_addr, derr = wr_par_err_data->dbg_derr; + + dev_err_ratelimited(hdev->dev, "WRITE PARITY ERROR count: %d\n", err_cnt); + + dev_err_ratelimited(hdev->dev, "CK-0 DERR: 0x%02x, CK-1 DERR: 0x%02x\n", + derr & 0x3, derr & 0xc); + + /* JIRA H6-3286 - the following prints may not be valid */ + dev_err_ratelimited(hdev->dev, "Last latched write commands addresses:\n"); + for (i = 0 ; i < HBM_WR_PAR_CMD_LIFO_LEN ; i++) { + curr_addr = le32_to_cpu(wr_cmd_addr[i].dbg_wr_cmd_addr); + dev_err_ratelimited(hdev->dev, + "\twrite cmd[%u]: Address: SID(%u) BG(%u) BA(%u) COL(%u).\n", + i, + FIELD_GET(WR_PAR_LAST_CMD_SID_MASK, curr_addr), + FIELD_GET(WR_PAR_LAST_CMD_BG_MASK, curr_addr), + FIELD_GET(WR_PAR_LAST_CMD_BA_MASK, curr_addr), + FIELD_GET(WR_PAR_LAST_CMD_COL_MASK, curr_addr)); + } +} + +static void gaudi2_hbm_sei_print_ca_par_info(struct hl_device *hdev, + struct hl_eq_hbm_sei_ca_par_intr_info *ca_par_err_data, u32 err_cnt) +{ + __le32 *col_cmd = ca_par_err_data->dbg_col; + __le16 *row_cmd = ca_par_err_data->dbg_row; + u32 i; + + dev_err_ratelimited(hdev->dev, "CA ERROR count: %d\n", err_cnt); + + dev_err_ratelimited(hdev->dev, "Last latched C&R bus commands:\n"); + for (i = 0 ; i < HBM_CA_ERR_CMD_LIFO_LEN ; i++) + dev_err_ratelimited(hdev->dev, "cmd%u: ROW(0x%04x) COL(0x%05x)\n", i, + le16_to_cpu(row_cmd[i]) & (u16)GENMASK(13, 0), + le32_to_cpu(col_cmd[i]) & (u32)GENMASK(17, 0)); +} + +/* Returns true if hard reset is needed or false otherwise */ +static bool gaudi2_handle_hbm_mc_sei_err(struct hl_device *hdev, u16 event_type, + struct hl_eq_hbm_sei_data *sei_data) +{ + bool require_hard_reset = false; + u32 hbm_id, mc_id, cause_idx; + + hbm_id = (event_type - GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE) / 4; + mc_id = ((event_type - GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE) / 2) % 2; + + cause_idx = sei_data->hdr.sei_cause; + if (cause_idx > GAUDI2_NUM_OF_HBM_SEI_CAUSE - 1) { + gaudi2_print_event(hdev, event_type, true, + "err cause: %s", + "Invalid HBM SEI event cause (%d) provided by FW\n", cause_idx); + return true; + } + + gaudi2_print_event(hdev, event_type, !sei_data->hdr.is_critical, + "System %s Error Interrupt - HBM(%u) MC(%u) MC_CH(%u) MC_PC(%u). Error cause: %s\n", + sei_data->hdr.is_critical ? "Critical" : "Non-critical", + hbm_id, mc_id, sei_data->hdr.mc_channel, sei_data->hdr.mc_pseudo_channel, + hbm_mc_sei_cause[cause_idx]); + + /* Print error-specific info */ + switch (cause_idx) { + case HBM_SEI_CATTRIP: + require_hard_reset = true; + break; + + case HBM_SEI_CMD_PARITY_EVEN: + gaudi2_hbm_sei_print_ca_par_info(hdev, &sei_data->ca_parity_even_info, + le32_to_cpu(sei_data->hdr.cnt)); + require_hard_reset = true; + break; + + case HBM_SEI_CMD_PARITY_ODD: + gaudi2_hbm_sei_print_ca_par_info(hdev, &sei_data->ca_parity_odd_info, + le32_to_cpu(sei_data->hdr.cnt)); + require_hard_reset = true; + break; + + case HBM_SEI_WRITE_DATA_PARITY_ERR: + gaudi2_hbm_sei_print_wr_par_info(hdev, &sei_data->wr_parity_info, + le32_to_cpu(sei_data->hdr.cnt)); + require_hard_reset = true; + break; + + case HBM_SEI_READ_ERR: + /* Unlike other SEI events, read error requires further processing of the + * raw data in order to determine the root cause. + */ + require_hard_reset = gaudi2_hbm_sei_handle_read_err(hdev, + &sei_data->read_err_info, + le32_to_cpu(sei_data->hdr.cnt)); + break; + + default: + break; + } + + require_hard_reset |= !!sei_data->hdr.is_critical; + + return require_hard_reset; +} + +static int gaudi2_handle_hbm_cattrip(struct hl_device *hdev, u16 event_type, + u64 intr_cause_data) +{ + if (intr_cause_data) { + gaudi2_print_event(hdev, event_type, true, + "temperature error cause: %#llx", intr_cause_data); + return 1; + } + + return 0; +} + +static int gaudi2_handle_hbm_mc_spi(struct hl_device *hdev, u64 intr_cause_data) +{ + u32 i, error_count = 0; + + for (i = 0 ; i < GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE ; i++) + if (intr_cause_data & hbm_mc_spi[i].mask) { + dev_dbg(hdev->dev, "HBM spi event: notification cause(%s)\n", + hbm_mc_spi[i].cause); + error_count++; + } + + return error_count; +} + +static void gaudi2_print_clk_change_info(struct hl_device *hdev, u16 event_type, u64 *event_mask) +{ + ktime_t zero_time = ktime_set(0, 0); + + mutex_lock(&hdev->clk_throttling.lock); + + switch (event_type) { + case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S: + hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_POWER; + hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_POWER; + hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].start = ktime_get(); + hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = zero_time; + dev_dbg_ratelimited(hdev->dev, "Clock throttling due to power consumption\n"); + break; + + case GAUDI2_EVENT_CPU_FIX_POWER_ENV_E: + hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_POWER; + hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = ktime_get(); + dev_dbg_ratelimited(hdev->dev, "Power envelop is safe, back to optimal clock\n"); + break; + + case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_S: + hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_THERMAL; + hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_THERMAL; + hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].start = ktime_get(); + hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = zero_time; + *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + dev_info_ratelimited(hdev->dev, "Clock throttling due to overheating\n"); + break; + + case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E: + hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_THERMAL; + hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = ktime_get(); + *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + dev_info_ratelimited(hdev->dev, "Thermal envelop is safe, back to optimal clock\n"); + break; + + default: + dev_err(hdev->dev, "Received invalid clock change event %d\n", event_type); + break; + } + + mutex_unlock(&hdev->clk_throttling.lock); +} + +static void gaudi2_print_out_of_sync_info(struct hl_device *hdev, u16 event_type, + struct cpucp_pkt_sync_err *sync_err) +{ + struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ]; + + gaudi2_print_event(hdev, event_type, false, + "FW: pi=%u, ci=%u, LKD: pi=%u, ci=%d\n", + le32_to_cpu(sync_err->pi), le32_to_cpu(sync_err->ci), + q->pi, atomic_read(&q->ci)); +} + +static int gaudi2_handle_pcie_p2p_msix(struct hl_device *hdev, u16 event_type) +{ + u32 p2p_intr, msix_gw_intr, error_count = 0; + + p2p_intr = RREG32(mmPCIE_WRAP_P2P_INTR); + msix_gw_intr = RREG32(mmPCIE_WRAP_MSIX_GW_INTR); + + if (p2p_intr) { + gaudi2_print_event(hdev, event_type, true, + "pcie p2p transaction terminated due to security, req_id(0x%x)\n", + RREG32(mmPCIE_WRAP_P2P_REQ_ID)); + + WREG32(mmPCIE_WRAP_P2P_INTR, 0x1); + error_count++; + } + + if (msix_gw_intr) { + gaudi2_print_event(hdev, event_type, true, + "pcie msi-x gen denied due to vector num check failure, vec(0x%X)\n", + RREG32(mmPCIE_WRAP_MSIX_GW_VEC)); + + WREG32(mmPCIE_WRAP_MSIX_GW_INTR, 0x1); + error_count++; + } + + return error_count; +} + +static int gaudi2_handle_pcie_drain(struct hl_device *hdev, + struct hl_eq_pcie_drain_ind_data *drain_data) +{ + u64 lbw_rd, lbw_wr, hbw_rd, hbw_wr, cause, error_count = 0; + + cause = le64_to_cpu(drain_data->intr_cause.intr_cause_data); + lbw_rd = le64_to_cpu(drain_data->drain_rd_addr_lbw); + lbw_wr = le64_to_cpu(drain_data->drain_wr_addr_lbw); + hbw_rd = le64_to_cpu(drain_data->drain_rd_addr_hbw); + hbw_wr = le64_to_cpu(drain_data->drain_wr_addr_hbw); + + if (cause & BIT_ULL(0)) { + dev_err_ratelimited(hdev->dev, + "PCIE AXI drain LBW completed, read_err %u, write_err %u\n", + !!lbw_rd, !!lbw_wr); + error_count++; + } + + if (cause & BIT_ULL(1)) { + dev_err_ratelimited(hdev->dev, + "PCIE AXI drain HBW completed, raddr %#llx, waddr %#llx\n", + hbw_rd, hbw_wr); + error_count++; + } + + return error_count; +} + +static int gaudi2_handle_psoc_drain(struct hl_device *hdev, u64 intr_cause_data) +{ + u32 error_count = 0; + int i; + + for (i = 0 ; i < GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE ; i++) { + if (intr_cause_data & BIT_ULL(i)) { + dev_err_ratelimited(hdev->dev, "PSOC %s completed\n", + gaudi2_psoc_axi_drain_interrupts_cause[i]); + error_count++; + } + } + + return error_count; +} + +static void gaudi2_print_cpu_pkt_failure_info(struct hl_device *hdev, u16 event_type, + struct cpucp_pkt_sync_err *sync_err) +{ + struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ]; + + gaudi2_print_event(hdev, event_type, false, + "FW reported sanity check failure, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%d\n", + le32_to_cpu(sync_err->pi), le32_to_cpu(sync_err->ci), q->pi, atomic_read(&q->ci)); +} + +static int hl_arc_event_handle(struct hl_device *hdev, u16 event_type, + struct hl_eq_engine_arc_intr_data *data) +{ + struct hl_engine_arc_dccm_queue_full_irq *q; + u32 intr_type, engine_id; + u64 payload; + + intr_type = le32_to_cpu(data->intr_type); + engine_id = le32_to_cpu(data->engine_id); + payload = le64_to_cpu(data->payload); + + switch (intr_type) { + case ENGINE_ARC_DCCM_QUEUE_FULL_IRQ: + q = (struct hl_engine_arc_dccm_queue_full_irq *) &payload; + + gaudi2_print_event(hdev, event_type, true, + "ARC DCCM Full event: EngId: %u, Intr_type: %u, Qidx: %u\n", + engine_id, intr_type, q->queue_index); + return 1; + default: + gaudi2_print_event(hdev, event_type, true, "Unknown ARC event type\n"); + return 0; + } +} + +static void gaudi2_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + bool reset_required = false, is_critical = false; + u32 index, ctl, reset_flags = HL_DRV_RESET_HARD, error_count = 0; + u64 event_mask = 0; + u16 event_type; + + ctl = le32_to_cpu(eq_entry->hdr.ctl); + event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT); + + if (event_type >= GAUDI2_EVENT_SIZE) { + dev_err(hdev->dev, "Event type %u exceeds maximum of %u", + event_type, GAUDI2_EVENT_SIZE - 1); + return; + } + + gaudi2->events_stat[event_type]++; + gaudi2->events_stat_aggregate[event_type]++; + + switch (event_type) { + case GAUDI2_EVENT_PCIE_CORE_SERR ... GAUDI2_EVENT_ARC0_ECC_DERR: + fallthrough; + case GAUDI2_EVENT_ROTATOR0_SERR ... GAUDI2_EVENT_ROTATOR1_DERR: + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + reset_required = gaudi2_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data); + is_critical = eq_entry->ecc_data.is_critical; + error_count++; + break; + + case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_PDMA1_QM: + fallthrough; + case GAUDI2_EVENT_ROTATOR0_ROT0_QM ... GAUDI2_EVENT_ROTATOR1_ROT1_QM: + fallthrough; + case GAUDI2_EVENT_NIC0_QM0 ... GAUDI2_EVENT_NIC11_QM1: + error_count = gaudi2_handle_qman_err(hdev, event_type); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_ARC_AXI_ERROR_RESPONSE_0: + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + error_count = gaudi2_handle_arc_farm_sei_err(hdev, event_type); + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_CPU_AXI_ERR_RSP: + error_count = gaudi2_handle_cpu_sei_err(hdev, event_type); + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP: + case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP: + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + error_count = gaudi2_handle_qm_sei_err(hdev, event_type, + &eq_entry->razwi_info, &event_mask); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE: + case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE: + index = event_type - GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE; + error_count = gaudi2_handle_rot_err(hdev, index, event_type, + &eq_entry->razwi_with_intr_cause, &event_mask); + error_count += gaudi2_handle_qm_sei_err(hdev, event_type, NULL, &event_mask); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC24_AXI_ERR_RSP: + index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP; + error_count = gaudi2_tpc_ack_interrupts(hdev, index, event_type, + &eq_entry->razwi_with_intr_cause, &event_mask); + error_count += gaudi2_handle_qm_sei_err(hdev, event_type, NULL, &event_mask); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE ... GAUDI2_EVENT_DEC9_AXI_ERR_RSPONSE: + index = event_type - GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE; + error_count = gaudi2_handle_dec_err(hdev, index, event_type, + &eq_entry->razwi_info, &event_mask); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_TPC0_KERNEL_ERR: + case GAUDI2_EVENT_TPC1_KERNEL_ERR: + case GAUDI2_EVENT_TPC2_KERNEL_ERR: + case GAUDI2_EVENT_TPC3_KERNEL_ERR: + case GAUDI2_EVENT_TPC4_KERNEL_ERR: + case GAUDI2_EVENT_TPC5_KERNEL_ERR: + case GAUDI2_EVENT_TPC6_KERNEL_ERR: + case GAUDI2_EVENT_TPC7_KERNEL_ERR: + case GAUDI2_EVENT_TPC8_KERNEL_ERR: + case GAUDI2_EVENT_TPC9_KERNEL_ERR: + case GAUDI2_EVENT_TPC10_KERNEL_ERR: + case GAUDI2_EVENT_TPC11_KERNEL_ERR: + case GAUDI2_EVENT_TPC12_KERNEL_ERR: + case GAUDI2_EVENT_TPC13_KERNEL_ERR: + case GAUDI2_EVENT_TPC14_KERNEL_ERR: + case GAUDI2_EVENT_TPC15_KERNEL_ERR: + case GAUDI2_EVENT_TPC16_KERNEL_ERR: + case GAUDI2_EVENT_TPC17_KERNEL_ERR: + case GAUDI2_EVENT_TPC18_KERNEL_ERR: + case GAUDI2_EVENT_TPC19_KERNEL_ERR: + case GAUDI2_EVENT_TPC20_KERNEL_ERR: + case GAUDI2_EVENT_TPC21_KERNEL_ERR: + case GAUDI2_EVENT_TPC22_KERNEL_ERR: + case GAUDI2_EVENT_TPC23_KERNEL_ERR: + case GAUDI2_EVENT_TPC24_KERNEL_ERR: + index = (event_type - GAUDI2_EVENT_TPC0_KERNEL_ERR) / + (GAUDI2_EVENT_TPC1_KERNEL_ERR - GAUDI2_EVENT_TPC0_KERNEL_ERR); + error_count = gaudi2_tpc_ack_interrupts(hdev, index, event_type, + &eq_entry->razwi_with_intr_cause, &event_mask); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_DEC0_SPI: + case GAUDI2_EVENT_DEC1_SPI: + case GAUDI2_EVENT_DEC2_SPI: + case GAUDI2_EVENT_DEC3_SPI: + case GAUDI2_EVENT_DEC4_SPI: + case GAUDI2_EVENT_DEC5_SPI: + case GAUDI2_EVENT_DEC6_SPI: + case GAUDI2_EVENT_DEC7_SPI: + case GAUDI2_EVENT_DEC8_SPI: + case GAUDI2_EVENT_DEC9_SPI: + index = (event_type - GAUDI2_EVENT_DEC0_SPI) / + (GAUDI2_EVENT_DEC1_SPI - GAUDI2_EVENT_DEC0_SPI); + error_count = gaudi2_handle_dec_err(hdev, index, event_type, + &eq_entry->razwi_info, &event_mask); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE: + case GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE: + case GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE: + case GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE: + index = (event_type - GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE) / + (GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE - + GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE); + error_count = gaudi2_handle_mme_err(hdev, index, event_type, + &eq_entry->razwi_info, &event_mask); + error_count += gaudi2_handle_qm_sei_err(hdev, event_type, NULL, &event_mask); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_MME0_QMAN_SW_ERROR: + case GAUDI2_EVENT_MME1_QMAN_SW_ERROR: + case GAUDI2_EVENT_MME2_QMAN_SW_ERROR: + case GAUDI2_EVENT_MME3_QMAN_SW_ERROR: + index = (event_type - GAUDI2_EVENT_MME0_QMAN_SW_ERROR) / + (GAUDI2_EVENT_MME1_QMAN_SW_ERROR - + GAUDI2_EVENT_MME0_QMAN_SW_ERROR); + error_count = gaudi2_handle_mme_err(hdev, index, event_type, + &eq_entry->razwi_info, &event_mask); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID: + case GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID: + case GAUDI2_EVENT_MME2_WAP_SOURCE_RESULT_INVALID: + case GAUDI2_EVENT_MME3_WAP_SOURCE_RESULT_INVALID: + index = (event_type - GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID) / + (GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID - + GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID); + error_count = gaudi2_handle_mme_wap_err(hdev, index, event_type, + &eq_entry->razwi_info, &event_mask); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_KDMA_CH0_AXI_ERR_RSP: + case GAUDI2_EVENT_KDMA0_CORE: + error_count = gaudi2_handle_kdma_core_event(hdev, event_type, + le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_HDMA2_CORE ... GAUDI2_EVENT_PDMA1_CORE: + error_count = gaudi2_handle_dma_core_event(hdev, event_type, + le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_PCIE_ADDR_DEC_ERR: + error_count = gaudi2_print_pcie_addr_dec_info(hdev, event_type, + le64_to_cpu(eq_entry->intr_cause.intr_cause_data), &event_mask); + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR: + case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP: + case GAUDI2_EVENT_PMMU0_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_PMMU0_SECURITY_ERROR: + case GAUDI2_EVENT_PMMU_AXI_ERR_RSP_0: + error_count = gaudi2_handle_mmu_spi_sei_err(hdev, event_type, &event_mask); + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_HIF0_FATAL ... GAUDI2_EVENT_HIF12_FATAL: + error_count = gaudi2_handle_hif_fatal(hdev, event_type, + le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_PMMU_FATAL_0: + error_count = gaudi2_handle_pif_fatal(hdev, event_type, + le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_PSOC63_RAZWI_OR_PID_MIN_MAX_INTERRUPT: + error_count = gaudi2_ack_psoc_razwi_event_handler(hdev, &event_mask); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE ... GAUDI2_EVENT_HBM5_MC1_SEI_NON_SEVERE: + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + if (gaudi2_handle_hbm_mc_sei_err(hdev, event_type, &eq_entry->sei_data)) { + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + reset_required = true; + } + error_count++; + break; + + case GAUDI2_EVENT_HBM_CATTRIP_0 ... GAUDI2_EVENT_HBM_CATTRIP_5: + error_count = gaudi2_handle_hbm_cattrip(hdev, event_type, + le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_HBM0_MC0_SPI ... GAUDI2_EVENT_HBM5_MC1_SPI: + error_count = gaudi2_handle_hbm_mc_spi(hdev, + le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_PCIE_DRAIN_COMPLETE: + error_count = gaudi2_handle_pcie_drain(hdev, &eq_entry->pcie_drain_ind_data); + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_PSOC59_RPM_ERROR_OR_DRAIN: + error_count = gaudi2_handle_psoc_drain(hdev, + le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_CPU_AXI_ECC: + error_count = GAUDI2_NA_EVENT_CAUSE; + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + case GAUDI2_EVENT_CPU_L2_RAM_ECC: + error_count = GAUDI2_NA_EVENT_CAUSE; + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + case GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME0_SBTE4_AXI_ERR_RSP: + case GAUDI2_EVENT_MME1_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME1_SBTE4_AXI_ERR_RSP: + case GAUDI2_EVENT_MME2_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME2_SBTE4_AXI_ERR_RSP: + case GAUDI2_EVENT_MME3_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME3_SBTE4_AXI_ERR_RSP: + error_count = gaudi2_handle_mme_sbte_err(hdev, event_type, + le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + case GAUDI2_EVENT_VM0_ALARM_A ... GAUDI2_EVENT_VM3_ALARM_B: + error_count = GAUDI2_NA_EVENT_CAUSE; + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + case GAUDI2_EVENT_PSOC_AXI_ERR_RSP: + error_count = GAUDI2_NA_EVENT_CAUSE; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + case GAUDI2_EVENT_PSOC_PRSTN_FALL: + error_count = GAUDI2_NA_EVENT_CAUSE; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + case GAUDI2_EVENT_PCIE_APB_TIMEOUT: + error_count = GAUDI2_NA_EVENT_CAUSE; + reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + case GAUDI2_EVENT_PCIE_FATAL_ERR: + error_count = GAUDI2_NA_EVENT_CAUSE; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + case GAUDI2_EVENT_TPC0_BMON_SPMU: + case GAUDI2_EVENT_TPC1_BMON_SPMU: + case GAUDI2_EVENT_TPC2_BMON_SPMU: + case GAUDI2_EVENT_TPC3_BMON_SPMU: + case GAUDI2_EVENT_TPC4_BMON_SPMU: + case GAUDI2_EVENT_TPC5_BMON_SPMU: + case GAUDI2_EVENT_TPC6_BMON_SPMU: + case GAUDI2_EVENT_TPC7_BMON_SPMU: + case GAUDI2_EVENT_TPC8_BMON_SPMU: + case GAUDI2_EVENT_TPC9_BMON_SPMU: + case GAUDI2_EVENT_TPC10_BMON_SPMU: + case GAUDI2_EVENT_TPC11_BMON_SPMU: + case GAUDI2_EVENT_TPC12_BMON_SPMU: + case GAUDI2_EVENT_TPC13_BMON_SPMU: + case GAUDI2_EVENT_TPC14_BMON_SPMU: + case GAUDI2_EVENT_TPC15_BMON_SPMU: + case GAUDI2_EVENT_TPC16_BMON_SPMU: + case GAUDI2_EVENT_TPC17_BMON_SPMU: + case GAUDI2_EVENT_TPC18_BMON_SPMU: + case GAUDI2_EVENT_TPC19_BMON_SPMU: + case GAUDI2_EVENT_TPC20_BMON_SPMU: + case GAUDI2_EVENT_TPC21_BMON_SPMU: + case GAUDI2_EVENT_TPC22_BMON_SPMU: + case GAUDI2_EVENT_TPC23_BMON_SPMU: + case GAUDI2_EVENT_TPC24_BMON_SPMU: + case GAUDI2_EVENT_MME0_CTRL_BMON_SPMU: + case GAUDI2_EVENT_MME0_SBTE_BMON_SPMU: + case GAUDI2_EVENT_MME0_WAP_BMON_SPMU: + case GAUDI2_EVENT_MME1_CTRL_BMON_SPMU: + case GAUDI2_EVENT_MME1_SBTE_BMON_SPMU: + case GAUDI2_EVENT_MME1_WAP_BMON_SPMU: + case GAUDI2_EVENT_MME2_CTRL_BMON_SPMU: + case GAUDI2_EVENT_MME2_SBTE_BMON_SPMU: + case GAUDI2_EVENT_MME2_WAP_BMON_SPMU: + case GAUDI2_EVENT_MME3_CTRL_BMON_SPMU: + case GAUDI2_EVENT_MME3_SBTE_BMON_SPMU: + case GAUDI2_EVENT_MME3_WAP_BMON_SPMU: + case GAUDI2_EVENT_HDMA2_BM_SPMU ... GAUDI2_EVENT_PDMA1_BM_SPMU: + fallthrough; + case GAUDI2_EVENT_DEC0_BMON_SPMU: + case GAUDI2_EVENT_DEC1_BMON_SPMU: + case GAUDI2_EVENT_DEC2_BMON_SPMU: + case GAUDI2_EVENT_DEC3_BMON_SPMU: + case GAUDI2_EVENT_DEC4_BMON_SPMU: + case GAUDI2_EVENT_DEC5_BMON_SPMU: + case GAUDI2_EVENT_DEC6_BMON_SPMU: + case GAUDI2_EVENT_DEC7_BMON_SPMU: + case GAUDI2_EVENT_DEC8_BMON_SPMU: + case GAUDI2_EVENT_DEC9_BMON_SPMU: + case GAUDI2_EVENT_ROTATOR0_BMON_SPMU ... GAUDI2_EVENT_SM3_BMON_SPMU: + error_count = GAUDI2_NA_EVENT_CAUSE; + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S: + case GAUDI2_EVENT_CPU_FIX_POWER_ENV_E: + case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_S: + case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E: + gaudi2_print_clk_change_info(hdev, event_type, &event_mask); + error_count = GAUDI2_NA_EVENT_CAUSE; + break; + + case GAUDI2_EVENT_CPU_PKT_QUEUE_OUT_SYNC: + gaudi2_print_out_of_sync_info(hdev, event_type, &eq_entry->pkt_sync_err); + error_count = GAUDI2_NA_EVENT_CAUSE; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_PCIE_FLR_REQUESTED: + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + error_count = GAUDI2_NA_EVENT_CAUSE; + /* Do nothing- FW will handle it */ + break; + + case GAUDI2_EVENT_PCIE_P2P_MSIX: + error_count = gaudi2_handle_pcie_p2p_msix(hdev, event_type); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_SM0_AXI_ERROR_RESPONSE ... GAUDI2_EVENT_SM3_AXI_ERROR_RESPONSE: + index = event_type - GAUDI2_EVENT_SM0_AXI_ERROR_RESPONSE; + error_count = gaudi2_handle_sm_err(hdev, event_type, index); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_PSOC_MME_PLL_LOCK_ERR ... GAUDI2_EVENT_DCORE2_HBM_PLL_LOCK_ERR: + error_count = GAUDI2_NA_EVENT_CAUSE; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_CAUSE: + dev_info(hdev->dev, "CPLD shutdown cause, reset reason: 0x%llx\n", + le64_to_cpu(eq_entry->data[0])); + error_count = GAUDI2_NA_EVENT_CAUSE; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_EVENT: + dev_err(hdev->dev, "CPLD shutdown event, reset reason: 0x%llx\n", + le64_to_cpu(eq_entry->data[0])); + error_count = GAUDI2_NA_EVENT_CAUSE; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_CPU_PKT_SANITY_FAILED: + gaudi2_print_cpu_pkt_failure_info(hdev, event_type, &eq_entry->pkt_sync_err); + error_count = GAUDI2_NA_EVENT_CAUSE; + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + break; + + case GAUDI2_EVENT_ARC_DCCM_FULL: + error_count = hl_arc_event_handle(hdev, event_type, &eq_entry->arc_data); + event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; + break; + + case GAUDI2_EVENT_CPU_FP32_NOT_SUPPORTED: + case GAUDI2_EVENT_DEV_RESET_REQ: + event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; + error_count = GAUDI2_NA_EVENT_CAUSE; + is_critical = true; + break; + + default: + if (gaudi2_irq_map_table[event_type].valid) { + dev_err_ratelimited(hdev->dev, "Cannot find handler for event %d\n", + event_type); + error_count = GAUDI2_NA_EVENT_CAUSE; + } + } + + /* Make sure to dump an error in case no error cause was printed so far. + * Note that although we have counted the errors, we use this number as + * a boolean. + */ + if (error_count == GAUDI2_NA_EVENT_CAUSE && !is_info_event(event_type)) + gaudi2_print_event(hdev, event_type, true, "%d", event_type); + else if (error_count == 0) + gaudi2_print_event(hdev, event_type, true, + "No error cause for H/W event %u\n", event_type); + + if ((gaudi2_irq_map_table[event_type].reset || reset_required) && + (hdev->hard_reset_on_fw_events || + (hdev->asic_prop.fw_security_enabled && is_critical))) + goto reset_device; + + /* Send unmask irq only for interrupts not classified as MSG */ + if (!gaudi2_irq_map_table[event_type].msg) + hl_fw_unmask_irq(hdev, event_type); + + if (event_mask) + hl_notifier_event_send_all(hdev, event_mask); + + return; + +reset_device: + if (hdev->asic_prop.fw_security_enabled && is_critical) { + reset_flags |= HL_DRV_RESET_BYPASS_REQ_TO_FW; + event_mask |= HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE; + } else { + reset_flags |= HL_DRV_RESET_DELAY; + } + event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET; + hl_device_cond_reset(hdev, reset_flags, event_mask); +} + +static int gaudi2_memset_memory_chunk_using_edma_qm(struct hl_device *hdev, + struct packet_lin_dma *lin_dma_pkt, dma_addr_t pkt_dma_addr, + u32 hw_queue_id, u32 size, u64 addr, u32 val) +{ + u32 ctl, pkt_size; + int rc = 0; + + ctl = FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_LIN_DMA); + ctl |= FIELD_PREP(GAUDI2_PKT_LIN_DMA_CTL_MEMSET_MASK, 1); + ctl |= FIELD_PREP(GAUDI2_PKT_LIN_DMA_CTL_WRCOMP_MASK, 1); + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 1); + + lin_dma_pkt->ctl = cpu_to_le32(ctl); + lin_dma_pkt->src_addr = cpu_to_le64(val); + lin_dma_pkt->dst_addr = cpu_to_le64(addr); + lin_dma_pkt->tsize = cpu_to_le32(size); + + pkt_size = sizeof(struct packet_lin_dma); + + rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, pkt_size, pkt_dma_addr); + if (rc) + dev_err(hdev->dev, "Failed to send lin dma packet to H/W queue %d\n", + hw_queue_id); + + return rc; +} + +static int gaudi2_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val) +{ + u32 edma_queues_id[] = {GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0, + GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0, + GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0, + GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0}; + u32 chunk_size, dcore, edma_idx, sob_offset, sob_addr, comp_val, + old_mmubp, mmubp, num_of_pkts, busy, pkt_size; + u64 comp_addr, cur_addr = addr, end_addr = addr + size; + struct asic_fixed_properties *prop = &hdev->asic_prop; + void *lin_dma_pkts_arr; + dma_addr_t pkt_dma_addr; + int rc = 0, dma_num = 0; + + if (prop->edma_enabled_mask == 0) { + dev_info(hdev->dev, "non of the EDMA engines is enabled - skip dram scrubbing\n"); + return -EIO; + } + + sob_offset = hdev->asic_prop.first_available_user_sob[0] * 4; + sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset; + comp_addr = CFG_BASE + sob_addr; + comp_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1) | + FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 1); + mmubp = FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_WR_MASK, 1) | + FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_RD_MASK, 1); + + /* Calculate how many lin dma pkts we'll need */ + num_of_pkts = div64_u64(round_up(size, SZ_2G), SZ_2G); + pkt_size = sizeof(struct packet_lin_dma); + + lin_dma_pkts_arr = hl_asic_dma_alloc_coherent(hdev, pkt_size * num_of_pkts, + &pkt_dma_addr, GFP_KERNEL); + if (!lin_dma_pkts_arr) + return -ENOMEM; + + /* + * set mmu bypass for the scrubbing - all ddmas are configured the same so save + * only the first one to restore later + * also set the sob addr for all edma cores for completion. + * set QM as trusted to allow it to access physical address with MMU bp. + */ + old_mmubp = RREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP); + for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { + for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) { + u32 edma_offset = dcore * DCORE_OFFSET + edma_idx * DCORE_EDMA_OFFSET; + u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx; + + if (!(prop->edma_enabled_mask & BIT(edma_bit))) + continue; + + WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + + edma_offset, mmubp); + WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_LO + edma_offset, + lower_32_bits(comp_addr)); + WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_HI + edma_offset, + upper_32_bits(comp_addr)); + WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_WDATA + edma_offset, + comp_val); + gaudi2_qman_set_test_mode(hdev, + edma_queues_id[dcore] + 4 * edma_idx, true); + } + } + + WREG32(sob_addr, 0); + + while (cur_addr < end_addr) { + for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { + for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) { + u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx; + + if (!(prop->edma_enabled_mask & BIT(edma_bit))) + continue; + + chunk_size = min_t(u64, SZ_2G, end_addr - cur_addr); + + rc = gaudi2_memset_memory_chunk_using_edma_qm(hdev, + (struct packet_lin_dma *)lin_dma_pkts_arr + dma_num, + pkt_dma_addr + dma_num * pkt_size, + edma_queues_id[dcore] + edma_idx * 4, + chunk_size, cur_addr, val); + if (rc) + goto end; + + dma_num++; + cur_addr += chunk_size; + if (cur_addr == end_addr) + break; + } + } + } + + rc = hl_poll_timeout(hdev, sob_addr, busy, (busy == dma_num), 1000, 1000000); + if (rc) { + dev_err(hdev->dev, "DMA Timeout during HBM scrubbing\n"); + goto end; + } +end: + for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { + for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) { + u32 edma_offset = dcore * DCORE_OFFSET + edma_idx * DCORE_EDMA_OFFSET; + u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx; + + if (!(prop->edma_enabled_mask & BIT(edma_bit))) + continue; + + WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + edma_offset, old_mmubp); + WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_LO + edma_offset, 0); + WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_HI + edma_offset, 0); + WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_WDATA + edma_offset, 0); + gaudi2_qman_set_test_mode(hdev, + edma_queues_id[dcore] + 4 * edma_idx, false); + } + } + + WREG32(sob_addr, 0); + hl_asic_dma_free_coherent(hdev, pkt_size * num_of_pkts, lin_dma_pkts_arr, pkt_dma_addr); + + return rc; +} + +static int gaudi2_scrub_device_dram(struct hl_device *hdev, u64 val) +{ + int rc; + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 size = prop->dram_end_address - prop->dram_user_base_address; + + rc = gaudi2_memset_device_memory(hdev, prop->dram_user_base_address, size, val); + + if (rc) + dev_err(hdev->dev, "Failed to scrub dram, address: 0x%llx size: %llu\n", + prop->dram_user_base_address, size); + return rc; +} + +static int gaudi2_scrub_device_mem(struct hl_device *hdev) +{ + int rc; + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 val = hdev->memory_scrub_val; + u64 addr, size; + + if (!hdev->memory_scrub) + return 0; + + /* scrub SRAM */ + addr = prop->sram_user_base_address; + size = hdev->pldm ? 0x10000 : (prop->sram_size - SRAM_USER_BASE_OFFSET); + dev_dbg(hdev->dev, "Scrubbing SRAM: 0x%09llx - 0x%09llx, val: 0x%llx\n", + addr, addr + size, val); + rc = gaudi2_memset_device_memory(hdev, addr, size, val); + if (rc) { + dev_err(hdev->dev, "scrubbing SRAM failed (%d)\n", rc); + return rc; + } + + /* scrub DRAM */ + rc = gaudi2_scrub_device_dram(hdev, val); + if (rc) { + dev_err(hdev->dev, "scrubbing DRAM failed (%d)\n", rc); + return rc; + } + return 0; +} + +static void gaudi2_restore_user_sm_registers(struct hl_device *hdev) +{ + u64 addr, mon_sts_addr, mon_cfg_addr, cq_lbw_l_addr, cq_lbw_h_addr, + cq_lbw_data_addr, cq_base_l_addr, cq_base_h_addr, cq_size_addr; + u32 val, size, offset; + int dcore_id; + + offset = hdev->asic_prop.first_available_cq[0] * 4; + cq_lbw_l_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + offset; + cq_lbw_h_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 + offset; + cq_lbw_data_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0 + offset; + cq_base_l_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + offset; + cq_base_h_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + offset; + cq_size_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + offset; + size = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 - + (mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + offset); + + /* memset dcore0 CQ registers */ + gaudi2_memset_device_lbw(hdev, cq_lbw_l_addr, size, 0); + gaudi2_memset_device_lbw(hdev, cq_lbw_h_addr, size, 0); + gaudi2_memset_device_lbw(hdev, cq_lbw_data_addr, size, 0); + gaudi2_memset_device_lbw(hdev, cq_base_l_addr, size, 0); + gaudi2_memset_device_lbw(hdev, cq_base_h_addr, size, 0); + gaudi2_memset_device_lbw(hdev, cq_size_addr, size, 0); + + cq_lbw_l_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + DCORE_OFFSET; + cq_lbw_h_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 + DCORE_OFFSET; + cq_lbw_data_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0 + DCORE_OFFSET; + cq_base_l_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + DCORE_OFFSET; + cq_base_h_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + DCORE_OFFSET; + cq_size_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + DCORE_OFFSET; + size = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 - mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0; + + for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) { + gaudi2_memset_device_lbw(hdev, cq_lbw_l_addr, size, 0); + gaudi2_memset_device_lbw(hdev, cq_lbw_h_addr, size, 0); + gaudi2_memset_device_lbw(hdev, cq_lbw_data_addr, size, 0); + gaudi2_memset_device_lbw(hdev, cq_base_l_addr, size, 0); + gaudi2_memset_device_lbw(hdev, cq_base_h_addr, size, 0); + gaudi2_memset_device_lbw(hdev, cq_size_addr, size, 0); + + cq_lbw_l_addr += DCORE_OFFSET; + cq_lbw_h_addr += DCORE_OFFSET; + cq_lbw_data_addr += DCORE_OFFSET; + cq_base_l_addr += DCORE_OFFSET; + cq_base_h_addr += DCORE_OFFSET; + cq_size_addr += DCORE_OFFSET; + } + + offset = hdev->asic_prop.first_available_user_mon[0] * 4; + addr = mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + offset; + val = 1 << DCORE0_SYNC_MNGR_OBJS_MON_STATUS_PROT_SHIFT; + size = mmDCORE0_SYNC_MNGR_OBJS_SM_SEC_0 - (mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + offset); + + /* memset dcore0 monitors */ + gaudi2_memset_device_lbw(hdev, addr, size, val); + + addr = mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + offset; + gaudi2_memset_device_lbw(hdev, addr, size, 0); + + mon_sts_addr = mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + DCORE_OFFSET; + mon_cfg_addr = mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + DCORE_OFFSET; + size = mmDCORE0_SYNC_MNGR_OBJS_SM_SEC_0 - mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0; + + for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) { + gaudi2_memset_device_lbw(hdev, mon_sts_addr, size, val); + gaudi2_memset_device_lbw(hdev, mon_cfg_addr, size, 0); + mon_sts_addr += DCORE_OFFSET; + mon_cfg_addr += DCORE_OFFSET; + } + + offset = hdev->asic_prop.first_available_user_sob[0] * 4; + addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset; + val = 0; + size = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 - + (mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset); + + /* memset dcore0 sobs */ + gaudi2_memset_device_lbw(hdev, addr, size, val); + + addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + DCORE_OFFSET; + size = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 - mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0; + + for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) { + gaudi2_memset_device_lbw(hdev, addr, size, val); + addr += DCORE_OFFSET; + } + + /* Flush all WREG to prevent race */ + val = RREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset); +} + +static void gaudi2_restore_user_qm_registers(struct hl_device *hdev) +{ + u32 reg_base, hw_queue_id; + + for (hw_queue_id = GAUDI2_QUEUE_ID_PDMA_0_0 ; hw_queue_id <= GAUDI2_QUEUE_ID_ROT_1_0; + hw_queue_id += NUM_OF_PQ_PER_QMAN) { + if (!gaudi2_is_queue_enabled(hdev, hw_queue_id)) + continue; + + gaudi2_clear_qm_fence_counters_common(hdev, hw_queue_id, false); + + reg_base = gaudi2_qm_blocks_bases[hw_queue_id]; + WREG32(reg_base + QM_ARB_CFG_0_OFFSET, 0); + } + + /* Flush all WREG to prevent race */ + RREG32(mmPDMA0_QM_ARB_CFG_0); +} + +static void gaudi2_restore_nic_qm_registers(struct hl_device *hdev) +{ + u32 reg_base, hw_queue_id; + + for (hw_queue_id = GAUDI2_QUEUE_ID_NIC_0_0 ; hw_queue_id <= GAUDI2_QUEUE_ID_NIC_23_3; + hw_queue_id += NUM_OF_PQ_PER_QMAN) { + if (!gaudi2_is_queue_enabled(hdev, hw_queue_id)) + continue; + + gaudi2_clear_qm_fence_counters_common(hdev, hw_queue_id, false); + + reg_base = gaudi2_qm_blocks_bases[hw_queue_id]; + WREG32(reg_base + QM_ARB_CFG_0_OFFSET, 0); + } + + /* Flush all WREG to prevent race */ + RREG32(mmPDMA0_QM_ARB_CFG_0); +} + +static int gaudi2_context_switch(struct hl_device *hdev, u32 asid) +{ + return 0; +} + +static void gaudi2_restore_phase_topology(struct hl_device *hdev) +{ +} + +static void gaudi2_init_block_instances(struct hl_device *hdev, u32 block_idx, + struct dup_block_ctx *cfg_ctx) +{ + u64 block_base = cfg_ctx->base + block_idx * cfg_ctx->block_off; + u8 seq; + int i; + + for (i = 0 ; i < cfg_ctx->instances ; i++) { + seq = block_idx * cfg_ctx->instances + i; + + /* skip disabled instance */ + if (!(cfg_ctx->enabled_mask & BIT_ULL(seq))) + continue; + + cfg_ctx->instance_cfg_fn(hdev, block_base + i * cfg_ctx->instance_off, + cfg_ctx->data); + } +} + +static void gaudi2_init_blocks_with_mask(struct hl_device *hdev, struct dup_block_ctx *cfg_ctx, + u64 mask) +{ + int i; + + cfg_ctx->enabled_mask = mask; + + for (i = 0 ; i < cfg_ctx->blocks ; i++) + gaudi2_init_block_instances(hdev, i, cfg_ctx); +} + +void gaudi2_init_blocks(struct hl_device *hdev, struct dup_block_ctx *cfg_ctx) +{ + gaudi2_init_blocks_with_mask(hdev, cfg_ctx, U64_MAX); +} + +static int gaudi2_debugfs_read_dma(struct hl_device *hdev, u64 addr, u32 size, void *blob_addr) +{ + void *host_mem_virtual_addr; + dma_addr_t host_mem_dma_addr; + u64 reserved_va_base; + u32 pos, size_left, size_to_dma; + struct hl_ctx *ctx; + int rc = 0; + + /* Fetch the ctx */ + ctx = hl_get_compute_ctx(hdev); + if (!ctx) { + dev_err(hdev->dev, "No ctx available\n"); + return -EINVAL; + } + + /* Allocate buffers for read and for poll */ + host_mem_virtual_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &host_mem_dma_addr, + GFP_KERNEL | __GFP_ZERO); + if (host_mem_virtual_addr == NULL) { + dev_err(hdev->dev, "Failed to allocate memory for KDMA read\n"); + rc = -ENOMEM; + goto put_ctx; + } + + /* Reserve VM region on asic side */ + reserved_va_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST, SZ_2M, + HL_MMU_VA_ALIGNMENT_NOT_NEEDED); + if (!reserved_va_base) { + dev_err(hdev->dev, "Failed to reserve vmem on asic\n"); + rc = -ENOMEM; + goto free_data_buffer; + } + + /* Create mapping on asic side */ + mutex_lock(&hdev->mmu_lock); + rc = hl_mmu_map_contiguous(ctx, reserved_va_base, host_mem_dma_addr, SZ_2M); + hl_mmu_invalidate_cache_range(hdev, false, + MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV, + ctx->asid, reserved_va_base, SZ_2M); + mutex_unlock(&hdev->mmu_lock); + if (rc) { + dev_err(hdev->dev, "Failed to create mapping on asic mmu\n"); + goto unreserve_va; + } + + /* Enable MMU on KDMA */ + gaudi2_kdma_set_mmbp_asid(hdev, false, ctx->asid); + + pos = 0; + size_left = size; + size_to_dma = SZ_2M; + + while (size_left > 0) { + if (size_left < SZ_2M) + size_to_dma = size_left; + + rc = gaudi2_send_job_to_kdma(hdev, addr, reserved_va_base, size_to_dma, false); + if (rc) + break; + + memcpy(blob_addr + pos, host_mem_virtual_addr, size_to_dma); + + if (size_left <= SZ_2M) + break; + + pos += SZ_2M; + addr += SZ_2M; + size_left -= SZ_2M; + } + + gaudi2_kdma_set_mmbp_asid(hdev, true, HL_KERNEL_ASID_ID); + + mutex_lock(&hdev->mmu_lock); + hl_mmu_unmap_contiguous(ctx, reserved_va_base, SZ_2M); + hl_mmu_invalidate_cache_range(hdev, false, MMU_OP_USERPTR, + ctx->asid, reserved_va_base, SZ_2M); + mutex_unlock(&hdev->mmu_lock); +unreserve_va: + hl_unreserve_va_block(hdev, ctx, reserved_va_base, SZ_2M); +free_data_buffer: + hl_asic_dma_free_coherent(hdev, SZ_2M, host_mem_virtual_addr, host_mem_dma_addr); +put_ctx: + hl_ctx_put(ctx); + + return rc; +} + +static int gaudi2_internal_cb_pool_init(struct hl_device *hdev, struct hl_ctx *ctx) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int min_alloc_order, rc; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU)) + return 0; + + hdev->internal_cb_pool_virt_addr = hl_asic_dma_alloc_coherent(hdev, + HOST_SPACE_INTERNAL_CB_SZ, + &hdev->internal_cb_pool_dma_addr, + GFP_KERNEL | __GFP_ZERO); + + if (!hdev->internal_cb_pool_virt_addr) + return -ENOMEM; + + min_alloc_order = ilog2(min(gaudi2_get_signal_cb_size(hdev), + gaudi2_get_wait_cb_size(hdev))); + + hdev->internal_cb_pool = gen_pool_create(min_alloc_order, -1); + if (!hdev->internal_cb_pool) { + dev_err(hdev->dev, "Failed to create internal CB pool\n"); + rc = -ENOMEM; + goto free_internal_cb_pool; + } + + rc = gen_pool_add(hdev->internal_cb_pool, (uintptr_t) hdev->internal_cb_pool_virt_addr, + HOST_SPACE_INTERNAL_CB_SZ, -1); + if (rc) { + dev_err(hdev->dev, "Failed to add memory to internal CB pool\n"); + rc = -EFAULT; + goto destroy_internal_cb_pool; + } + + hdev->internal_cb_va_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST, + HOST_SPACE_INTERNAL_CB_SZ, HL_MMU_VA_ALIGNMENT_NOT_NEEDED); + + if (!hdev->internal_cb_va_base) { + rc = -ENOMEM; + goto destroy_internal_cb_pool; + } + + mutex_lock(&hdev->mmu_lock); + rc = hl_mmu_map_contiguous(ctx, hdev->internal_cb_va_base, hdev->internal_cb_pool_dma_addr, + HOST_SPACE_INTERNAL_CB_SZ); + hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR); + mutex_unlock(&hdev->mmu_lock); + + if (rc) + goto unreserve_internal_cb_pool; + + return 0; + +unreserve_internal_cb_pool: + hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ); +destroy_internal_cb_pool: + gen_pool_destroy(hdev->internal_cb_pool); +free_internal_cb_pool: + hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr, + hdev->internal_cb_pool_dma_addr); + + return rc; +} + +static void gaudi2_internal_cb_pool_fini(struct hl_device *hdev, struct hl_ctx *ctx) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU)) + return; + + mutex_lock(&hdev->mmu_lock); + hl_mmu_unmap_contiguous(ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ); + hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ); + hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); + mutex_unlock(&hdev->mmu_lock); + + gen_pool_destroy(hdev->internal_cb_pool); + + hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr, + hdev->internal_cb_pool_dma_addr); +} + +static void gaudi2_restore_user_registers(struct hl_device *hdev) +{ + gaudi2_restore_user_sm_registers(hdev); + gaudi2_restore_user_qm_registers(hdev); +} + +static int gaudi2_map_virtual_msix_doorbell_memory(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int rc; + + rc = hl_mmu_map_page(ctx, RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START, + gaudi2->virt_msix_db_dma_addr, prop->pmmu.page_size, true); + if (rc) + dev_err(hdev->dev, "Failed to map VA %#llx for virtual MSI-X doorbell memory\n", + RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START); + + return rc; +} + +static void gaudi2_unmap_virtual_msix_doorbell_memory(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + int rc; + + rc = hl_mmu_unmap_page(ctx, RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START, + prop->pmmu.page_size, true); + if (rc) + dev_err(hdev->dev, "Failed to unmap VA %#llx of virtual MSI-X doorbell memory\n", + RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START); +} + +static int gaudi2_ctx_init(struct hl_ctx *ctx) +{ + int rc; + + rc = gaudi2_mmu_prepare(ctx->hdev, ctx->asid); + if (rc) + return rc; + + /* No need to clear user registers if the device has just + * performed reset, we restore only nic qm registers + */ + if (ctx->hdev->reset_upon_device_release) + gaudi2_restore_nic_qm_registers(ctx->hdev); + else + gaudi2_restore_user_registers(ctx->hdev); + + rc = gaudi2_internal_cb_pool_init(ctx->hdev, ctx); + if (rc) + return rc; + + rc = gaudi2_map_virtual_msix_doorbell_memory(ctx); + if (rc) + gaudi2_internal_cb_pool_fini(ctx->hdev, ctx); + + return rc; +} + +static void gaudi2_ctx_fini(struct hl_ctx *ctx) +{ + if (ctx->asid == HL_KERNEL_ASID_ID) + return; + + gaudi2_internal_cb_pool_fini(ctx->hdev, ctx); + + gaudi2_unmap_virtual_msix_doorbell_memory(ctx); +} + +static int gaudi2_pre_schedule_cs(struct hl_cs *cs) +{ + struct hl_device *hdev = cs->ctx->hdev; + int index = cs->sequence & (hdev->asic_prop.max_pending_cs - 1); + u32 mon_payload, sob_id, mon_id; + + if (!cs_needs_completion(cs)) + return 0; + + /* + * First 64 SOB/MON are reserved for driver for QMAN auto completion + * mechanism. Each SOB/MON pair are used for a pending CS with the same + * cyclic index. The SOB value is increased when each of the CS jobs is + * completed. When the SOB reaches the number of CS jobs, the monitor + * generates MSI-X interrupt. + */ + + sob_id = mon_id = index; + mon_payload = (1 << CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT) | + (1 << CQ_ENTRY_READY_SHIFT) | index; + + gaudi2_arm_cq_monitor(hdev, sob_id, mon_id, GAUDI2_RESERVED_CQ_CS_COMPLETION, mon_payload, + cs->jobs_cnt); + + return 0; +} + +static u32 gaudi2_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx) +{ + return HL_INVALID_QUEUE; +} + +static u32 gaudi2_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id, u32 size, bool eb) +{ + struct hl_cb *cb = data; + struct packet_msg_short *pkt; + u32 value, ctl, pkt_size = sizeof(*pkt); + + pkt = (struct packet_msg_short *) (uintptr_t) (cb->kernel_address + size); + memset(pkt, 0, pkt_size); + + /* Inc by 1, Mode ADD */ + value = FIELD_PREP(GAUDI2_PKT_SHORT_VAL_SOB_SYNC_VAL_MASK, 1); + value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_SOB_MOD_MASK, 1); + + ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, sob_id * 4); + ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 1); /* SOB base */ + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT); + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, eb); + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1); + + pkt->value = cpu_to_le32(value); + pkt->ctl = cpu_to_le32(ctl); + + return size + pkt_size; +} + +static u32 gaudi2_add_mon_msg_short(struct packet_msg_short *pkt, u32 value, u16 addr) +{ + u32 ctl, pkt_size = sizeof(*pkt); + + memset(pkt, 0, pkt_size); + + ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, addr); + ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 0); /* MON base */ + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT); + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0); + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 0); + + pkt->value = cpu_to_le32(value); + pkt->ctl = cpu_to_le32(ctl); + + return pkt_size; +} + +static u32 gaudi2_add_arm_monitor_pkt(struct hl_device *hdev, struct packet_msg_short *pkt, + u16 sob_base, u8 sob_mask, u16 sob_val, u16 addr) +{ + u32 ctl, value, pkt_size = sizeof(*pkt); + u8 mask; + + if (hl_gen_sob_mask(sob_base, sob_mask, &mask)) { + dev_err(hdev->dev, "sob_base %u (mask %#x) is not valid\n", sob_base, sob_mask); + return 0; + } + + memset(pkt, 0, pkt_size); + + value = FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_SYNC_GID_MASK, sob_base / 8); + value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_SYNC_VAL_MASK, sob_val); + value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_MODE_MASK, 0); /* GREATER OR EQUAL*/ + value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_MASK_MASK, mask); + + ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, addr); + ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 0); /* MON base */ + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT); + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0); + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1); + + pkt->value = cpu_to_le32(value); + pkt->ctl = cpu_to_le32(ctl); + + return pkt_size; +} + +static u32 gaudi2_add_fence_pkt(struct packet_fence *pkt) +{ + u32 ctl, cfg, pkt_size = sizeof(*pkt); + + memset(pkt, 0, pkt_size); + + cfg = FIELD_PREP(GAUDI2_PKT_FENCE_CFG_DEC_VAL_MASK, 1); + cfg |= FIELD_PREP(GAUDI2_PKT_FENCE_CFG_TARGET_VAL_MASK, 1); + cfg |= FIELD_PREP(GAUDI2_PKT_FENCE_CFG_ID_MASK, 2); + + ctl = FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_FENCE); + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0); + ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1); + + pkt->cfg = cpu_to_le32(cfg); + pkt->ctl = cpu_to_le32(ctl); + + return pkt_size; +} + +static u32 gaudi2_gen_wait_cb(struct hl_device *hdev, struct hl_gen_wait_properties *prop) +{ + struct hl_cb *cb = prop->data; + void *buf = (void *) (uintptr_t) (cb->kernel_address); + + u64 monitor_base, fence_addr = 0; + u32 stream_index, size = prop->size; + u16 msg_addr_offset; + + stream_index = prop->q_idx % 4; + fence_addr = CFG_BASE + gaudi2_qm_blocks_bases[prop->q_idx] + + QM_FENCE2_OFFSET + stream_index * 4; + + /* + * monitor_base should be the content of the base0 address registers, + * so it will be added to the msg short offsets + */ + monitor_base = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0; + + /* First monitor config packet: low address of the sync */ + msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + prop->mon_id * 4) - + monitor_base; + + size += gaudi2_add_mon_msg_short(buf + size, (u32) fence_addr, msg_addr_offset); + + /* Second monitor config packet: high address of the sync */ + msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + prop->mon_id * 4) - + monitor_base; + + size += gaudi2_add_mon_msg_short(buf + size, (u32) (fence_addr >> 32), msg_addr_offset); + + /* + * Third monitor config packet: the payload, i.e. what to write when the + * sync triggers + */ + msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + prop->mon_id * 4) - + monitor_base; + + size += gaudi2_add_mon_msg_short(buf + size, 1, msg_addr_offset); + + /* Fourth monitor config packet: bind the monitor to a sync object */ + msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + prop->mon_id * 4) - monitor_base; + + size += gaudi2_add_arm_monitor_pkt(hdev, buf + size, prop->sob_base, prop->sob_mask, + prop->sob_val, msg_addr_offset); + + /* Fence packet */ + size += gaudi2_add_fence_pkt(buf + size); + + return size; +} + +static void gaudi2_reset_sob(struct hl_device *hdev, void *data) +{ + struct hl_hw_sob *hw_sob = data; + + dev_dbg(hdev->dev, "reset SOB, q_idx: %d, sob_id: %d\n", hw_sob->q_idx, hw_sob->sob_id); + + WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + hw_sob->sob_id * 4, 0); + + kref_init(&hw_sob->kref); +} + +static void gaudi2_reset_sob_group(struct hl_device *hdev, u16 sob_group) +{ +} + +static u64 gaudi2_get_device_time(struct hl_device *hdev) +{ + u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32; + + return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL); +} + +static int gaudi2_collective_wait_init_cs(struct hl_cs *cs) +{ + return 0; +} + +static int gaudi2_collective_wait_create_jobs(struct hl_device *hdev, struct hl_ctx *ctx, + struct hl_cs *cs, u32 wait_queue_id, + u32 collective_engine_id, u32 encaps_signal_offset) +{ + return -EINVAL; +} + +/* + * hl_mmu_scramble - converts a dram (non power of 2) page-size aligned address + * to DMMU page-size address (64MB) before mapping it in + * the MMU. + * The operation is performed on both the virtual and physical addresses. + * for device with 6 HBMs the scramble is: + * (addr[47:0] / 48M) * 64M + addr % 48M + addr[63:48] + * + * Example: + * ============================================================================= + * Allocated DRAM Reserved VA scrambled VA for MMU mapping Scrambled PA + * Phys address in MMU last + * HOP + * ============================================================================= + * PA1 0x3000000 VA1 0x9C000000 SVA1= (VA1/48M)*64M 0xD0000000 <- PA1/48M 0x1 + * PA2 0x9000000 VA2 0x9F000000 SVA2= (VA2/48M)*64M 0xD4000000 <- PA2/48M 0x3 + * ============================================================================= + */ +static u64 gaudi2_mmu_scramble_addr(struct hl_device *hdev, u64 raw_addr) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u32 divisor, mod_va; + u64 div_va; + + /* accept any address in the DRAM address space */ + if (hl_mem_area_inside_range(raw_addr, sizeof(raw_addr), DRAM_PHYS_BASE, + VA_HBM_SPACE_END)) { + + divisor = prop->num_functional_hbms * GAUDI2_HBM_MMU_SCRM_MEM_SIZE; + div_va = div_u64_rem(raw_addr & GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK, divisor, &mod_va); + return (raw_addr & ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK) | + (div_va << GAUDI2_HBM_MMU_SCRM_DIV_SHIFT) | + (mod_va << GAUDI2_HBM_MMU_SCRM_MOD_SHIFT); + } + + return raw_addr; +} + +static u64 gaudi2_mmu_descramble_addr(struct hl_device *hdev, u64 scrambled_addr) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u32 divisor, mod_va; + u64 div_va; + + /* accept any address in the DRAM address space */ + if (hl_mem_area_inside_range(scrambled_addr, sizeof(scrambled_addr), DRAM_PHYS_BASE, + VA_HBM_SPACE_END)) { + + divisor = prop->num_functional_hbms * GAUDI2_HBM_MMU_SCRM_MEM_SIZE; + div_va = div_u64_rem(scrambled_addr & GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK, + PAGE_SIZE_64MB, &mod_va); + + return ((scrambled_addr & ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK) + + (div_va * divisor + mod_va)); + } + + return scrambled_addr; +} + +static u32 gaudi2_get_dec_base_addr(struct hl_device *hdev, u32 core_id) +{ + u32 base = 0, dcore_id, dec_id; + + if (core_id >= NUMBER_OF_DEC) { + dev_err(hdev->dev, "Unexpected core number %d for DEC\n", core_id); + goto out; + } + + if (core_id < 8) { + dcore_id = core_id / NUM_OF_DEC_PER_DCORE; + dec_id = core_id % NUM_OF_DEC_PER_DCORE; + + base = mmDCORE0_DEC0_CMD_BASE + dcore_id * DCORE_OFFSET + + dec_id * DCORE_VDEC_OFFSET; + } else { + /* PCIe Shared Decoder */ + base = mmPCIE_DEC0_CMD_BASE + ((core_id % 8) * PCIE_VDEC_OFFSET); + } +out: + return base; +} + +static int gaudi2_get_hw_block_id(struct hl_device *hdev, u64 block_addr, + u32 *block_size, u32 *block_id) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + int i; + + for (i = 0 ; i < NUM_USER_MAPPED_BLOCKS ; i++) { + if (block_addr == CFG_BASE + gaudi2->mapped_blocks[i].address) { + *block_id = i; + if (block_size) + *block_size = gaudi2->mapped_blocks[i].size; + return 0; + } + } + + dev_err(hdev->dev, "Invalid block address %#llx", block_addr); + + return -EINVAL; +} + +static int gaudi2_block_mmap(struct hl_device *hdev, struct vm_area_struct *vma, + u32 block_id, u32 block_size) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u64 offset_in_bar; + u64 address; + int rc; + + if (block_id >= NUM_USER_MAPPED_BLOCKS) { + dev_err(hdev->dev, "Invalid block id %u", block_id); + return -EINVAL; + } + + /* we allow mapping only an entire block */ + if (block_size != gaudi2->mapped_blocks[block_id].size) { + dev_err(hdev->dev, "Invalid block size %u", block_size); + return -EINVAL; + } + + offset_in_bar = CFG_BASE + gaudi2->mapped_blocks[block_id].address - STM_FLASH_BASE_ADDR; + + address = pci_resource_start(hdev->pdev, SRAM_CFG_BAR_ID) + offset_in_bar; + + vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | + VM_DONTCOPY | VM_NORESERVE; + + rc = remap_pfn_range(vma, vma->vm_start, address >> PAGE_SHIFT, + block_size, vma->vm_page_prot); + if (rc) + dev_err(hdev->dev, "remap_pfn_range error %d", rc); + + return rc; +} + +static void gaudi2_enable_events_from_fw(struct hl_device *hdev) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; + u32 irq_handler_offset = le32_to_cpu(dyn_regs->gic_host_ints_irq); + + if (gaudi2->hw_cap_initialized & HW_CAP_CPU_Q) + WREG32(irq_handler_offset, + gaudi2_irq_map_table[GAUDI2_EVENT_CPU_INTS_REGISTER].cpu_id); +} + +static int gaudi2_get_mmu_base(struct hl_device *hdev, u64 mmu_id, u32 *mmu_base) +{ + switch (mmu_id) { + case HW_CAP_DCORE0_DMMU0: + *mmu_base = mmDCORE0_HMMU0_MMU_BASE; + break; + case HW_CAP_DCORE0_DMMU1: + *mmu_base = mmDCORE0_HMMU1_MMU_BASE; + break; + case HW_CAP_DCORE0_DMMU2: + *mmu_base = mmDCORE0_HMMU2_MMU_BASE; + break; + case HW_CAP_DCORE0_DMMU3: + *mmu_base = mmDCORE0_HMMU3_MMU_BASE; + break; + case HW_CAP_DCORE1_DMMU0: + *mmu_base = mmDCORE1_HMMU0_MMU_BASE; + break; + case HW_CAP_DCORE1_DMMU1: + *mmu_base = mmDCORE1_HMMU1_MMU_BASE; + break; + case HW_CAP_DCORE1_DMMU2: + *mmu_base = mmDCORE1_HMMU2_MMU_BASE; + break; + case HW_CAP_DCORE1_DMMU3: + *mmu_base = mmDCORE1_HMMU3_MMU_BASE; + break; + case HW_CAP_DCORE2_DMMU0: + *mmu_base = mmDCORE2_HMMU0_MMU_BASE; + break; + case HW_CAP_DCORE2_DMMU1: + *mmu_base = mmDCORE2_HMMU1_MMU_BASE; + break; + case HW_CAP_DCORE2_DMMU2: + *mmu_base = mmDCORE2_HMMU2_MMU_BASE; + break; + case HW_CAP_DCORE2_DMMU3: + *mmu_base = mmDCORE2_HMMU3_MMU_BASE; + break; + case HW_CAP_DCORE3_DMMU0: + *mmu_base = mmDCORE3_HMMU0_MMU_BASE; + break; + case HW_CAP_DCORE3_DMMU1: + *mmu_base = mmDCORE3_HMMU1_MMU_BASE; + break; + case HW_CAP_DCORE3_DMMU2: + *mmu_base = mmDCORE3_HMMU2_MMU_BASE; + break; + case HW_CAP_DCORE3_DMMU3: + *mmu_base = mmDCORE3_HMMU3_MMU_BASE; + break; + case HW_CAP_PMMU: + *mmu_base = mmPMMU_HBW_MMU_BASE; + break; + default: + return -EINVAL; + } + + return 0; +} + +static void gaudi2_ack_mmu_error(struct hl_device *hdev, u64 mmu_id) +{ + bool is_pmmu = (mmu_id == HW_CAP_PMMU); + struct gaudi2_device *gaudi2 = hdev->asic_specific; + u32 mmu_base; + + if (!(gaudi2->hw_cap_initialized & mmu_id)) + return; + + if (gaudi2_get_mmu_base(hdev, mmu_id, &mmu_base)) + return; + + gaudi2_handle_page_error(hdev, mmu_base, is_pmmu, NULL); + gaudi2_handle_access_error(hdev, mmu_base, is_pmmu); +} + +static int gaudi2_ack_mmu_page_fault_or_access_error(struct hl_device *hdev, u64 mmu_cap_mask) +{ + u32 i, mmu_id, num_of_hmmus = NUM_OF_HMMU_PER_DCORE * NUM_OF_DCORES; + + /* check all HMMUs */ + for (i = 0 ; i < num_of_hmmus ; i++) { + mmu_id = HW_CAP_DCORE0_DMMU0 << i; + + if (mmu_cap_mask & mmu_id) + gaudi2_ack_mmu_error(hdev, mmu_id); + } + + /* check PMMU */ + if (mmu_cap_mask & HW_CAP_PMMU) + gaudi2_ack_mmu_error(hdev, HW_CAP_PMMU); + + return 0; +} + +static void gaudi2_get_msi_info(__le32 *table) +{ + table[CPUCP_EVENT_QUEUE_MSI_TYPE] = cpu_to_le32(GAUDI2_EVENT_QUEUE_MSIX_IDX); +} + +static int gaudi2_map_pll_idx_to_fw_idx(u32 pll_idx) +{ + switch (pll_idx) { + case HL_GAUDI2_CPU_PLL: return CPU_PLL; + case HL_GAUDI2_PCI_PLL: return PCI_PLL; + case HL_GAUDI2_NIC_PLL: return NIC_PLL; + case HL_GAUDI2_DMA_PLL: return DMA_PLL; + case HL_GAUDI2_MESH_PLL: return MESH_PLL; + case HL_GAUDI2_MME_PLL: return MME_PLL; + case HL_GAUDI2_TPC_PLL: return TPC_PLL; + case HL_GAUDI2_IF_PLL: return IF_PLL; + case HL_GAUDI2_SRAM_PLL: return SRAM_PLL; + case HL_GAUDI2_HBM_PLL: return HBM_PLL; + case HL_GAUDI2_VID_PLL: return VID_PLL; + case HL_GAUDI2_MSS_PLL: return MSS_PLL; + default: return -EINVAL; + } +} + +static int gaudi2_gen_sync_to_engine_map(struct hl_device *hdev, struct hl_sync_to_engine_map *map) +{ + /* Not implemented */ + return 0; +} + +static int gaudi2_monitor_valid(struct hl_mon_state_dump *mon) +{ + /* Not implemented */ + return 0; +} + +static int gaudi2_print_single_monitor(char **buf, size_t *size, size_t *offset, + struct hl_device *hdev, struct hl_mon_state_dump *mon) +{ + /* Not implemented */ + return 0; +} + + +static int gaudi2_print_fences_single_engine(struct hl_device *hdev, u64 base_offset, + u64 status_base_offset, enum hl_sync_engine_type engine_type, + u32 engine_id, char **buf, size_t *size, size_t *offset) +{ + /* Not implemented */ + return 0; +} + + +static struct hl_state_dump_specs_funcs gaudi2_state_dump_funcs = { + .monitor_valid = gaudi2_monitor_valid, + .print_single_monitor = gaudi2_print_single_monitor, + .gen_sync_to_engine_map = gaudi2_gen_sync_to_engine_map, + .print_fences_single_engine = gaudi2_print_fences_single_engine, +}; + +static void gaudi2_state_dump_init(struct hl_device *hdev) +{ + /* Not implemented */ + hdev->state_dump_specs.props = gaudi2_state_dump_specs_props; + hdev->state_dump_specs.funcs = gaudi2_state_dump_funcs; +} + +static u32 gaudi2_get_sob_addr(struct hl_device *hdev, u32 sob_id) +{ + return 0; +} + +static u32 *gaudi2_get_stream_master_qid_arr(void) +{ + return NULL; +} + +static void gaudi2_add_device_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, + struct attribute_group *dev_vrm_attr_grp) +{ + hl_sysfs_add_dev_clk_attr(hdev, dev_clk_attr_grp); + hl_sysfs_add_dev_vrm_attr(hdev, dev_vrm_attr_grp); +} + +static int gaudi2_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, + u32 page_size, u32 *real_page_size, bool is_dram_addr) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + + /* for host pages the page size must be */ + if (!is_dram_addr) { + if (page_size % mmu_prop->page_size) + goto page_size_err; + + *real_page_size = mmu_prop->page_size; + return 0; + } + + if ((page_size % prop->dram_page_size) || (prop->dram_page_size > mmu_prop->page_size)) + goto page_size_err; + + /* + * MMU page size is different from DRAM page size (more precisely, DMMU page is greater + * than DRAM page size). + * for this reason work with the DRAM page size and let the MMU scrambling routine handle + * this mismatch when calculating the address to place in the MMU page table. + * (in that case also make sure that the dram_page_size is not greater than the + * mmu page size) + */ + *real_page_size = prop->dram_page_size; + + return 0; + +page_size_err: + dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n", + page_size, mmu_prop->page_size >> 10); + return -EFAULT; +} + +static int gaudi2_get_monitor_dump(struct hl_device *hdev, void *data) +{ + return -EOPNOTSUPP; +} + +int gaudi2_send_device_activity(struct hl_device *hdev, bool open) +{ + struct gaudi2_device *gaudi2 = hdev->asic_specific; + + if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) + return 0; + + return hl_fw_send_device_activity(hdev, open); +} + +static const struct hl_asic_funcs gaudi2_funcs = { + .early_init = gaudi2_early_init, + .early_fini = gaudi2_early_fini, + .late_init = gaudi2_late_init, + .late_fini = gaudi2_late_fini, + .sw_init = gaudi2_sw_init, + .sw_fini = gaudi2_sw_fini, + .hw_init = gaudi2_hw_init, + .hw_fini = gaudi2_hw_fini, + .halt_engines = gaudi2_halt_engines, + .suspend = gaudi2_suspend, + .resume = gaudi2_resume, + .mmap = gaudi2_mmap, + .ring_doorbell = gaudi2_ring_doorbell, + .pqe_write = gaudi2_pqe_write, + .asic_dma_alloc_coherent = gaudi2_dma_alloc_coherent, + .asic_dma_free_coherent = gaudi2_dma_free_coherent, + .scrub_device_mem = gaudi2_scrub_device_mem, + .scrub_device_dram = gaudi2_scrub_device_dram, + .get_int_queue_base = NULL, + .test_queues = gaudi2_test_queues, + .asic_dma_pool_zalloc = gaudi2_dma_pool_zalloc, + .asic_dma_pool_free = gaudi2_dma_pool_free, + .cpu_accessible_dma_pool_alloc = gaudi2_cpu_accessible_dma_pool_alloc, + .cpu_accessible_dma_pool_free = gaudi2_cpu_accessible_dma_pool_free, + .asic_dma_unmap_single = gaudi2_dma_unmap_single, + .asic_dma_map_single = gaudi2_dma_map_single, + .hl_dma_unmap_sgtable = hl_dma_unmap_sgtable, + .cs_parser = gaudi2_cs_parser, + .asic_dma_map_sgtable = hl_dma_map_sgtable, + .add_end_of_cb_packets = NULL, + .update_eq_ci = gaudi2_update_eq_ci, + .context_switch = gaudi2_context_switch, + .restore_phase_topology = gaudi2_restore_phase_topology, + .debugfs_read_dma = gaudi2_debugfs_read_dma, + .add_device_attr = gaudi2_add_device_attr, + .handle_eqe = gaudi2_handle_eqe, + .get_events_stat = gaudi2_get_events_stat, + .read_pte = NULL, + .write_pte = NULL, + .mmu_invalidate_cache = gaudi2_mmu_invalidate_cache, + .mmu_invalidate_cache_range = gaudi2_mmu_invalidate_cache_range, + .mmu_prefetch_cache_range = NULL, + .send_heartbeat = gaudi2_send_heartbeat, + .debug_coresight = gaudi2_debug_coresight, + .is_device_idle = gaudi2_is_device_idle, + .compute_reset_late_init = gaudi2_compute_reset_late_init, + .hw_queues_lock = gaudi2_hw_queues_lock, + .hw_queues_unlock = gaudi2_hw_queues_unlock, + .get_pci_id = gaudi2_get_pci_id, + .get_eeprom_data = gaudi2_get_eeprom_data, + .get_monitor_dump = gaudi2_get_monitor_dump, + .send_cpu_message = gaudi2_send_cpu_message, + .pci_bars_map = gaudi2_pci_bars_map, + .init_iatu = gaudi2_init_iatu, + .rreg = hl_rreg, + .wreg = hl_wreg, + .halt_coresight = gaudi2_halt_coresight, + .ctx_init = gaudi2_ctx_init, + .ctx_fini = gaudi2_ctx_fini, + .pre_schedule_cs = gaudi2_pre_schedule_cs, + .get_queue_id_for_cq = gaudi2_get_queue_id_for_cq, + .load_firmware_to_device = NULL, + .load_boot_fit_to_device = NULL, + .get_signal_cb_size = gaudi2_get_signal_cb_size, + .get_wait_cb_size = gaudi2_get_wait_cb_size, + .gen_signal_cb = gaudi2_gen_signal_cb, + .gen_wait_cb = gaudi2_gen_wait_cb, + .reset_sob = gaudi2_reset_sob, + .reset_sob_group = gaudi2_reset_sob_group, + .get_device_time = gaudi2_get_device_time, + .pb_print_security_errors = gaudi2_pb_print_security_errors, + .collective_wait_init_cs = gaudi2_collective_wait_init_cs, + .collective_wait_create_jobs = gaudi2_collective_wait_create_jobs, + .get_dec_base_addr = gaudi2_get_dec_base_addr, + .scramble_addr = gaudi2_mmu_scramble_addr, + .descramble_addr = gaudi2_mmu_descramble_addr, + .ack_protection_bits_errors = gaudi2_ack_protection_bits_errors, + .get_hw_block_id = gaudi2_get_hw_block_id, + .hw_block_mmap = gaudi2_block_mmap, + .enable_events_from_fw = gaudi2_enable_events_from_fw, + .ack_mmu_errors = gaudi2_ack_mmu_page_fault_or_access_error, + .get_msi_info = gaudi2_get_msi_info, + .map_pll_idx_to_fw_idx = gaudi2_map_pll_idx_to_fw_idx, + .init_firmware_preload_params = gaudi2_init_firmware_preload_params, + .init_firmware_loader = gaudi2_init_firmware_loader, + .init_cpu_scrambler_dram = gaudi2_init_scrambler_hbm, + .state_dump_init = gaudi2_state_dump_init, + .get_sob_addr = &gaudi2_get_sob_addr, + .set_pci_memory_regions = gaudi2_set_pci_memory_regions, + .get_stream_master_qid_arr = gaudi2_get_stream_master_qid_arr, + .check_if_razwi_happened = gaudi2_check_if_razwi_happened, + .mmu_get_real_page_size = gaudi2_mmu_get_real_page_size, + .access_dev_mem = hl_access_dev_mem, + .set_dram_bar_base = gaudi2_set_hbm_bar_base, + .set_engine_cores = gaudi2_set_engine_cores, + .send_device_activity = gaudi2_send_device_activity, + .set_dram_properties = gaudi2_set_dram_properties, +}; + +void gaudi2_set_asic_funcs(struct hl_device *hdev) +{ + hdev->asic_funcs = &gaudi2_funcs; +} |