| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
merge vdso64 into vdso32 and rename it vdso.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4dbe05cc130f6a0858d09ac72e436c373cb08b70.1642782130.git.christophe.leroy@csgroup.eu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Go runtime uses r30 for some special value called 'g'. It assumes
that value will remain unchanged even when calling VDSO functions.
Although r30 is non-volatile across function calls, the callee is free
to use it, as long as the callee saves the value and restores it before
returning.
It used to be true by accident that the VDSO didn't use r30, because the
VDSO was hand-written asm. When we switched to building the VDSO from C
the compiler started using r30, at least in some builds, leading to
crashes in Go. eg:
~/go/src$ ./all.bash
Building Go cmd/dist using /usr/lib/go-1.16. (go1.16.2 linux/ppc64le)
Building Go toolchain1 using /usr/lib/go-1.16.
go build os/exec: /usr/lib/go-1.16/pkg/tool/linux_ppc64le/compile: signal: segmentation fault
go build reflect: /usr/lib/go-1.16/pkg/tool/linux_ppc64le/compile: signal: segmentation fault
go tool dist: FAILED: /usr/lib/go-1.16/bin/go install -gcflags=-l -tags=math_big_pure_go compiler_bootstrap bootstrap/cmd/...: exit status 1
There are patches in flight to fix Go[1], but until they are released
and widely deployed we can workaround it in the VDSO by avoiding use of
r30.
Note this only works with GCC, clang does not support -ffixed-rN.
1: https://go-review.googlesource.com/c/go/+/328110
Fixes: ab037dd87a2f ("powerpc/vdso: Switch VDSO to generic C implementation.")
Cc: stable@vger.kernel.org # v5.11+
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Tested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210729131244.2595519-1-mpe@ellerman.id.au
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the necessary glue to provide time namespaces.
Things are mainly copied from ARM64.
__arch_get_timens_vdso_data() calculates timens vdso data position
based on the vdso data position, knowing it is the next page in vvar.
This avoids having to redo the mflr/bcl/mflr/mtlr dance to locate
the page relative to running code position.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> # vDSO parts
Acked-by: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1a15495f80ec19a87b16cf874dbf7c3fa5ec40fe.1617209142.git.christophe.leroy@csgroup.eu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 0138ba5783ae ("powerpc/64/signal: Balance return predictor
stack in signal trampoline") changed __kernel_sigtramp_rt64() VDSO and
trampoline code, and introduced a regression in the way glibc's
backtrace()[1] detects the signal-handler stack frame. Apart from the
practical implications, __kernel_sigtramp_rt64() was a VDSO function
with the semantics that it is a function you can call from userspace
to end a signal handling. Now this semantics are no longer valid.
I believe the aforementioned change affects all releases since 5.9.
This patch tries to fix both the semantics and practical aspect of
__kernel_sigtramp_rt64() returning it to the previous code, whilst
keeping the intended behaviour of 0138ba5783ae by adding a new symbol
to serve as the jump target from the kernel to the trampoline. Now the
trampoline has two parts, a new entry point and the old return point.
[1] https://lists.ozlabs.org/pipermail/linuxppc-dev/2021-January/223194.html
Fixes: 0138ba5783ae ("powerpc/64/signal: Balance return predictor stack in signal trampoline")
Cc: stable@vger.kernel.org # v5.9+
Signed-off-by: Raoni Fassina Firmino <raoni@linux.ibm.com>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Minor tweaks to change log formatting, add stable tag]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210201200505.iz46ubcizipnkcxe@work-tp
|
|
|
|
|
|
|
|
|
|
|
| |
VDSO64 is only built for the 64-bit kernel, hence vgettimeofday.o is
built by the generic rule in scripts/Makefile.build.
This line does not provide anything useful.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201223171142.707053-2-masahiroy@kernel.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vgettimeofday.o is unnecessarily rebuilt. Adding it to 'targets' is not
enough to fix the issue. Kbuild is correctly rebuilding it because the
command line is changed.
PowerPC builds each vdso directory twice; first in vdso_prepare to
generate vdso{32,64}-offsets.h, second as part of the ordinary build
process to embed vdso{32,64}.so.dbg into the kernel.
The problem shows up when CONFIG_PPC_WERROR=y due to the following line
in arch/powerpc/Kbuild:
subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror
In the preparation stage, Kbuild directly visits the vdso directories,
hence it does not inherit subdir-ccflags-y. In the second descend,
Kbuild adds -Werror, which results in the command line flipping
with/without -Werror.
It implies a potential danger; if a more critical flag that would impact
the resulted vdso, the offsets recorded in the headers might be different
from real offsets in the embedded vdso images.
Removing the unneeded second descend solves the problem.
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/linuxppc-dev/87tuslxhry.fsf@mpe.ellerman.id.au/
Link: https://lore.kernel.org/r/20201223171142.707053-1-masahiroy@kernel.org
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add R_PPC_REL24 relocations to the list of relocations we do NOT
support in the VDSO.
These are generated in some cases and we do not support relocating
them at runtime, so if they appear then the VDSO will not work at
runtime, therefore it's preferable to break the build if we see them.
Fixes: ab037dd87a2f ("powerpc/vdso: Switch VDSO to generic C implementation.")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201218111619.1206391-1-mpe@ellerman.id.au
|
|
|
|
|
|
|
|
|
| |
Use the common STABS_DEBUG and DWARF_DEBUG and ELF_DETAILS macro rule for
the linker script in an effort.
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1606460857-2723-1-git-send-email-tangyouling@loongson.cn
|
|
|
|
|
|
|
|
| |
VDSO32_LBASE and VDSO64_LBASE are 0. Remove them to simplify code.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/6c4d6570d886bbe1cc471e8ca01602e4b4d9beb5.1601197618.git.christophe.leroy@csgroup.eu
|
|
|
|
|
|
|
|
| |
__kernel_datapage_offset is not used anymore, remove it.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/ddb5c746bec4e1a026d7c85243213a1876ef844f.1601197618.git.christophe.leroy@csgroup.eu
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
__kernel_sync_dicache_p5() is an alternative to
__kernel_sync_dicache() when cpu has CPU_FTR_COHERENT_ICACHE
Remove this alternative function and merge
__kernel_sync_dicache_p5() into __kernel_sync_dicache() using
standard CPU feature fixup.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4c7dcc6544882761b2b0249d7a8ec2c3a8088cb5.1601197618.git.christophe.leroy@csgroup.eu
|
|
|
|
|
|
|
|
|
| |
Add builtin symbols to locate fixup section and use them
instead of locating sections through elf headers at runtime.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/2954526981859ca1ccfcfc7a7c4263920e9ddfcb.1601197618.git.christophe.leroy@csgroup.eu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is copied from arm64.
Instead of using runtime generated signal trampoline offsets,
get offsets at buildtime.
If the said trampoline doesn't exist, build will fail. So no
need to check whether the trampoline exists or not in the VDSO.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f8bfd6812c3e3678b1cdb4d55a52f9eb022b40d3.1601197618.git.christophe.leroy@csgroup.eu
|
|
|
|
|
|
|
|
| |
The \tmp param is not used anymore, remove it.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4b13f897dcccce8ae03c031a4598cf26b32e2f1c.1601197618.git.christophe.leroy@csgroup.eu
|
|
|
|
|
|
|
|
|
|
| |
The VDSO datapage and the text pages are always located immediately
next to each other, so it can be hardcoded without an indirection
through __kernel_datapage_offset
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b08f5ef99d64cfc38f79b7ad5310d9b4d2479eeb.1601197618.git.christophe.leroy@csgroup.eu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since commit 24b659a13866 ("powerpc: Use unstripped VDSO image for
more accurate profiling data"), only the unstripped VDSO image
has been used.
Partially revert commit 8150caad0226 ("[POWERPC] powerpc vDSO: install
unstripped copies on disk") to avoid building the stripped version.
And the unstripped version in $(MODLIB)/vdso/ is not required
anymore as it is the one embedded in the kernel image.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/5986ca25be44fe6e9790486304507f240077d8c4.1601197618.git.christophe.leroy@csgroup.eu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With the C VDSO, the performance is slightly lower, but it is worth
it as it will ease maintenance and evolution, and also brings clocks
that are not supported with the ASM VDSO.
On an 8xx at 132 MHz, vdsotest with the ASM VDSO:
gettimeofday: vdso: 828 nsec/call
clock-getres-realtime-coarse: vdso: 391 nsec/call
clock-gettime-realtime-coarse: vdso: 614 nsec/call
clock-getres-realtime: vdso: 460 nsec/call
clock-gettime-realtime: vdso: 876 nsec/call
clock-getres-monotonic-coarse: vdso: 399 nsec/call
clock-gettime-monotonic-coarse: vdso: 691 nsec/call
clock-getres-monotonic: vdso: 460 nsec/call
clock-gettime-monotonic: vdso: 1026 nsec/call
On an 8xx at 132 MHz, vdsotest with the C VDSO:
gettimeofday: vdso: 955 nsec/call
clock-getres-realtime-coarse: vdso: 545 nsec/call
clock-gettime-realtime-coarse: vdso: 592 nsec/call
clock-getres-realtime: vdso: 545 nsec/call
clock-gettime-realtime: vdso: 941 nsec/call
clock-getres-monotonic-coarse: vdso: 545 nsec/call
clock-gettime-monotonic-coarse: vdso: 591 nsec/call
clock-getres-monotonic: vdso: 545 nsec/call
clock-gettime-monotonic: vdso: 940 nsec/call
It is even better for gettime with monotonic clocks.
Unsupported clocks with ASM VDSO:
clock-gettime-boottime: vdso: 3851 nsec/call
clock-gettime-tai: vdso: 3852 nsec/call
clock-gettime-monotonic-raw: vdso: 3396 nsec/call
Same clocks with C VDSO:
clock-gettime-tai: vdso: 941 nsec/call
clock-gettime-monotonic-raw: vdso: 1001 nsec/call
clock-gettime-monotonic-coarse: vdso: 591 nsec/call
On an 8321E at 333 MHz, vdsotest with the ASM VDSO:
gettimeofday: vdso: 220 nsec/call
clock-getres-realtime-coarse: vdso: 102 nsec/call
clock-gettime-realtime-coarse: vdso: 178 nsec/call
clock-getres-realtime: vdso: 129 nsec/call
clock-gettime-realtime: vdso: 235 nsec/call
clock-getres-monotonic-coarse: vdso: 105 nsec/call
clock-gettime-monotonic-coarse: vdso: 208 nsec/call
clock-getres-monotonic: vdso: 129 nsec/call
clock-gettime-monotonic: vdso: 274 nsec/call
On an 8321E at 333 MHz, vdsotest with the C VDSO:
gettimeofday: vdso: 272 nsec/call
clock-getres-realtime-coarse: vdso: 160 nsec/call
clock-gettime-realtime-coarse: vdso: 184 nsec/call
clock-getres-realtime: vdso: 166 nsec/call
clock-gettime-realtime: vdso: 281 nsec/call
clock-getres-monotonic-coarse: vdso: 160 nsec/call
clock-gettime-monotonic-coarse: vdso: 184 nsec/call
clock-getres-monotonic: vdso: 169 nsec/call
clock-gettime-monotonic: vdso: 275 nsec/call
On a Power9 Nimbus DD2.2 at 3.8GHz, with the ASM VDSO:
clock-gettime-monotonic: vdso: 35 nsec/call
clock-getres-monotonic: vdso: 16 nsec/call
clock-gettime-monotonic-coarse: vdso: 18 nsec/call
clock-getres-monotonic-coarse: vdso: 522 nsec/call
clock-gettime-monotonic-raw: vdso: 598 nsec/call
clock-getres-monotonic-raw: vdso: 520 nsec/call
clock-gettime-realtime: vdso: 34 nsec/call
clock-getres-realtime: vdso: 16 nsec/call
clock-gettime-realtime-coarse: vdso: 18 nsec/call
clock-getres-realtime-coarse: vdso: 517 nsec/call
getcpu: vdso: 8 nsec/call
gettimeofday: vdso: 25 nsec/call
And with the C VDSO:
clock-gettime-monotonic: vdso: 37 nsec/call
clock-getres-monotonic: vdso: 20 nsec/call
clock-gettime-monotonic-coarse: vdso: 21 nsec/call
clock-getres-monotonic-coarse: vdso: 19 nsec/call
clock-gettime-monotonic-raw: vdso: 38 nsec/call
clock-getres-monotonic-raw: vdso: 20 nsec/call
clock-gettime-realtime: vdso: 37 nsec/call
clock-getres-realtime: vdso: 20 nsec/call
clock-gettime-realtime-coarse: vdso: 20 nsec/call
clock-getres-realtime-coarse: vdso: 19 nsec/call
getcpu: vdso: 8 nsec/call
gettimeofday: vdso: 28 nsec/call
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126131006.2431205-8-mpe@ellerman.id.au
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Prepare for switching VDSO to generic C implementation in following
patch. Here, we:
- Prepare the helpers to call the C VDSO functions
- Prepare the required callbacks for the C VDSO functions
- Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES
- Add the C trampolines to the generic C VDSO functions
powerpc is a bit special for VDSO as well as system calls in the
way that it requires setting CR SO bit which cannot be done in C.
Therefore, entry/exit needs to be performed in ASM.
Implementing __arch_get_vdso_data() would clobber the link register,
requiring the caller to save it. As the ASM calling function already
has to set a stack frame and saves the link register before calling
the C vdso function, retriving the vdso data pointer there is lighter.
Implement __arch_vdso_capable() and always return true.
Provide vdso_shift_ns(), as the generic x >> s gives the following
bad result:
18: 35 25 ff e0 addic. r9,r5,-32
1c: 41 80 00 10 blt 2c <shift+0x14>
20: 7c 64 4c 30 srw r4,r3,r9
24: 38 60 00 00 li r3,0
...
2c: 54 69 08 3c rlwinm r9,r3,1,0,30
30: 21 45 00 1f subfic r10,r5,31
34: 7c 84 2c 30 srw r4,r4,r5
38: 7d 29 50 30 slw r9,r9,r10
3c: 7c 63 2c 30 srw r3,r3,r5
40: 7d 24 23 78 or r4,r9,r4
In our case the shift is always <= 32. In addition, the upper 32 bits
of the result are likely nul. Lets GCC know it, it also optimises the
following calculations.
With the patch, we get:
0: 21 25 00 20 subfic r9,r5,32
4: 7c 69 48 30 slw r9,r3,r9
8: 7c 84 2c 30 srw r4,r4,r5
c: 7d 24 23 78 or r4,r9,r4
10: 7c 63 2c 30 srw r3,r3,r5
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Support 'make compile_commands.json' to generate the compilation
database more easily, avoiding stale entries
- Support 'make clang-analyzer' and 'make clang-tidy' for static checks
using clang-tidy
- Preprocess scripts/modules.lds.S to allow CONFIG options in the
module linker script
- Drop cc-option tests from compiler flags supported by our minimal
GCC/Clang versions
- Use always 12-digits commit hash for CONFIG_LOCALVERSION_AUTO=y
- Use sha1 build id for both BFD linker and LLD
- Improve deb-pkg for reproducible builds and rootless builds
- Remove stale, useless scripts/namespace.pl
- Turn -Wreturn-type warning into error
- Fix build error of deb-pkg when CONFIG_MODULES=n
- Replace 'hostname' command with more portable 'uname -n'
- Various Makefile cleanups
* tag 'kbuild-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (34 commits)
kbuild: Use uname for LINUX_COMPILE_HOST detection
kbuild: Only add -fno-var-tracking-assignments for old GCC versions
kbuild: remove leftover comment for filechk utility
treewide: remove DISABLE_LTO
kbuild: deb-pkg: clean up package name variables
kbuild: deb-pkg: do not build linux-headers package if CONFIG_MODULES=n
kbuild: enforce -Werror=return-type
scripts: remove namespace.pl
builddeb: Add support for all required debian/rules targets
builddeb: Enable rootless builds
builddeb: Pass -n to gzip for reproducible packages
kbuild: split the build log of kallsyms
kbuild: explicitly specify the build id style
scripts/setlocalversion: make git describe output more reliable
kbuild: remove cc-option test of -Werror=date-time
kbuild: remove cc-option test of -fno-stack-check
kbuild: remove cc-option test of -fno-strict-overflow
kbuild: move CFLAGS_{KASAN,UBSAN,KCSAN} exports to relevant Makefiles
kbuild: remove redundant CONFIG_KASAN check from scripts/Makefile.kasan
kbuild: do not create built-in objects for external module builds
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The vdso linker script is preprocessed on demand.
Adding it to 'targets' is enough to include the .cmd file.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Greentime Hu <green.hu@gmail.com>
|
|/
|
|
|
|
|
|
|
|
| |
This reverts commit f2af201002a8bc22500c04cc474ea480bf361351.
It added a usage of cc-ldoption, but cc-ldoption was removed in commit
055efab3120b ("kbuild: drop support for cc-ldoption").
Reported-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
| |
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200303012748.4190929-1-npiggin@gmail.com
|
|
|
|
|
|
|
|
|
|
|
| |
On the same way as already done on PPC32, drop __get_datapage()
function and use get_datapage inline macro instead.
See commit ec0895f08f99 ("powerpc/vdso32: inline __get_datapage()")
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/e13d95312e0b9792556b19b4bb8955cc1ff19fc7.1588079622.git.christophe.leroy@c-s.fr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Returning from an interrupt or syscall to a signal handler currently
begins execution directly at the handler's entry point, with LR set to
the address of the sigreturn trampoline. When the signal handler
function returns, it runs the trampoline. It looks like this:
# interrupt at user address xyz
# kernel stuff... signal is raised
rfid
# void handler(int sig)
addis 2,12,.TOC.-.LCF0@ha
addi 2,2,.TOC.-.LCF0@l
mflr 0
std 0,16(1)
stdu 1,-96(1)
# handler stuff
ld 0,16(1)
mtlr 0
blr
# __kernel_sigtramp_rt64
addi r1,r1,__SIGNAL_FRAMESIZE
li r0,__NR_rt_sigreturn
sc
# kernel executes rt_sigreturn
rfid
# back to user address xyz
Note the blr with no matching bl. This can corrupt the return
predictor.
Solve this by instead resuming execution at the signal trampoline
which then calls the signal handler. qtrace-tools link_stack checker
confirms the entire user/kernel/vdso cycle is balanced after this
patch, whereas it's not upstream.
Alan confirms the dwarf unwind info still looks good. gdb still
recognises the signal frame and can step into parent frames if it
break inside a signal handler.
Performance is pretty noisy, not a very significant change on a POWER9
here, but branch misses are consistently a lot lower on a
microbenchmark:
Performance counter stats for './signal':
13,085.72 msec task-clock # 1.000 CPUs utilized
45,024,760,101 cycles # 3.441 GHz
65,102,895,542 instructions # 1.45 insn per cycle
11,271,673,787 branches # 861.372 M/sec
59,468,979 branch-misses # 0.53% of all branches
12,989.09 msec task-clock # 1.000 CPUs utilized
44,692,719,559 cycles # 3.441 GHz
65,109,984,964 instructions # 1.46 insn per cycle
11,282,136,057 branches # 868.585 M/sec
39,786,942 branch-misses # 0.35% of all branches
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200511101952.1463138-1-npiggin@gmail.com
|
|
|
|
|
|
|
| |
Add SPDX License Identifier to all .gitignore files.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
clock_getres in the vDSO library has to preserve the same behaviour
of posix_get_hrtimer_res().
In particular, posix_get_hrtimer_res() does:
sec = 0;
ns = hrtimer_resolution;
and hrtimer_resolution depends on the enablement of the high
resolution timers that can happen either at compile or at run time.
Fix the powerpc vdso implementation of clock_getres keeping a copy of
hrtimer_resolution in vdso data and using that directly.
Fixes: a7f290dad32e ("[PATCH] powerpc: Merge vdso's and add vdso support to 32 bits kernel")
Cc: stable@vger.kernel.org
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr>
Acked-by: Shuah Khan <skhan@linuxfoundation.org>
[chleroy: changed CLOCK_REALTIME_RES to CLOCK_HRTIMER_RES]
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/a55eca3a5e85233838c2349783bcb5164dae1d09.1575273217.git.christophe.leroy@c-s.fr
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground
Pull y2038 cleanups from Arnd Bergmann:
"y2038 syscall implementation cleanups
This is a series of cleanups for the y2038 work, mostly intended for
namespace cleaning: the kernel defines the traditional time_t, timeval
and timespec types that often lead to y2038-unsafe code. Even though
the unsafe usage is mostly gone from the kernel, having the types and
associated functions around means that we can still grow new users,
and that we may be missing conversions to safe types that actually
matter.
There are still a number of driver specific patches needed to get the
last users of these types removed, those have been submitted to the
respective maintainers"
Link: https://lore.kernel.org/lkml/20191108210236.1296047-1-arnd@arndb.de/
* tag 'y2038-cleanups-5.5' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground: (26 commits)
y2038: alarm: fix half-second cut-off
y2038: ipc: fix x32 ABI breakage
y2038: fix typo in powerpc vdso "LOPART"
y2038: allow disabling time32 system calls
y2038: itimer: change implementation to timespec64
y2038: move itimer reset into itimer.c
y2038: use compat_{get,set}_itimer on alpha
y2038: itimer: compat handling to itimer.c
y2038: time: avoid timespec usage in settimeofday()
y2038: timerfd: Use timespec64 internally
y2038: elfcore: Use __kernel_old_timeval for process times
y2038: make ns_to_compat_timeval use __kernel_old_timeval
y2038: socket: use __kernel_old_timespec instead of timespec
y2038: socket: remove timespec reference in timestamping
y2038: syscalls: change remaining timeval to __kernel_old_timeval
y2038: rusage: use __kernel_old_timeval
y2038: uapi: change __kernel_time_t to __kernel_old_time_t
y2038: stat: avoid 'time_t' in 'struct stat'
y2038: ipc: remove __kernel_time_t reference from headers
y2038: vdso: powerpc: avoid timespec references
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
As a preparation to stop using 'struct timespec' in the kernel,
change the powerpc vdso implementation:
- split up the vdso data definition to have equivalent members
for seconds and nanoseconds instead of an xtime structure
- use timespec64 as an intermediate for the xtime update
- change the asm-offsets definition to be based the appropriate
fixed-length types
This is only a temporary fix for changing the types, in order
to actually support a 64-bit safe vdso32 version of clock_gettime(),
the entire powerpc vdso should be replaced with the generic
lib/vdso/ implementation. If that happens first, this patch
becomes obsolete.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
| |
When calling __kernel_sync_dicache with a size >4GB, we were masking
off the upper 32 bits, so we would incorrectly flush a range smaller
than intended.
This patch replaces the 32 bit shifts with 64 bit ones, so that
the full size is accounted for.
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Cc: stable@vger.kernel.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191104023305.9581-3-alastair@au1.ibm.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not write to the free software foundation inc
59 temple place suite 330 boston ma 02111 1307 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1334 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Towards the goal of removing cc-ldoption, it seems that --hash-style=
was added to binutils 2.17.50.0.2 in 2006. The minimal required
version of binutils for the kernel according to
Documentation/process/changes.rst is 2.20.
Suggested-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Jakub Drnec reported:
Setting the realtime clock can sometimes make the monotonic clock go
back by over a hundred years. Decreasing the realtime clock across
the y2k38 threshold is one reliable way to reproduce. Allegedly this
can also happen just by running ntpd, I have not managed to
reproduce that other than booting with rtc at >2038 and then running
ntp. When this happens, anything with timers (e.g. openjdk) breaks
rather badly.
And included a test case (slightly edited for brevity):
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <unistd.h>
long get_time(void) {
struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
return tp.tv_sec + tp.tv_nsec / 1000000000;
}
int main(void) {
long last = get_time();
while(1) {
long now = get_time();
if (now < last) {
printf("clock went backwards by %ld seconds!\n", last - now);
}
last = now;
sleep(1);
}
return 0;
}
Which when run concurrently with:
# date -s 2040-1-1
# date -s 2037-1-1
Will detect the clock going backward.
The root cause is that wtom_clock_sec in struct vdso_data is only a
32-bit signed value, even though we set its value to be equal to
tk->wall_to_monotonic.tv_sec which is 64-bits.
Because the monotonic clock starts at zero when the system boots the
wall_to_montonic.tv_sec offset is negative for current and future
dates. Currently on a freshly booted system the offset will be in the
vicinity of negative 1.5 billion seconds.
However if the wall clock is set past the Y2038 boundary, the offset
from wall to monotonic becomes less than negative 2^31, and no longer
fits in 32-bits. When that value is assigned to wtom_clock_sec it is
truncated and becomes positive, causing the VDSO assembly code to
calculate CLOCK_MONOTONIC incorrectly.
That causes CLOCK_MONOTONIC to jump ahead by ~4 billion seconds which
it is not meant to do. Worse, if the time is then set back before the
Y2038 boundary CLOCK_MONOTONIC will jump backward.
We can fix it simply by storing the full 64-bit offset in the
vdso_data, and using that in the VDSO assembly code. We also shuffle
some of the fields in vdso_data to avoid creating a hole.
The original commit that added the CLOCK_MONOTONIC support to the VDSO
did actually use a 64-bit value for wtom_clock_sec, see commit
a7f290dad32e ("[PATCH] powerpc: Merge vdso's and add vdso support to
32 bits kernel") (Nov 2005). However just 3 days later it was
converted to 32-bits in commit 0c37ec2aa88b ("[PATCH] powerpc: vdso
fixes (take #2)"), and the bug has existed since then AFAICS.
Fixes: 0c37ec2aa88b ("[PATCH] powerpc: vdso fixes (take #2)")
Cc: stable@vger.kernel.org # v2.6.15+
Link: http://lkml.kernel.org/r/HaC.ZfES.62bwlnvAvMP.1STMMj@seznam.cz
Reported-by: Jakub Drnec <jaydee@email.cz>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
kcov provides kernel coverage data that's useful for fuzzing tools like
syzkaller.
Wire up kcov support on powerpc. Disable kcov instrumentation on the same
files where we currently disable gcov and UBSan instrumentation, plus some
additional exclusions which appear necessary to boot on book3e machines.
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Daniel Axtens <dja@axtens.net> # e6500
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Call Frame Information is used by gdb for back-traces and inserting
breakpoints on function return for the "finish" command. This failed
when inside __kernel_clock_gettime. More concerning than difficulty
debugging is that CFI is also used by stack frame unwinding code to
implement exceptions. If you have an app that needs to handle
asynchronous exceptions for some reason, and you are unlucky enough to
get one inside the VDSO time functions, your app will crash.
What's wrong: There is control flow in __kernel_clock_gettime that
reaches label 99 without saving lr in r12. CFI info however is
interpreted by the unwinder without reference to control flow: It's a
simple matter of "Execute all the CFI opcodes up to the current
address". That means the unwinder thinks r12 contains the return
address at label 99. Disabuse it of that notion by resetting CFI for
the return address at label 99.
Note that the ".cfi_restore lr" could have gone anywhere from the
"mtlr r12" a few instructions earlier to the instruction at label 99.
I put the CFI as late as possible, because in general that's best
practice (and if possible grouped with other CFI in order to reduce
the number of CFI opcodes executed when unwinding). Using r12 as the
return address is perfectly fine after the "mtlr r12" since r12 on
that code path still contains the return address.
__get_datapage also has a CFI error. That function temporarily saves
lr in r0, and reflects that fact with ".cfi_register lr,r0". A later
use of r0 means the CFI at that point isn't correct, as r0 no longer
contains the return address. Fix that too.
Signed-off-by: Alan Modra <amodra@gmail.com>
Tested-by: Reza Arbab <arbab@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Current vDSO64 implementation does not have support for coarse clocks
(CLOCK_MONOTONIC_COARSE, CLOCK_REALTIME_COARSE), for which it falls back
to system call, increasing the response time, vDSO implementation reduces
the cycle time. Below is a benchmark of the difference in execution times.
(Non-coarse clocks are also included just for completion)
clock-gettime-realtime: syscall: 172 nsec/call
clock-gettime-realtime: libc: 28 nsec/call
clock-gettime-realtime: vdso: 22 nsec/call
clock-gettime-monotonic: syscall: 171 nsec/call
clock-gettime-monotonic: libc: 30 nsec/call
clock-gettime-monotonic: vdso: 25 nsec/call
clock-gettime-realtime-coarse: syscall: 153 nsec/call
clock-gettime-realtime-coarse: libc: 16 nsec/call
clock-gettime-realtime-coarse: vdso: 10 nsec/call
clock-gettime-monotonic-coarse: syscall: 167 nsec/call
clock-gettime-monotonic-coarse: libc: 17 nsec/call
clock-gettime-monotonic-coarse: vdso: 11 nsec/call
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Santosh Sivaraj <santosh@fossix.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
__kernel_get_syscall_map() and __kernel_clock_getres() use cmpli to
check if the passed in pointer is non zero. cmpli maps to a 32 bit
compare on binutils, so we ignore the top 32 bits.
A simple test case can be created by passing in a bogus pointer with
the bottom 32 bits clear. Using a clk_id that is handled by the VDSO,
then one that is handled by the kernel shows the problem:
printf("%d\n", clock_getres(CLOCK_REALTIME, (void *)0x100000000));
printf("%d\n", clock_getres(CLOCK_BOOTTIME, (void *)0x100000000));
And we get:
0
-1
The bigger issue is if we pass a valid pointer with the bottom 32 bits
clear, in this case we will return success but won't write any data
to the pointer.
I stumbled across this issue because the LLVM integrated assembler
doesn't accept cmpli with 3 arguments. Fix this by converting them to
cmpldi.
Fixes: a7f290dad32e ("[PATCH] powerpc: Merge vdso's and add vdso support to 32 bits kernel")
Cc: stable@vger.kernel.org # v2.6.15+
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
| |
We can just use the standard .S -> .o rule, cmd_as_o_S.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When using if_changed, we need to add FORCE as a dependency (see
Documentation/kbuild/makefiles.txt) otherwise we don't get command line
change checking amongst other things. This has resulted in vdsos not
being rebuilt when switching between big and little endian.
The vdso64/32ld commands have to be changed around to avoid pulling
FORCE into the linker command line (code copied from x86).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This hooks up UBSAN support for PowerPC.
So far it's found some interesting cases where we don't properly sanitise
input to shifts, including one in our futex handling. Nothing critical,
but interesting and worth fixing.
[valentinrothberg@gmail.com: arch/powerpc/Kconfig: fix typo in select statement]
Signed-off-by: Daniel Axtens <dja@axtens.net>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Valentin Rothberg <valentinrothberg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Most architectures use NR_syscalls as the #define for the number of syscalls.
We use __NR_syscalls, and then define NR_syscalls as __NR_syscalls.
__NR_syscalls is not used outside arch code, whereas NR_syscalls is. So as
NR_syscalls must be defined and __NR_syscalls does not, replace __NR_syscalls
with NR_syscalls.
Signed-off-by: Rashmica Gupta <rashmicy@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
powerpc has a link register (lr) used for calling functions. We "bl
<func>" to call a function, and "blr" to return back to the call site.
The lr is only a single register, so if we call another function from
inside this function (ie. nested calls), software must save away the
lr on the software stack before calling the new function. Before
returning (ie. before the "blr"), the lr is restored by software from
the software stack.
This makes branch prediction quite difficult for the processor as it
will only know the branch target just before the "blr".
To help with this, modern powerpc processors keep a (non-architected)
hardware stack of lr called a "link stack". When a "bl <func>" is
run, the lr is pushed onto this stack. When a "blr" is called, the
branch predictor pops the lr value from the top of the link stack, and
uses it to predict the branch target. Hence the processor pipeline
knows a lot earlier the branch target.
This works great but there are some cases where you call "bl" but
without a matching "blr". Once such case is when trying to determine
the program counter (which can't be read directly). Here you "bl+4;
mflr" to get the program counter. If you do this, the link stack will
get out of sync with reality, causing the branch predictor to
mis-predict subsequent function returns.
To avoid this, modern micro-architectures have a special case of bl.
Using the form "bcl 20,31,+4", ensures the processor doesn't push to
the link stack.
The 32 and 64 bit variants of __get_datapage() use a "bl; mflr" to
determine the loaded address of the VDSO. The current versions of
these attempt to use this special bl variant.
Unfortunately they use +8 rather than the required +4. Hence the
current code results in the link stack getting out of sync with
reality and hence the resulting performance degradation.
This patch moves it to bcl+4 by moving __kernel_datapage_offset out of
__get_datapage().
With this patch, running a gettimeofday() (which uses
__get_datapage()) microbenchmark we get a decent bump in performance
on POWER7/8.
For the benchmark in tools/testing/selftests/powerpc/benchmarks/gettimeofday.c
POWER8:
64bit gets ~4% improvement
32bit gets ~9% improvement
POWER7:
64bit gets ~7% improvement
Signed-off-by: Michael Neuling <mikey@neuling.org>
Reported-by: Aaron Sawdey <sawdey@us.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Andy Lutomirski says:
Some dynamic loaders may be slightly faster if a GNU hash is
available.
This is unlikely to have any measurable effect on the time it takes
to resolve vdso symbols (since there are so few of them). In some
contexts, it can be a win for a different reason: if every DSO has a
GNU hash section, then libc can avoid calculating SysV hashes at
all. Both musl and glibc appear to have this optimization.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously SPRG3 was marked for use by both VDSO and critical
interrupts (though critical interrupts were not fully implemented).
In commit 8b64a9dfb091f1eca8b7e58da82f1e7d1d5fe0ad ("powerpc/booke64:
Use SPRG0/3 scratch for bolted TLB miss & crit int"), Mihai Caraman
made an attempt to resolve this conflict by restoring the VDSO value
early in the critical interrupt, but this has some issues:
- It's incompatible with EXCEPTION_COMMON which restores r13 from the
by-then-overwritten scratch (this cost me some debugging time).
- It forces critical exceptions to be a special case handled
differently from even machine check and debug level exceptions.
- It didn't occur to me that it was possible to make this work at all
(by doing a final "ld r13, PACA_EXCRIT+EX_R13(r13)") until after
I made (most of) this patch. :-)
It might be worth investigating using a load rather than SPRG on return
from all exceptions (except TLB misses where the scratch never leaves
the SPRG) -- it could save a few cycles. Until then, let's stick with
SPRG for all exceptions.
Since we cannot use SPRG4-7 for scratch without corrupting the state of
a KVM guest, move VDSO to SPRG7 on book3e. Since neither SPRG4-7 nor
critical interrupts exist on book3s, SPRG3 is still used for VDSO
there.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: kvm-ppc@vger.kernel.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We are seeing a lot of hits in the VDSO that are not resolved by perf.
A while(1) gettimeofday() loop shows the issue:
27.64% [vdso] [.] 0x000000000000060c
22.57% [vdso] [.] 0x0000000000000628
16.88% [vdso] [.] 0x0000000000000610
12.39% [vdso] [.] __kernel_gettimeofday
6.09% [vdso] [.] 0x00000000000005f8
3.58% test [.] 00000037.plt_call.gettimeofday@@GLIBC_2.18
2.94% [vdso] [.] __kernel_datapage_offset
2.90% test [.] main
We are using a stripped VDSO image which means only symbols with
relocation info can be resolved. There isn't a lot of point to
stripping the VDSO, the debug info is only about 1kB:
4680 arch/powerpc/kernel/vdso64/vdso64.so
5815 arch/powerpc/kernel/vdso64/vdso64.so.dbg
By using the unstripped image, we can resolve all the symbols in the
VDSO and the perf profile data looks much better:
76.53% [vdso] [.] __do_get_tspec
12.20% [vdso] [.] __kernel_gettimeofday
5.05% [vdso] [.] __get_datapage
3.20% test [.] main
2.92% test [.] 00000037.plt_call.gettimeofday@@GLIBC_2.18
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
None of these files are actually using any __init type directives
and hence don't need to include <linux/init.h>. Most are just a
left over from __devinit and __cpuinit removal, or simply due to
code getting copied from one driver to the next.
The one instance where we add an include for init.h covers off
a case where that file was implicitly getting it from another
header which itself didn't need it.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I've finally tracked down why my CR signal-unwind test case still
fails on little-endian. The problem turned to be that the kernel
installs a signal trampoline in the vDSO, and provides a DWARF CFI
record for that trampoline. This CFI describes the save location
for CR:
rsave (70, 38*RSIZE + (RSIZE - CRSIZE))
which is correct for big-endian, but points to the wrong word on
little-endian. This is wrong no matter which ABI.
In addition, for the ELFv2 ABI, we should not only provide a CFI
record for register 70 (cr2), but for all CR fields separately.
Strictly speaking, I guess this would mean providing two separate
vDSO images, one for ELFv1 processes and one for ELFv2 processes (or
maybe playing some tricks with conditional DWARF expressions).
However, having CFI records for the other CR fields in ELFv1 is not
actually wrong, they just will be ignored. So it seems the simplest
fix would be just to always provide CFI for all the fields.
Signed-off-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch allows the kbuild system to successfully compile a kernel
for the little endian PowerPC64 architecture. A subsequent patch
will add the CONFIG_CPU_LITTLE_ENDIAN kernel config option which
must be set to build such a kernel.
If cross compiling, CROSS_COMPILE must point to a suitable toolchain
(compiled for the powerpc64le-linux and powerpcle-linux targets).
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On 04/18/2013 07:38 PM, Anton Blanchard wrote:
> Since you are only reading one long you shouldn't need to check the
> update count and loop, you will always see a consistent value. The
> system call version of time() just does an unprotected load for example.
Fixed.
> With the above change and with Michael's comments covered (decent
> changelog entry and Signed-off-by):
>
> Acked-by: Anton Blanchard <anton@samba.org>
Thanks for the review, below the updated patch:
From: Adhemerval Zanella <azanella@linux.vnet.ibm.com>
This patch implement the time syscall as vDSO. The performance speedups
are:
Baseline PPC32: 380 nsec
Baseline PPC64: 350 nsec
vdso PPC32: 20 nsec
vsdo PPC64: 20 nsec
Tested on 64 bit build with both 32 bit and 64 bit userland.
Acked-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Adhemerval Zanella <azanella@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|