summaryrefslogtreecommitdiffstats
path: root/arch/x86/lib/clear_page_64.S (follow)
Commit message (Collapse)AuthorAgeFilesLines
* x86/headers: Replace #include <asm/export.h> with #include <linux/export.h>Masahiro Yamada2023-10-031-1/+1
| | | | | | | | | | | | | | | | | The following commit: ddb5cdbafaaa ("kbuild: generate KSYMTAB entries by modpost") deprecated <asm/export.h>, which is now a wrapper of <linux/export.h>. Use <linux/export.h> in *.S as well as in *.c files. After all the <asm/export.h> lines are replaced, <asm/export.h> and <asm-generic/export.h> will be removed. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230806145958.380314-2-masahiroy@kernel.org
* x86: improve on the non-rep 'clear_user' functionLinus Torvalds2023-04-191-44/+70
| | | | | | | | | | | | | | | | | | | | | The old version was oddly written to have the repeat count in multiple registers. So instead of taking advantage of %rax being zero, it had some sub-counts in it. All just for a "single word clearing" loop, which isn't even efficient to begin with. So get rid of those games, and just keep all the state in the same registers we got it in (and that we should return things in). That not only makes this act much more like 'rep stos' (which this function is replacing), but makes it much easier to actually do the obvious loop unrolling. Also rename the function from the now nonsensical 'clear_user_original' to what it now clearly is: 'rep_stos_alternative'. End result: if we don't have a fast 'rep stosb', at least we can have a fast fallback for it. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* x86: don't use REP_GOOD or ERMS for user memory clearingLinus Torvalds2023-04-191-75/+0
| | | | | | | | | | | | | | | The modern target to use is FSRS (Fast Short REP STOS), and the other cases should only be used for bigger areas (ie mainly things like page clearing). Note! This changes the conditional for the inlining from FSRM ("fast short rep movs") to FSRS ("fast short rep stos"). We'll have a separate fixup for AMD microarchitectures that have a good 'rep stosb' yet do not set the new Intel-specific FSRS bit (because FSRM was there first). Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* x86/clear_user: Make it fasterBorislav Petkov2022-08-181-0/+138
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Based on a patch by Mark Hemment <markhemm@googlemail.com> and incorporating very sane suggestions from Linus. The point here is to have the default case with FSRM - which is supposed to be the majority of x86 hw out there - if not now then soon - be directly inlined into the instruction stream so that no function call overhead is taking place. Drop the early clobbers from the @size and @addr operands as those are not needed anymore since we have single instruction alternatives. The benchmarks I ran would show very small improvements and a PF benchmark would even show weird things like slowdowns with higher core counts. So for a ~6m running the git test suite, the function gets called under 700K times, all from padzero(): <...>-2536 [006] ..... 261.208801: padzero: to: 0x55b0663ed214, size: 3564, cycles: 21900 <...>-2536 [006] ..... 261.208819: padzero: to: 0x7f061adca078, size: 3976, cycles: 17160 <...>-2537 [008] ..... 261.211027: padzero: to: 0x5572d019e240, size: 3520, cycles: 23850 <...>-2537 [008] ..... 261.211049: padzero: to: 0x7f1288dc9078, size: 3976, cycles: 15900 ... which is around 1%-ish of the total time and which is consistent with the benchmark numbers. So Mel gave me the idea to simply measure how fast the function becomes. I.e.: start = rdtsc_ordered(); ret = __clear_user(to, n); end = rdtsc_ordered(); Computing the mean average of all the samples collected during the test suite run then shows some improvement: clear_user_original: Amean: 9219.71 (Sum: 6340154910, samples: 687674) fsrm: Amean: 8030.63 (Sum: 5522277720, samples: 687652) That's on Zen3. The situation looks a lot more confusing on Intel: Icelake: clear_user_original: Amean: 19679.4 (Sum: 13652560764, samples: 693750) Amean: 19743.7 (Sum: 13693470604, samples: 693562) (I ran it twice just to be sure.) ERMS: Amean: 20374.3 (Sum: 13910601024, samples: 682752) Amean: 20453.7 (Sum: 14186223606, samples: 693576) FSRM: Amean: 20458.2 (Sum: 13918381386, sample s: 680331) The original microbenchmark which people were complaining about: for i in $(seq 1 10); do dd if=/dev/zero of=/dev/null bs=1M status=progress count=65536; done 2>&1 | grep copied 32207011840 bytes (32 GB, 30 GiB) copied, 1 s, 32.2 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.93069 s, 35.6 GB/s 37597741056 bytes (38 GB, 35 GiB) copied, 1 s, 37.6 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.78017 s, 38.6 GB/s 62020124672 bytes (62 GB, 58 GiB) copied, 2 s, 31.0 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 2.13716 s, 32.2 GB/s 60010004480 bytes (60 GB, 56 GiB) copied, 1 s, 60.0 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.14129 s, 60.2 GB/s 53212086272 bytes (53 GB, 50 GiB) copied, 1 s, 53.2 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.28398 s, 53.5 GB/s 55698259968 bytes (56 GB, 52 GiB) copied, 1 s, 55.7 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.22507 s, 56.1 GB/s 55306092544 bytes (55 GB, 52 GiB) copied, 1 s, 55.3 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.23647 s, 55.6 GB/s 54387539968 bytes (54 GB, 51 GiB) copied, 1 s, 54.4 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.25693 s, 54.7 GB/s 50566529024 bytes (51 GB, 47 GiB) copied, 1 s, 50.6 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.35096 s, 50.9 GB/s 58308165632 bytes (58 GB, 54 GiB) copied, 1 s, 58.3 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.17394 s, 58.5 GB/s Now the same thing with smaller buffers: for i in $(seq 1 10); do dd if=/dev/zero of=/dev/null bs=1M status=progress count=8192; done 2>&1 | grep copied 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.28485 s, 30.2 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.276112 s, 31.1 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.29136 s, 29.5 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.283803 s, 30.3 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.306503 s, 28.0 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.349169 s, 24.6 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.276912 s, 31.0 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.265356 s, 32.4 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.28464 s, 30.2 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.242998 s, 35.3 GB/s is also not conclusive because it all depends on the buffer sizes, their alignments and when the microcode detects that cachelines can be aggregated properly and copied in bigger sizes. Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/CAHk-=wh=Mu_EYhtOmPn6AxoQZyEh-4fo2Zx3G7rBv1g7vwoKiw@mail.gmail.com
* x86: Prepare asm files for straight-line-speculationPeter Zijlstra2021-12-081-3/+3
| | | | | | | | | | | | | | | Replace all ret/retq instructions with RET in preparation of making RET a macro. Since AS is case insensitive it's a big no-op without RET defined. find arch/x86/ -name \*.S | while read file do sed -i 's/\<ret[q]*\>/RET/' $file done Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20211204134907.905503893@infradead.org
* x86/asm: Change all ENTRY+ENDPROC to SYM_FUNC_*Jiri Slaby2019-10-181-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | These are all functions which are invoked from elsewhere, so annotate them as global using the new SYM_FUNC_START and their ENDPROC's by SYM_FUNC_END. Make sure ENTRY/ENDPROC is not defined on X86_64, given these were the last users. Signed-off-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [hibernate] Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen bits] Acked-by: Herbert Xu <herbert@gondor.apana.org.au> [crypto] Cc: Allison Randal <allison@lohutok.net> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andy Shevchenko <andy@infradead.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Armijn Hemel <armijn@tjaldur.nl> Cc: Cao jin <caoj.fnst@cn.fujitsu.com> Cc: Darren Hart <dvhart@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Enrico Weigelt <info@metux.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jim Mattson <jmattson@google.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Len Brown <len.brown@intel.com> Cc: linux-arch@vger.kernel.org Cc: linux-crypto@vger.kernel.org Cc: linux-efi <linux-efi@vger.kernel.org> Cc: linux-efi@vger.kernel.org Cc: linux-pm@vger.kernel.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: platform-driver-x86@vger.kernel.org Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wanpeng Li <wanpengli@tencent.com> Cc: Wei Huang <wei@redhat.com> Cc: x86-ml <x86@kernel.org> Cc: xen-devel@lists.xenproject.org Cc: Xiaoyao Li <xiaoyao.li@linux.intel.com> Link: https://lkml.kernel.org/r/20191011115108.12392-25-jslaby@suse.cz
* treewide: Add SPDX license identifier for missed filesThomas Gleixner2019-05-211-0/+1
| | | | | | | | | | | | | | | | | Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/asm: Trim clear_page.S includesAlexey Dobriyan2018-02-131-2/+0
| | | | | | | | | | | | | After alternatives were shifted to the call site, only 2 headers are necessary. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180113190648.GB23111@avx2 Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/asm: Optimize clear_page()Borislav Petkov2017-03-071-10/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, we CALL clear_page() which then JMPs to the proper function chosen by the alternatives. What we should do instead is CALL the proper function directly. (This was something Ingo suggested a while ago). So let's do that. Measuring our favourite kernel build workload shows that there are no significant changes in performance. AMD === -- /tmp/before 2017-02-09 18:01:46.451961188 +0100 ++ /tmp/after 2017-02-09 18:01:54.883961175 +0100 @@ -1,15 +1,15 @@ Performance counter stats for 'system wide' (5 runs): - 1028960.373643 cpu-clock (msec) # 6.000 CPUs utilized ( +- 1.41% ) + 1023086.018961 cpu-clock (msec) # 6.000 CPUs utilized ( +- 1.20% ) - 518,744 context-switches # 0.504 K/sec ( +- 1.04% ) + 518,254 context-switches # 0.507 K/sec ( +- 1.01% ) - 38,112 cpu-migrations # 0.037 K/sec ( +- 1.95% ) + 37,917 cpu-migrations # 0.037 K/sec ( +- 1.02% ) - 20,874,266 page-faults # 0.020 M/sec ( +- 0.07% ) + 20,918,897 page-faults # 0.020 M/sec ( +- 0.18% ) - 2,043,646,230,667 cycles # 1.986 GHz ( +- 0.14% ) (66.67%) + 2,045,305,584,032 cycles # 1.999 GHz ( +- 0.16% ) (66.67%) - 553,698,855,431 stalled-cycles-frontend # 27.09% frontend cycles idle ( +- 0.07% ) (66.67%) + 555,099,401,413 stalled-cycles-frontend # 27.14% frontend cycles idle ( +- 0.13% ) (66.67%) - 621,544,286,390 stalled-cycles-backend # 30.41% backend cycles idle ( +- 0.39% ) (66.67%) + 621,371,430,254 stalled-cycles-backend # 30.38% backend cycles idle ( +- 0.32% ) (66.67%) - 1,738,364,431,659 instructions # 0.85 insn per cycle + 1,739,895,771,901 instructions # 0.85 insn per cycle - # 0.36 stalled cycles per insn ( +- 0.11% ) (66.67%) + # 0.36 stalled cycles per insn ( +- 0.13% ) (66.67%) - 391,170,943,850 branches # 380.161 M/sec ( +- 0.13% ) (66.67%) + 391,398,551,757 branches # 382.567 M/sec ( +- 0.13% ) (66.67%) - 22,567,810,411 branch-misses # 5.77% of all branches ( +- 0.11% ) (66.67%) + 22,574,726,683 branch-misses # 5.77% of all branches ( +- 0.13% ) (66.67%) - 171.480741921 seconds time elapsed ( +- 1.41% ) + 170.509229451 seconds time elapsed ( +- 1.20% ) Intel ===== -- /tmp/before 2017-02-09 20:36:19.851947473 +0100 ++ /tmp/after 2017-02-09 20:36:30.151947458 +0100 @@ -1,15 +1,15 @@ Performance counter stats for 'system wide' (5 runs): - 2207248.598126 cpu-clock (msec) # 8.000 CPUs utilized ( +- 0.69% ) + 2213300.106631 cpu-clock (msec) # 8.000 CPUs utilized ( +- 0.73% ) - 899,342 context-switches # 0.407 K/sec ( +- 0.68% ) + 898,381 context-switches # 0.406 K/sec ( +- 0.79% ) - 80,553 cpu-migrations # 0.036 K/sec ( +- 1.13% ) + 80,979 cpu-migrations # 0.037 K/sec ( +- 1.11% ) - 36,171,148 page-faults # 0.016 M/sec ( +- 0.02% ) + 36,179,791 page-faults # 0.016 M/sec ( +- 0.02% ) - 6,665,288,826,484 cycles # 3.020 GHz ( +- 0.07% ) (83.33%) + 6,671,638,410,799 cycles # 3.014 GHz ( +- 0.06% ) (83.33%) - 5,065,975,115,197 stalled-cycles-frontend # 76.01% frontend cycles idle ( +- 0.11% ) (83.33%) + 5,076,835,183,223 stalled-cycles-frontend # 76.10% frontend cycles idle ( +- 0.11% ) (83.33%) - 3,841,556,350,614 stalled-cycles-backend # 57.64% backend cycles idle ( +- 0.13% ) (66.67%) + 3,852,823,974,333 stalled-cycles-backend # 57.75% backend cycles idle ( +- 0.12% ) (66.67%) - 4,148,398,171,079 instructions # 0.62 insn per cycle + 4,148,997,156,059 instructions # 0.62 insn per cycle - # 1.22 stalled cycles per insn ( +- 0.10% ) (83.33%) + # 1.22 stalled cycles per insn ( +- 0.11% ) (83.33%) - 887,187,118,591 branches # 401.943 M/sec ( +- 0.09% ) (83.33%) + 887,271,341,121 branches # 400.882 M/sec ( +- 0.11% ) (83.33%) - 30,139,439,034 branch-misses # 3.40% of all branches ( +- 0.09% ) (83.33%) + 30,134,864,997 branch-misses # 3.40% of all branches ( +- 0.06% ) (83.33%) - 275.904405540 seconds time elapsed ( +- 0.69% ) + 276.660352016 seconds time elapsed ( +- 0.73% ) allmodconfig vmlinux size grows by a ~1Kb but that's fine - we optimize our calling of the clear_page variants. text data bss dec hex filename 9051979 23067670 27009024 59128673 3863b61 vmlinux 9053000 23067670 27009024 59129694 3863f5e vmlinux.clear_page Reported-by: kernel test robot <fengguang.wu@intel.com> Tested-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170215111927.emdgxf2pide3kwro@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86: move exports to actual definitionsAl Viro2016-08-081-0/+2
| | | | Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* x86/cpufeature: Carve out X86_FEATURE_*Borislav Petkov2016-01-301-1/+1
| | | | | | | | | | | | | | | | | | | | | | Move them to a separate header and have the following dependency: x86/cpufeatures.h <- x86/processor.h <- x86/cpufeature.h This makes it easier to use the header in asm code and not include the whole cpufeature.h and add guards for asm. Suggested-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1453842730-28463-5-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/debug: Remove perpetually broken, unmaintainable dwarf annotationsIngo Molnar2015-06-021-7/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/lib/clear_page_64.S: Convert to ALTERNATIVE_2 macroBorislav Petkov2015-02-231-39/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move clear_page() up so that we can get 2-byte forward JMPs when patching: apply_alternatives: feat: 3*32+16, old: (ffffffff8130adb0, len: 5), repl: (ffffffff81d0b859, len: 5) ffffffff8130adb0: alt_insn: 90 90 90 90 90 recompute_jump: new_displ: 0x0000003e ffffffff81d0b859: rpl_insn: eb 3e 66 66 90 even though the compiler generated 5-byte JMPs which we padded with 5 NOPs. Also, make the REP_GOOD version be the default as the majority of machines set REP_GOOD. This way we get to save ourselves the JMP: old insn VA: 0xffffffff813038b0, CPU feat: X86_FEATURE_REP_GOOD, size: 5, padlen: 0 clear_page: ffffffff813038b0 <clear_page>: ffffffff813038b0: e9 0b 00 00 00 jmpq ffffffff813038c0 repl insn: 0xffffffff81cf0e92, size: 0 old insn VA: 0xffffffff813038b0, CPU feat: X86_FEATURE_ERMS, size: 5, padlen: 0 clear_page: ffffffff813038b0 <clear_page>: ffffffff813038b0: e9 0b 00 00 00 jmpq ffffffff813038c0 repl insn: 0xffffffff81cf0e92, size: 5 ffffffff81cf0e92: e9 69 2a 61 ff jmpq ffffffff81303900 ffffffff813038b0 <clear_page>: ffffffff813038b0: e9 69 2a 61 ff jmpq ffffffff8091631e Signed-off-by: Borislav Petkov <bp@suse.de>
* x86/alternatives: Add instruction paddingBorislav Petkov2015-02-231-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Up until now we have always paid attention to make sure the length of the new instruction replacing the old one is at least less or equal to the length of the old instruction. If the new instruction is longer, at the time it replaces the old instruction it will overwrite the beginning of the next instruction in the kernel image and cause your pants to catch fire. So instead of having to pay attention, teach the alternatives framework to pad shorter old instructions with NOPs at buildtime - but only in the case when len(old instruction(s)) < len(new instruction(s)) and add nothing in the >= case. (In that case we do add_nops() when patching). This way the alternatives user shouldn't have to care about instruction sizes and simply use the macros. Add asm ALTERNATIVE* flavor macros too, while at it. Also, we need to save the pad length in a separate struct alt_instr member for NOP optimization and the way to do that reliably is to carry the pad length instead of trying to detect whether we're looking at single-byte NOPs or at pathological instruction offsets like e9 90 90 90 90, for example, which is a valid instruction. Thanks to Michael Matz for the great help with toolchain questions. Signed-off-by: Borislav Petkov <bp@suse.de>
* x86, mem: clear_page_64.S: Support clear_page() with enhanced REP MOVSB/STOSBFenghua Yu2011-05-181-9/+24
| | | | | | | | | | | | | | | | Intel processors are adding enhancements to REP MOVSB/STOSB and the use of REP MOVSB/STOSB for optimal memcpy/memset or similar functions is recommended. Enhancement availability is indicated by CPUID.7.0.EBX[9] (Enhanced REP MOVSB/ STOSB). Support clear_page() with rep stosb for processor supporting enhanced REP MOVSB /STOSB. On processors supporting enhanced REP MOVSB/STOSB, the alternative clear_page_c_e function using enhanced REP STOSB overrides the original function and the fast string function. Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Link: http://lkml.kernel.org/r/1305671358-14478-6-git-send-email-fenghua.yu@intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* x86, alternatives: Use 16-bit numbers for cpufeature indexH. Peter Anvin2010-07-071-1/+1
| | | | | | | | | | | | | | We already have cpufeature indicies above 255, so use a 16-bit number for the alternatives index. This consumes a padding field and so doesn't add any size, but it means that abusing the padding field to create assembly errors on overflow no longer works. We can retain the test simply by redirecting it to the .discard section, however. [ v3: updated to include open-coded locations ] Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> LKML-Reference: <tip-f88731e3068f9d1392ba71cc9f50f035d26a0d4f@git.kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* x86: Fix symbol annotation for arch/x86/lib/clear_page_64.S::clear_page_cMike Galbraith2009-06-301-3/+2
| | | | | | | | | | | | | Noticed the zero-sized function symbol while looking at 'perf' profiles, it causes the profiler to display those addresses in hexa. Turns out that this was wrong/bogus for an eternity. Signed-off-by: Mike Galbraith <efault@gmx.de> Acked-by: Alexander van Heukelum <heukelum@fastmail.fm> Acked-by: Cyrill Gorcunov <gorcunov@gmail.com> LKML-Reference: <1246366820.6538.1.camel@marge.simson.net> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86_64: move libThomas Gleixner2007-10-111-0/+59
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>