1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
.. SPDX-License-Identifier: GPL-2.0
RISC-V Hardware Probing Interface
---------------------------------
The RISC-V hardware probing interface is based around a single syscall, which
is defined in <asm/hwprobe.h>::
struct riscv_hwprobe {
__s64 key;
__u64 value;
};
long sys_riscv_hwprobe(struct riscv_hwprobe *pairs, size_t pair_count,
size_t cpusetsize, cpu_set_t *cpus,
unsigned int flags);
The arguments are split into three groups: an array of key-value pairs, a CPU
set, and some flags. The key-value pairs are supplied with a count. Userspace
must prepopulate the key field for each element, and the kernel will fill in the
value if the key is recognized. If a key is unknown to the kernel, its key field
will be cleared to -1, and its value set to 0. The CPU set is defined by
CPU_SET(3) with size ``cpusetsize`` bytes. For value-like keys (eg. vendor,
arch, impl), the returned value will only be valid if all CPUs in the given set
have the same value. Otherwise -1 will be returned. For boolean-like keys, the
value returned will be a logical AND of the values for the specified CPUs.
Usermode can supply NULL for ``cpus`` and 0 for ``cpusetsize`` as a shortcut for
all online CPUs. The currently supported flags are:
* :c:macro:`RISCV_HWPROBE_WHICH_CPUS`: This flag basically reverses the behavior
of sys_riscv_hwprobe(). Instead of populating the values of keys for a given
set of CPUs, the values of each key are given and the set of CPUs is reduced
by sys_riscv_hwprobe() to only those which match each of the key-value pairs.
How matching is done depends on the key type. For value-like keys, matching
means to be the exact same as the value. For boolean-like keys, matching
means the result of a logical AND of the pair's value with the CPU's value is
exactly the same as the pair's value. Additionally, when ``cpus`` is an empty
set, then it is initialized to all online CPUs which fit within it, i.e. the
CPU set returned is the reduction of all the online CPUs which can be
represented with a CPU set of size ``cpusetsize``.
All other flags are reserved for future compatibility and must be zero.
On success 0 is returned, on failure a negative error code is returned.
The following keys are defined:
* :c:macro:`RISCV_HWPROBE_KEY_MVENDORID`: Contains the value of ``mvendorid``,
as defined by the RISC-V privileged architecture specification.
* :c:macro:`RISCV_HWPROBE_KEY_MARCHID`: Contains the value of ``marchid``, as
defined by the RISC-V privileged architecture specification.
* :c:macro:`RISCV_HWPROBE_KEY_MIMPLID`: Contains the value of ``mimplid``, as
defined by the RISC-V privileged architecture specification.
* :c:macro:`RISCV_HWPROBE_KEY_BASE_BEHAVIOR`: A bitmask containing the base
user-visible behavior that this kernel supports. The following base user ABIs
are defined:
* :c:macro:`RISCV_HWPROBE_BASE_BEHAVIOR_IMA`: Support for rv32ima or
rv64ima, as defined by version 2.2 of the user ISA and version 1.10 of the
privileged ISA, with the following known exceptions (more exceptions may be
added, but only if it can be demonstrated that the user ABI is not broken):
* The ``fence.i`` instruction cannot be directly executed by userspace
programs (it may still be executed in userspace via a
kernel-controlled mechanism such as the vDSO).
* :c:macro:`RISCV_HWPROBE_KEY_IMA_EXT_0`: A bitmask containing the extensions
that are compatible with the :c:macro:`RISCV_HWPROBE_BASE_BEHAVIOR_IMA`:
base system behavior.
* :c:macro:`RISCV_HWPROBE_IMA_FD`: The F and D extensions are supported, as
defined by commit cd20cee ("FMIN/FMAX now implement
minimumNumber/maximumNumber, not minNum/maxNum") of the RISC-V ISA manual.
* :c:macro:`RISCV_HWPROBE_IMA_C`: The C extension is supported, as defined
by version 2.2 of the RISC-V ISA manual.
* :c:macro:`RISCV_HWPROBE_IMA_V`: The V extension is supported, as defined by
version 1.0 of the RISC-V Vector extension manual.
* :c:macro:`RISCV_HWPROBE_EXT_ZBA`: The Zba address generation extension is
supported, as defined in version 1.0 of the Bit-Manipulation ISA
extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZBB`: The Zbb extension is supported, as defined
in version 1.0 of the Bit-Manipulation ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZBS`: The Zbs extension is supported, as defined
in version 1.0 of the Bit-Manipulation ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZICBOZ`: The Zicboz extension is supported, as
ratified in commit 3dd606f ("Create cmobase-v1.0.pdf") of riscv-CMOs.
* :c:macro:`RISCV_HWPROBE_EXT_ZBC` The Zbc extension is supported, as defined
in version 1.0 of the Bit-Manipulation ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZBKB` The Zbkb extension is supported, as
defined in version 1.0 of the Scalar Crypto ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZBKC` The Zbkc extension is supported, as
defined in version 1.0 of the Scalar Crypto ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZBKX` The Zbkx extension is supported, as
defined in version 1.0 of the Scalar Crypto ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZKND` The Zknd extension is supported, as
defined in version 1.0 of the Scalar Crypto ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZKNE` The Zkne extension is supported, as
defined in version 1.0 of the Scalar Crypto ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZKNH` The Zknh extension is supported, as
defined in version 1.0 of the Scalar Crypto ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZKSED` The Zksed extension is supported, as
defined in version 1.0 of the Scalar Crypto ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZKSH` The Zksh extension is supported, as
defined in version 1.0 of the Scalar Crypto ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZKT` The Zkt extension is supported, as defined
in version 1.0 of the Scalar Crypto ISA extensions.
* :c:macro:`RISCV_HWPROBE_EXT_ZVBB`: The Zvbb extension is supported as
defined in version 1.0 of the RISC-V Cryptography Extensions Volume II.
* :c:macro:`RISCV_HWPROBE_EXT_ZVBC`: The Zvbc extension is supported as
defined in version 1.0 of the RISC-V Cryptography Extensions Volume II.
* :c:macro:`RISCV_HWPROBE_EXT_ZVKB`: The Zvkb extension is supported as
defined in version 1.0 of the RISC-V Cryptography Extensions Volume II.
* :c:macro:`RISCV_HWPROBE_EXT_ZVKG`: The Zvkg extension is supported as
defined in version 1.0 of the RISC-V Cryptography Extensions Volume II.
* :c:macro:`RISCV_HWPROBE_EXT_ZVKNED`: The Zvkned extension is supported as
defined in version 1.0 of the RISC-V Cryptography Extensions Volume II.
* :c:macro:`RISCV_HWPROBE_EXT_ZVKNHA`: The Zvknha extension is supported as
defined in version 1.0 of the RISC-V Cryptography Extensions Volume II.
* :c:macro:`RISCV_HWPROBE_EXT_ZVKNHB`: The Zvknhb extension is supported as
defined in version 1.0 of the RISC-V Cryptography Extensions Volume II.
* :c:macro:`RISCV_HWPROBE_EXT_ZVKSED`: The Zvksed extension is supported as
defined in version 1.0 of the RISC-V Cryptography Extensions Volume II.
* :c:macro:`RISCV_HWPROBE_EXT_ZVKSH`: The Zvksh extension is supported as
defined in version 1.0 of the RISC-V Cryptography Extensions Volume II.
* :c:macro:`RISCV_HWPROBE_EXT_ZVKT`: The Zvkt extension is supported as
defined in version 1.0 of the RISC-V Cryptography Extensions Volume II.
* :c:macro:`RISCV_HWPROBE_EXT_ZFH`: The Zfh extension version 1.0 is supported
as defined in the RISC-V ISA manual.
* :c:macro:`RISCV_HWPROBE_EXT_ZFHMIN`: The Zfhmin extension version 1.0 is
supported as defined in the RISC-V ISA manual.
* :c:macro:`RISCV_HWPROBE_EXT_ZIHINTNTL`: The Zihintntl extension version 1.0
is supported as defined in the RISC-V ISA manual.
* :c:macro:`RISCV_HWPROBE_EXT_ZVFH`: The Zvfh extension is supported as
defined in the RISC-V Vector manual starting from commit e2ccd0548d6c
("Remove draft warnings from Zvfh[min]").
* :c:macro:`RISCV_HWPROBE_EXT_ZVFHMIN`: The Zvfhmin extension is supported as
defined in the RISC-V Vector manual starting from commit e2ccd0548d6c
("Remove draft warnings from Zvfh[min]").
* :c:macro:`RISCV_HWPROBE_EXT_ZFA`: The Zfa extension is supported as
defined in the RISC-V ISA manual starting from commit 056b6ff467c7
("Zfa is ratified").
* :c:macro:`RISCV_HWPROBE_EXT_ZTSO`: The Ztso extension is supported as
defined in the RISC-V ISA manual starting from commit 5618fb5a216b
("Ztso is now ratified.")
* :c:macro:`RISCV_HWPROBE_EXT_ZACAS`: The Zacas extension is supported as
defined in the Atomic Compare-and-Swap (CAS) instructions manual starting
from commit 5059e0ca641c ("update to ratified").
* :c:macro:`RISCV_HWPROBE_EXT_ZICOND`: The Zicond extension is supported as
defined in the RISC-V Integer Conditional (Zicond) operations extension
manual starting from commit 95cf1f9 ("Add changes requested by Ved
during signoff")
* :c:macro:`RISCV_HWPROBE_EXT_ZIHINTPAUSE`: The Zihintpause extension is
supported as defined in the RISC-V ISA manual starting from commit
d8ab5c78c207 ("Zihintpause is ratified").
* :c:macro:`RISCV_HWPROBE_EXT_ZVE32X`: The Vector sub-extension Zve32x is
supported, as defined by version 1.0 of the RISC-V Vector extension manual.
* :c:macro:`RISCV_HWPROBE_EXT_ZVE32F`: The Vector sub-extension Zve32f is
supported, as defined by version 1.0 of the RISC-V Vector extension manual.
* :c:macro:`RISCV_HWPROBE_EXT_ZVE64X`: The Vector sub-extension Zve64x is
supported, as defined by version 1.0 of the RISC-V Vector extension manual.
* :c:macro:`RISCV_HWPROBE_EXT_ZVE64F`: The Vector sub-extension Zve64f is
supported, as defined by version 1.0 of the RISC-V Vector extension manual.
* :c:macro:`RISCV_HWPROBE_EXT_ZVE64D`: The Vector sub-extension Zve64d is
supported, as defined by version 1.0 of the RISC-V Vector extension manual.
* :c:macro:`RISCV_HWPROBE_EXT_ZIMOP`: The Zimop May-Be-Operations extension is
supported as defined in the RISC-V ISA manual starting from commit
58220614a5f ("Zimop is ratified/1.0").
* :c:macro:`RISCV_HWPROBE_EXT_ZCA`: The Zca extension part of Zc* standard
extensions for code size reduction, as ratified in commit 8be3419c1c0
("Zcf doesn't exist on RV64 as it contains no instructions") of
riscv-code-size-reduction.
* :c:macro:`RISCV_HWPROBE_EXT_ZCB`: The Zcb extension part of Zc* standard
extensions for code size reduction, as ratified in commit 8be3419c1c0
("Zcf doesn't exist on RV64 as it contains no instructions") of
riscv-code-size-reduction.
* :c:macro:`RISCV_HWPROBE_EXT_ZCD`: The Zcd extension part of Zc* standard
extensions for code size reduction, as ratified in commit 8be3419c1c0
("Zcf doesn't exist on RV64 as it contains no instructions") of
riscv-code-size-reduction.
* :c:macro:`RISCV_HWPROBE_EXT_ZCF`: The Zcf extension part of Zc* standard
extensions for code size reduction, as ratified in commit 8be3419c1c0
("Zcf doesn't exist on RV64 as it contains no instructions") of
riscv-code-size-reduction.
* :c:macro:`RISCV_HWPROBE_EXT_ZCMOP`: The Zcmop May-Be-Operations extension is
supported as defined in the RISC-V ISA manual starting from commit
c732a4f39a4 ("Zcmop is ratified/1.0").
* :c:macro:`RISCV_HWPROBE_EXT_ZAWRS`: The Zawrs extension is supported as
ratified in commit 98918c844281 ("Merge pull request #1217 from
riscv/zawrs") of riscv-isa-manual.
* :c:macro:`RISCV_HWPROBE_EXT_SUPM`: The Supm extension is supported as
defined in version 1.0 of the RISC-V Pointer Masking extensions.
* :c:macro:`RISCV_HWPROBE_KEY_CPUPERF_0`: Deprecated. Returns similar values to
:c:macro:`RISCV_HWPROBE_KEY_MISALIGNED_SCALAR_PERF`, but the key was
mistakenly classified as a bitmask rather than a value.
* :c:macro:`RISCV_HWPROBE_KEY_MISALIGNED_SCALAR_PERF`: An enum value describing
the performance of misaligned scalar native word accesses on the selected set
of processors.
* :c:macro:`RISCV_HWPROBE_MISALIGNED_SCALAR_UNKNOWN`: The performance of
misaligned scalar accesses is unknown.
* :c:macro:`RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED`: Misaligned scalar
accesses are emulated via software, either in or below the kernel. These
accesses are always extremely slow.
* :c:macro:`RISCV_HWPROBE_MISALIGNED_SCALAR_SLOW`: Misaligned scalar native
word sized accesses are slower than the equivalent quantity of byte
accesses. Misaligned accesses may be supported directly in hardware, or
trapped and emulated by software.
* :c:macro:`RISCV_HWPROBE_MISALIGNED_SCALAR_FAST`: Misaligned scalar native
word sized accesses are faster than the equivalent quantity of byte
accesses.
* :c:macro:`RISCV_HWPROBE_MISALIGNED_SCALAR_UNSUPPORTED`: Misaligned scalar
accesses are not supported at all and will generate a misaligned address
fault.
* :c:macro:`RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE`: An unsigned int which
represents the size of the Zicboz block in bytes.
* :c:macro:`RISCV_HWPROBE_KEY_HIGHEST_VIRT_ADDRESS`: An unsigned long which
represent the highest userspace virtual address usable.
* :c:macro:`RISCV_HWPROBE_KEY_TIME_CSR_FREQ`: Frequency (in Hz) of `time CSR`.
* :c:macro:`RISCV_HWPROBE_KEY_MISALIGNED_VECTOR_PERF`: An enum value describing the
performance of misaligned vector accesses on the selected set of processors.
* :c:macro:`RISCV_HWPROBE_MISALIGNED_VECTOR_UNKNOWN`: The performance of misaligned
vector accesses is unknown.
* :c:macro:`RISCV_HWPROBE_MISALIGNED_VECTOR_SLOW`: 32-bit misaligned accesses using vector
registers are slower than the equivalent quantity of byte accesses via vector registers.
Misaligned accesses may be supported directly in hardware, or trapped and emulated by software.
* :c:macro:`RISCV_HWPROBE_MISALIGNED_VECTOR_FAST`: 32-bit misaligned accesses using vector
registers are faster than the equivalent quantity of byte accesses via vector registers.
* :c:macro:`RISCV_HWPROBE_MISALIGNED_VECTOR_UNSUPPORTED`: Misaligned vector accesses are
not supported at all and will generate a misaligned address fault.
|