| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
| |
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
gcc-11 points out a mismatch between the declaration and the definition
of poly1305_core_setkey():
lib/crypto/poly1305-donna32.c:13:67: error: argument 2 of type ‘const u8[16]’ {aka ‘const unsigned char[16]’} with mismatched bound [-Werror=array-parameter=]
13 | void poly1305_core_setkey(struct poly1305_core_key *key, const u8 raw_key[16])
| ~~~~~~~~~^~~~~~~~~~~
In file included from lib/crypto/poly1305-donna32.c:11:
include/crypto/internal/poly1305.h:21:68: note: previously declared as ‘const u8 *’ {aka ‘const unsigned char *’}
21 | void poly1305_core_setkey(struct poly1305_core_key *key, const u8 *raw_key);
This is harmless in principle, as the calling conventions are the same,
but the more specific prototype allows better type checking in the
caller.
Change the declaration to match the actual function definition.
The poly1305_simd_init() is a bit suspicious here, as it previously
had a 32-byte argument type, but looks like it needs to take the
16-byte POLY1305_BLOCK_SIZE array instead.
Fixes: 1c08a104360f ("crypto: poly1305 - add new 32 and 64-bit generic versions")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Add speed testing on 1420-byte blocks for networking
Algorithms:
- Improve performance of chacha on ARM for network packets
- Improve performance of aegis128 on ARM for network packets
Drivers:
- Add support for Keem Bay OCS AES/SM4
- Add support for QAT 4xxx devices
- Enable crypto-engine retry mechanism in caam
- Enable support for crypto engine on sdm845 in qce
- Add HiSilicon PRNG driver support"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (161 commits)
crypto: qat - add capability detection logic in qat_4xxx
crypto: qat - add AES-XTS support for QAT GEN4 devices
crypto: qat - add AES-CTR support for QAT GEN4 devices
crypto: atmel-i2c - select CONFIG_BITREVERSE
crypto: hisilicon/trng - replace atomic_add_return()
crypto: keembay - Add support for Keem Bay OCS AES/SM4
dt-bindings: Add Keem Bay OCS AES bindings
crypto: aegis128 - avoid spurious references crypto_aegis128_update_simd
crypto: seed - remove trailing semicolon in macro definition
crypto: x86/poly1305 - Use TEST %reg,%reg instead of CMP $0,%reg
crypto: x86/sha512 - Use TEST %reg,%reg instead of CMP $0,%reg
crypto: aesni - Use TEST %reg,%reg instead of CMP $0,%reg
crypto: cpt - Fix sparse warnings in cptpf
hwrng: ks-sa - Add dependency on IOMEM and OF
crypto: lib/blake2s - Move selftest prototype into header file
crypto: arm/aes-ce - work around Cortex-A57/A72 silion errata
crypto: ecdh - avoid unaligned accesses in ecdh_set_secret()
crypto: ccree - rework cache parameters handling
crypto: cavium - Use dma_set_mask_and_coherent to simplify code
crypto: marvell/octeontx - Use dma_set_mask_and_coherent to simplify code
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Without the barrier_data() inside memzero_explicit(), the compiler may
optimize away the state-clearing if it can tell that the state is not
used afterwards.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
| |
One of the assignments that was removed by commit 4a0c1de64bf9 ("crypto:
x86/poly1305 - Remove assignments with no effect") is actually needed,
since it affects the return value.
This fixes the following crypto self-test failure:
alg: shash: poly1305-simd test failed (wrong result) on test vector 2, cfg="init+update+final aligned buffer"
Fixes: 4a0c1de64bf9 ("crypto: x86/poly1305 - Remove assignments with no effect")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
| |
This patch removes a few ineffectual assignments from the function
crypto_poly1305_setdctxkey.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The header file algapi.h includes skbuff.h unnecessarily since
all we need is a forward declaration for struct sk_buff. This
patch removes that inclusion.
Unfortunately skbuff.h pulls in a lot of things and drivers over
the years have come to rely on it so this patch adds a lot of
missing inclusions that result from this.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The initial Zinc patchset, after some mailing list discussion, contained
code to ensure that kernel_fpu_enable would not be kept on for more than
a 4k chunk, since it disables preemption. The choice of 4k isn't totally
scientific, but it's not a bad guess either, and it's what's used in
both the x86 poly1305, blake2s, and nhpoly1305 code already (in the form
of PAGE_SIZE, which this commit corrects to be explicitly 4k for the
former two).
Ard did some back of the envelope calculations and found that
at 5 cycles/byte (overestimate) on a 1ghz processor (pretty slow), 4k
means we have a maximum preemption disabling of 20us, which Sebastian
confirmed was probably a good limit.
Unfortunately the chunking appears to have been left out of the final
patchset that added the glue code. So, this commit adds it back in.
Fixes: 84e03fa39fbe ("crypto: x86/chacha - expose SIMD ChaCha routine as library function")
Fixes: b3aad5bad26a ("crypto: arm64/chacha - expose arm64 ChaCha routine as library function")
Fixes: a44a3430d71b ("crypto: arm/chacha - expose ARM ChaCha routine as library function")
Fixes: d7d7b8535662 ("crypto: x86/poly1305 - wire up faster implementations for kernel")
Fixes: f569ca164751 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation")
Fixes: a6b803b3ddc7 ("crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation")
Fixes: ed0356eda153 ("crypto: blake2s - x86_64 SIMD implementation")
Cc: Eric Biggers <ebiggers@google.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
| |
Now that the kernel specifies binutils 2.23 as the minimum version, we
can remove ifdefs for AVX2 and ADX throughout.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CONFIG_AS_AVX was introduced by commit ea4d26ae24e5 ("raid5: add AVX
optimized RAID5 checksumming").
We raise the minimal supported binutils version from time to time.
The last bump was commit 1fb12b35e5ff ("kbuild: Raise the minimum
required binutils version to 2.21").
I confirmed the code in $(call as-instr,...) can be assembled by the
binutils 2.21 assembler and also by LLVM integrated assembler.
Remove CONFIG_AS_AVX, which is always defined.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
| |
The emit code does optional base conversion itself in assembly, so we
don't need to do that here. Also, neither one of these functions uses
simd instructions, so checking for that doesn't make sense either.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
| |
For glue code that's used by Zinc, the actual Crypto API functions might
not necessarily exist, and don't need to exist either. Before this
patch, there are valid build configurations that lead to a unbuildable
kernel. This fixes it to conditionalize those symbols on the existence
of the proper config entry.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
| |
Implement the arch init/update/final Poly1305 library routines in the
accelerated SIMD driver for x86 so they are accessible to users of
the Poly1305 library interface as well.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove the dependency on the generic Poly1305 driver. Instead, depend
on the generic library so that we only reuse code without pulling in
the generic skcipher implementation as well.
While at it, remove the logic that prefers the non-SIMD path for short
inputs - this is no longer necessary after recent FPU handling changes
on x86.
Since this removes the last remaining user of the routines exported
by the generic shash driver, unexport them and make them static.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
| |
In preparation of exposing a Poly1305 library interface directly from
the accelerated x86 driver, align the state descriptor of the x86 code
with the one used by the generic driver. This is needed to make the
library interface unified between all implementations.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move the core Poly1305 routines shared between the generic Poly1305
shash driver and the Adiantum and NHPoly1305 drivers into a separate
library so that using just this pieces does not pull in the crypto
API pieces of the generic Poly1305 routine.
In a subsequent patch, we will augment this generic library with
init/update/final routines so that Poyl1305 algorithm can be used
directly without the need for using the crypto API's shash abstraction.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
| |
Replace all calls to irq_fpu_usable() in the x86 crypto code with
crypto_simd_usable(), in order to allow testing the no-SIMD code paths.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for exposing a low-level Poly1305 API which implements
the ε-almost-∆-universal (εA∆U) hash function underlying the Poly1305
MAC and supports block-aligned inputs only, create structures
poly1305_key and poly1305_state which hold the limbs of the Poly1305
"r" key and accumulator, respectively.
These structures could actually have the same type (e.g. poly1305_val),
but different types are preferable, to prevent misuse.
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many shash algorithms set .cra_flags = CRYPTO_ALG_TYPE_SHASH. But this
is redundant with the C structure type ('struct shash_alg'), and
crypto_register_shash() already sets the type flag automatically,
clearing any type flag that was already there. Apparently the useless
assignment has just been copy+pasted around.
So, remove the useless assignment from all the shash algorithms.
This patch shouldn't change any actual behavior.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since Poly1305 requires a nonce per invocation, the Linux kernel
implementations of Poly1305 don't use the crypto API's keying mechanism
and instead expect the key and nonce as the first 32 bytes of the data.
But ->setkey() is still defined as a stub returning an error code. This
prevents Poly1305 from being used through AF_ALG and will also break it
completely once we start enforcing that all crypto API users (not just
AF_ALG) call ->setkey() if present.
Fix it by removing crypto_poly1305_setkey(), leaving ->setkey as NULL.
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
| |
crypto_poly1305_final() no longer requires a cra_alignmask, and nothing
else in the x86 poly1305-simd implementation does either. So remove the
cra_alignmask so that the crypto API does not have to unnecessarily
align the buffers.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-crypto@vger.kernel.org
Link: http://lkml.kernel.org/r/1459801503-15600-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-crypto@vger.kernel.org
Link: http://lkml.kernel.org/r/1459801503-15600-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
|
| |
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-crypto@vger.kernel.org
Link: http://lkml.kernel.org/r/1459266123-21878-8-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are two concepts that have some confusing naming:
1. Extended State Component numbers (currently called
XFEATURE_BIT_*)
2. Extended State Component masks (currently called XSTATE_*)
The numbers are (currently) from 0-9. State component 3 is the
bounds registers for MPX, for instance.
But when we want to enable "state component 3", we go set a bit
in XCR0. The bit we set is 1<<3. We can check to see if a
state component feature is enabled by looking at its bit.
The current 'xfeature_bit's are at best xfeature bit _numbers_.
Calling them bits is at best inconsistent with ending the enum
list with 'XFEATURES_NR_MAX'.
This patch renames the enum to be 'xfeature'. These also
happen to be what the Intel documentation calls a "state
component".
We also want to differentiate these from the "XSTATE_*" macros.
The "XSTATE_*" macros are a mask, and we rename them to match.
These macros are reasonably widely used so this patch is a
wee bit big, but this really is just a rename.
The only non-mechanical part of this is the
s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/
We need a better name for it, but that's another patch.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: dave@sr71.net
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com
[ Ported to v4.3-rc1. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extends the x86_64 Poly1305 authenticator by a function processing four
consecutive Poly1305 blocks in parallel using AVX2 instructions.
For large messages, throughput increases by ~15-45% compared to two
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extends the x86_64 SSE2 Poly1305 authenticator by a function processing two
consecutive Poly1305 blocks in parallel using a derived key r^2. Loop
unrolling can be more effectively mapped to SSE instructions, further
increasing throughput.
For large messages, throughput increases by ~45-65% compared to single
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|