summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kernel/cpufeature.c
blob: d2856b129097899d37ba3790056fc28eefc8409e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#define pr_fmt(fmt) "CPU features: " fmt

#include <linux/bsearch.h>
#include <linux/cpumask.h>
#include <linux/sort.h>
#include <linux/stop_machine.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <asm/cpu.h>
#include <asm/cpufeature.h>
#include <asm/cpu_ops.h>
#include <asm/fpsimd.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
#include <asm/sysreg.h>
#include <asm/traps.h>
#include <asm/virt.h>

unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcaps);

/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
{
	/* file-wide pr_fmt adds "CPU features: " prefix */
	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
	return 0;
}

static struct notifier_block cpu_hwcaps_notifier = {
	.notifier_call = dump_cpu_hwcaps
};

static int __init register_cpu_hwcaps_dumper(void)
{
	atomic_notifier_chain_register(&panic_notifier_list,
				       &cpu_hwcaps_notifier);
	return 0;
}
__initcall(register_cpu_hwcaps_dumper);

DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);

#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	{						\
		.sign = SIGNED,				\
		.visible = VISIBLE,			\
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

/* Define a feature with unsigned values */
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

/* Define a feature with a signed value */
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

/* meta feature for alternatives */
static bool __maybe_unused
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);


/*
 * NOTE: Any changes to the visibility of features should be kept in
 * sync with the documentation of the CPU feature register ABI.
 */
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
	/* Linux doesn't care about the EL3 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
	/* Linux shouldn't care about secure memory */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_ctr[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
	 * make use of *minLine.
	 * If we have differing I-cache policies, report it as the weakest - VIPT.
	 */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
	ARM64_FTR_END,
};

struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
	.name		= "SYS_CTR_EL0",
	.ftr_bits	= ftr_ctr
};

static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
	/*
	 * We can instantiate multiple PMU instances with different levels
	 * of support.
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_mvfr2[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_dczid[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
	ARM64_FTR_END,
};


static const struct arm64_ftr_bits ftr_id_isar5[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_pfr0[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_dfr0[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_zcr[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
	ARM64_FTR_END,
};

/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

/* Table for a single 32bit feature value */
static const struct arm64_ftr_bits ftr_single32[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_raz[] = {
	ARM64_FTR_END,
};

#define ARM64_FTR_REG(id, table) {		\
	.sys_id = id,				\
	.reg = 	&(struct arm64_ftr_reg){	\
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
	}}

static const struct __ftr_reg_entry {
	u32			sys_id;
	struct arm64_ftr_reg 	*reg;
} arm64_ftr_regs[] = {

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),

	/* Op1 = 0, CRn = 1, CRm = 2 */
	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),

	/* Op1 = 3, CRn = 0, CRm = 0 */
	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
	const struct __ftr_reg_entry *ret;

	ret = bsearch((const void *)(unsigned long)sys_id,
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
	if (ret)
		return ret->reg;
	return NULL;
}

static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static void __init sort_ftr_regs(void)
{
	int i;

	/* Check that the array is sorted so that we can do the binary search */
	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
 * Any bits that are not covered by an arm64_ftr_bits entry are considered
 * RES0 for the system-wide value, and must strictly match.
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
	u64 user_mask = 0;
	u64 valid_mask = 0;

	const struct arm64_ftr_bits *ftrp;
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
		u64 ftr_mask = arm64_ftr_mask(ftrp);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);

		valid_mask |= ftr_mask;
		if (!ftrp->strict)
			strict_mask &= ~ftr_mask;
		if (ftrp->visible)
			user_mask |= ftr_mask;
		else
			reg->user_val = arm64_ftr_set_value(ftrp,
							    reg->user_val,
							    ftrp->safe_val);
	}

	val &= valid_mask;

	reg->sys_val = val;
	reg->strict_mask = strict_mask;
	reg->user_mask = user_mask;
}

extern const struct arm64_cpu_capabilities arm64_errata[];
static void __init setup_boot_cpu_capabilities(void);

void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
	}

	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
		sve_init_vq_map();
	}

	/*
	 * Detect and enable early CPU capabilities based on the boot CPU,
	 * after we have initialised the CPU feature infrastructure.
	 */
	setup_boot_cpu_capabilities();
}

static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
{
	const struct arm64_ftr_bits *ftrp;

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);

	/*
	 * EL3 is not our concern.
	 * ID_AA64PFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);

	/*
	 * If we have AArch32, we care about 32-bit features for compat.
	 * If the system doesn't support AArch32, don't update them.
	 */
	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {

		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
					info->reg_id_dfr0, boot->reg_id_dfr0);
		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
					info->reg_id_isar0, boot->reg_id_isar0);
		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
					info->reg_id_isar1, boot->reg_id_isar1);
		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
					info->reg_id_isar2, boot->reg_id_isar2);
		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
					info->reg_id_isar3, boot->reg_id_isar3);
		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
					info->reg_id_isar4, boot->reg_id_isar4);
		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
					info->reg_id_isar5, boot->reg_id_isar5);

		/*
		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
		 * ACTLR formats could differ across CPUs and therefore would have to
		 * be trapped for virtualization anyway.
		 */
		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
					info->reg_id_pfr0, boot->reg_id_pfr0);
		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
					info->reg_id_pfr1, boot->reg_id_pfr1);
		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
					info->reg_mvfr0, boot->reg_mvfr0);
		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
					info->reg_mvfr1, boot->reg_mvfr1);
		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
					info->reg_mvfr2, boot->reg_mvfr2);
	}

	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
					info->reg_zcr, boot->reg_zcr);

		/* Probe vector lengths, unless we already gave up on SVE */
		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
		    !sys_caps_initialised)
			sve_update_vq_map();
	}

	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
	if (taint) {
		pr_warn_once("Unsupported CPU feature variation detected.\n");
		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
	}
}

u64 read_sanitised_ftr_reg(u32 id)
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}

#define read_sysreg_case(r)	\
	case r:		return read_sysreg_s(r)

/*
 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
 * Read the system register on the current CPU
 */
static u64 __read_sysreg_by_encoding(u32 sys_id)
{
	switch (sys_id) {
	read_sysreg_case(SYS_ID_PFR0_EL1);
	read_sysreg_case(SYS_ID_PFR1_EL1);
	read_sysreg_case(SYS_ID_DFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR1_EL1);
	read_sysreg_case(SYS_ID_MMFR2_EL1);
	read_sysreg_case(SYS_ID_MMFR3_EL1);
	read_sysreg_case(SYS_ID_ISAR0_EL1);
	read_sysreg_case(SYS_ID_ISAR1_EL1);
	read_sysreg_case(SYS_ID_ISAR2_EL1);
	read_sysreg_case(SYS_ID_ISAR3_EL1);
	read_sysreg_case(SYS_ID_ISAR4_EL1);
	read_sysreg_case(SYS_ID_ISAR5_EL1);
	read_sysreg_case(SYS_MVFR0_EL1);
	read_sysreg_case(SYS_MVFR1_EL1);
	read_sysreg_case(SYS_MVFR2_EL1);

	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);

	read_sysreg_case(SYS_CNTFRQ_EL0);
	read_sysreg_case(SYS_CTR_EL0);
	read_sysreg_case(SYS_DCZID_EL0);

	default:
		BUG();
		return 0;
	}
}

#include <linux/irqchip/arm-gic-v3.h>

static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);

	return val >= entry->min_field_value;
}

static bool
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
{
	u64 val;

	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
		val = read_sanitised_ftr_reg(entry->sys_reg);
	else
		val = __read_sysreg_by_encoding(entry->sys_reg);

	return feature_matches(val, entry);
}

static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
{
	bool has_sre;

	if (!has_cpuid_feature(entry, scope))
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
{
	u32 midr = read_cpuid_id();

	/* Cavium ThunderX pass 1.x and 2.x */
	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
		MIDR_CPU_VAR_REV(0, 0),
		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
}

static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
{
	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);

	return cpuid_feature_extract_signed_field(pfr0,
					ID_AA64PFR0_FP_SHIFT) < 0;
}

static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
			  int __unused)
{
	return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_IDC_SHIFT);
}

static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
			  int __unused)
{
	return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_DIC_SHIFT);
}

#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */

static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
				int scope)
{
	/* List of CPUs that are not vulnerable and don't need KPTI */
	static const struct midr_range kpti_safe_list[] = {
		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
		{ /* sentinel */ }
	};
	char const *str = "command line option";

	/*
	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
	 * ThunderX leads to apparent I-cache corruption of kernel text, which
	 * ends as well as you might imagine. Don't even try.
	 */
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
		str = "ARM64_WORKAROUND_CAVIUM_27456";
		__kpti_forced = -1;
	}

	/* Forced? */
	if (__kpti_forced) {
		pr_info_once("kernel page table isolation forced %s by %s\n",
			     __kpti_forced > 0 ? "ON" : "OFF", str);
		return __kpti_forced > 0;
	}

	/* Useful for KASLR robustness */
	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
		return true;

	/* Don't force KPTI for CPUs that are not vulnerable */
	if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
		return false;

	/* Defer to CPU feature registers */
	return !has_cpuid_feature(entry, scope);
}

static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
{
	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
	kpti_remap_fn *remap_fn;

	static bool kpti_applied = false;
	int cpu = smp_processor_id();

	if (kpti_applied)
		return;

	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);

	cpu_install_idmap();
	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
	cpu_uninstall_idmap();

	if (!cpu)
		kpti_applied = true;

	return;
}

static int __init parse_kpti(char *str)
{
	bool enabled;
	int ret = strtobool(str, &enabled);

	if (ret)
		return ret;

	__kpti_forced = enabled ? 1 : -1;
	return 0;
}
__setup("kpti=", parse_kpti);
#endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */

#ifdef CONFIG_ARM64_HW_AFDBM
static inline void __cpu_enable_hw_dbm(void)
{
	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;

	write_sysreg(tcr, tcr_el1);
	isb();
}

static bool cpu_has_broken_dbm(void)
{
	/* List of CPUs which have broken DBM support. */
	static const struct midr_range cpus[] = {
#ifdef CONFIG_ARM64_ERRATUM_1024718
		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
#endif
		{},
	};

	return is_midr_in_range_list(read_cpuid_id(), cpus);
}

static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
{
	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
	       !cpu_has_broken_dbm();
}

static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
{
	if (cpu_can_use_dbm(cap))
		__cpu_enable_hw_dbm();
}

static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
		       int __unused)
{
	static bool detected = false;
	/*
	 * DBM is a non-conflicting feature. i.e, the kernel can safely
	 * run a mix of CPUs with and without the feature. So, we
	 * unconditionally enable the capability to allow any late CPU
	 * to use the feature. We only enable the control bits on the
	 * CPU, if it actually supports.
	 *
	 * We have to make sure we print the "feature" detection only
	 * when at least one CPU actually uses it. So check if this CPU
	 * can actually use it and print the message exactly once.
	 *
	 * This is safe as all CPUs (including secondary CPUs - due to the
	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
	 * goes through the "matches" check exactly once. Also if a CPU
	 * matches the criteria, it is guaranteed that the CPU will turn
	 * the DBM on, as the capability is unconditionally enabled.
	 */
	if (!detected && cpu_can_use_dbm(cap)) {
		detected = true;
		pr_info("detected: Hardware dirty bit management\n");
	}

	return true;
}

#endif

#ifdef CONFIG_ARM64_VHE
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
{
	return is_kernel_in_hyp_mode();
}

static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
{
	/*
	 * Copy register values that aren't redirected by hardware.
	 *
	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
	 * this value to tpidr_el2 before we patch the code. Once we've done
	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
	 * do anything here.
	 */
	if (!alternatives_applied)
		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
}
#endif

static const struct arm64_cpu_capabilities arm64_features[] = {
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_useable_gicv3_cpuif,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 1,
	},
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 1,
		.cpu_enable = cpu_enable_pan,
	},
#endif /* CONFIG_ARM64_PAN */
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.matches = has_no_hw_prefetch,
	},
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
		/*
		 * We rely on stop_machine() calling uao_thread_switch() to set
		 * UAO immediately after patching.
		 */
	},
#endif /* CONFIG_ARM64_UAO */
#ifdef CONFIG_ARM64_PAN
	{
		.capability = ARM64_ALT_PAN_NOT_UAO,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = cpufeature_pan_not_uao,
	},
#endif /* CONFIG_ARM64_PAN */
#ifdef CONFIG_ARM64_VHE
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
		.matches = runs_at_el2,
		.cpu_enable = cpu_copy_el2regs,
	},
#endif	/* CONFIG_ARM64_VHE */
	{
		.desc = "32-bit EL0 Support",
		.capability = ARM64_HAS_32BIT_EL0,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
	{
		.desc = "Kernel page table isolation (KPTI)",
		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
		/*
		 * The ID feature fields below are used to indicate that
		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
		 * more details.
		 */
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
		.min_field_value = 1,
		.matches = unmap_kernel_at_el0,
		.cpu_enable = kpti_install_ng_mappings,
	},
#endif
	{
		/* FP/SIMD is not implemented */
		.capability = ARM64_HAS_NO_FPSIMD,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.min_field_value = 0,
		.matches = has_no_fpsimd,
	},
#ifdef CONFIG_ARM64_PMEM
	{
		.desc = "Data cache clean to Point of Persistence",
		.capability = ARM64_HAS_DCPOP,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
		.min_field_value = 1,
	},
#endif
#ifdef CONFIG_ARM64_SVE
	{
		.desc = "Scalable Vector Extension",
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.capability = ARM64_SVE,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_SVE_SHIFT,
		.min_field_value = ID_AA64PFR0_SVE,
		.matches = has_cpuid_feature,
		.cpu_enable = sve_kernel_enable,
	},
#endif /* CONFIG_ARM64_SVE */
#ifdef CONFIG_ARM64_RAS_EXTN
	{
		.desc = "RAS Extension Support",
		.capability = ARM64_HAS_RAS_EXTN,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_RAS_SHIFT,
		.min_field_value = ID_AA64PFR0_RAS_V1,
		.cpu_enable = cpu_clear_disr,
	},
#endif /* CONFIG_ARM64_RAS_EXTN */
	{
		.desc = "Data cache clean to the PoU not required for I/D coherence",
		.capability = ARM64_HAS_CACHE_IDC,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cache_idc,
	},
	{
		.desc = "Instruction cache invalidation not required for I/D coherence",
		.capability = ARM64_HAS_CACHE_DIC,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cache_dic,
	},
#ifdef CONFIG_ARM64_HW_AFDBM
	{
		/*
		 * Since we turn this on always, we don't want the user to
		 * think that the feature is available when it may not be.
		 * So hide the description.
		 *
		 * .desc = "Hardware pagetable Dirty Bit Management",
		 *
		 */
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.capability = ARM64_HW_DBM,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
		.min_field_value = 2,
		.matches = has_hw_dbm,
		.cpu_enable = cpu_enable_hw_dbm,
	},
#endif
	{},
};

#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)	\
	{							\
		.desc = #cap,					\
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,		\
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
		.sign = s,					\
		.min_field_value = min_value,			\
		.hwcap_type = cap_type,				\
		.hwcap = cap,					\
	}

static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
#ifdef CONFIG_ARM64_SVE
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
#endif
	{},
};

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
#ifdef CONFIG_COMPAT
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
#endif
	{},
};

static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
{
	/* We support emulation of accesses to CPU ID feature registers */
	elf_hwcap |= HWCAP_CPUID;
	for (; hwcaps->matches; hwcaps++)
		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
			cap_set_elf_hwcap(hwcaps);
}

/*
 * Check if the current CPU has a given feature capability.
 * Should be called from non-preemptible context.
 */
static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
			       unsigned int cap)
{
	const struct arm64_cpu_capabilities *caps;

	if (WARN_ON(preemptible()))
		return false;

	for (caps = cap_array; caps->matches; caps++)
		if (caps->capability == cap)
			return caps->matches(caps, SCOPE_LOCAL_CPU);

	return false;
}

static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
				      u16 scope_mask, const char *info)
{
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
	for (; caps->matches; caps++) {
		if (!(caps->type & scope_mask) ||
		    !caps->matches(caps, cpucap_default_scope(caps)))
			continue;

		if (!cpus_have_cap(caps->capability) && caps->desc)
			pr_info("%s %s\n", info, caps->desc);
		cpus_set_cap(caps->capability);
	}
}

static void update_cpu_capabilities(u16 scope_mask)
{
	__update_cpu_capabilities(arm64_features, scope_mask, "detected:");
	__update_cpu_capabilities(arm64_errata, scope_mask,
				  "enabling workaround for");
}

static int __enable_cpu_capability(void *arg)
{
	const struct arm64_cpu_capabilities *cap = arg;

	cap->cpu_enable(cap);
	return 0;
}

/*
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
 */
static void __init
__enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
			  u16 scope_mask)
{
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
	for (; caps->matches; caps++) {
		unsigned int num = caps->capability;

		if (!(caps->type & scope_mask) || !cpus_have_cap(num))
			continue;

		/* Ensure cpus_have_const_cap(num) works */
		static_branch_enable(&cpu_hwcap_keys[num]);

		if (caps->cpu_enable) {
			/*
			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
			 * before any secondary CPU boots. Thus, each secondary
			 * will enable the capability as appropriate via
			 * check_local_cpu_capabilities(). The only exception is
			 * the boot CPU, for which the capability must be
			 * enabled here. This approach avoids costly
			 * stop_machine() calls for this case.
			 *
			 * Otherwise, use stop_machine() as it schedules the
			 * work allowing us to modify PSTATE, instead of
			 * on_each_cpu() which uses an IPI, giving us a PSTATE
			 * that disappears when we return.
			 */
			if (scope_mask & SCOPE_BOOT_CPU)
				caps->cpu_enable(caps);
			else
				stop_machine(__enable_cpu_capability,
					     (void *)caps, cpu_online_mask);
		}
	}
}

static void __init enable_cpu_capabilities(u16 scope_mask)
{
	__enable_cpu_capabilities(arm64_features, scope_mask);
	__enable_cpu_capabilities(arm64_errata, scope_mask);
}

/*
 * Run through the list of capabilities to check for conflicts.
 * If the system has already detected a capability, take necessary
 * action on this CPU.
 *
 * Returns "false" on conflicts.
 */
static bool
__verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
			u16 scope_mask)
{
	bool cpu_has_cap, system_has_cap;

	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;

	for (; caps->matches; caps++) {
		if (!(caps->type & scope_mask))
			continue;

		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
		system_has_cap = cpus_have_cap(caps->capability);

		if (system_has_cap) {
			/*
			 * Check if the new CPU misses an advertised feature,
			 * which is not safe to miss.
			 */
			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
				break;
			/*
			 * We have to issue cpu_enable() irrespective of
			 * whether the CPU has it or not, as it is enabeld
			 * system wide. It is upto the call back to take
			 * appropriate action on this CPU.
			 */
			if (caps->cpu_enable)
				caps->cpu_enable(caps);
		} else {
			/*
			 * Check if the CPU has this capability if it isn't
			 * safe to have when the system doesn't.
			 */
			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
				break;
		}
	}

	if (caps->matches) {
		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
			smp_processor_id(), caps->capability,
			caps->desc, system_has_cap, cpu_has_cap);
		return false;
	}

	return true;
}

static bool verify_local_cpu_caps(u16 scope_mask)
{
	return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
	       __verify_local_cpu_caps(arm64_features, scope_mask);
}

/*
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
 */
static void check_early_cpu_features(void)
{
	verify_cpu_asid_bits();
	/*
	 * Early features are used by the kernel already. If there
	 * is a conflict, we cannot proceed further.
	 */
	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
		cpu_panic_kernel();
}

static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

static void verify_sve_features(void)
{
	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
	u64 zcr = read_zcr_features();

	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
	unsigned int len = zcr & ZCR_ELx_LEN_MASK;

	if (len < safe_len || sve_verify_vq_map()) {
		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
			smp_processor_id());
		cpu_die_early();
	}

	/* Add checks on other ZCR bits here if necessary */
}


/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
static void verify_local_cpu_capabilities(void)
{
	/*
	 * The capabilities with SCOPE_BOOT_CPU are checked from
	 * check_early_cpu_features(), as they need to be verified
	 * on all secondary CPUs.
	 */
	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
		cpu_die_early();

	verify_local_elf_hwcaps(arm64_elf_hwcaps);

	if (system_supports_32bit_el0())
		verify_local_elf_hwcaps(compat_elf_hwcaps);

	if (system_supports_sve())
		verify_sve_features();
}

void check_local_cpu_capabilities(void)
{
	/*
	 * All secondary CPUs should conform to the early CPU features
	 * in use by the kernel based on boot CPU.
	 */
	check_early_cpu_features();

	/*
	 * If we haven't finalised the system capabilities, this CPU gets
	 * a chance to update the errata work arounds and local features.
	 * Otherwise, this CPU should verify that it has all the system
	 * advertised capabilities.
	 */
	if (!sys_caps_initialised)
		update_cpu_capabilities(SCOPE_LOCAL_CPU);
	else
		verify_local_cpu_capabilities();
}

static void __init setup_boot_cpu_capabilities(void)
{
	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
	enable_cpu_capabilities(SCOPE_BOOT_CPU);
}

DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
EXPORT_SYMBOL(arm64_const_caps_ready);

static void __init mark_const_caps_ready(void)
{
	static_branch_enable(&arm64_const_caps_ready);
}

extern const struct arm64_cpu_capabilities arm64_errata[];

bool this_cpu_has_cap(unsigned int cap)
{
	return (__this_cpu_has_cap(arm64_features, cap) ||
		__this_cpu_has_cap(arm64_errata, cap));
}

static void __init setup_system_capabilities(void)
{
	/*
	 * We have finalised the system-wide safe feature
	 * registers, finalise the capabilities that depend
	 * on it. Also enable all the available capabilities,
	 * that are not enabled already.
	 */
	update_cpu_capabilities(SCOPE_SYSTEM);
	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
}

void __init setup_cpu_features(void)
{
	u32 cwg;

	setup_system_capabilities();
	mark_const_caps_ready();
	setup_elf_hwcaps(arm64_elf_hwcaps);

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);

	if (system_uses_ttbr0_pan())
		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");

	sve_setup();
	minsigstksz_setup();

	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	if (!cwg)
		pr_warn("No Cache Writeback Granule information, assuming %d\n",
			ARCH_DMA_MINALIGN);
}

static bool __maybe_unused
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
{
	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
}

/*
 * We emulate only the following system register space.
 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
 * See Table C5-6 System instruction encodings for System register accesses,
 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
 */
static inline bool __attribute_const__ is_emulated(u32 id)
{
	return (sys_reg_Op0(id) == 0x3 &&
		sys_reg_CRn(id) == 0x0 &&
		sys_reg_Op1(id) == 0x0 &&
		(sys_reg_CRm(id) == 0 ||
		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
}

/*
 * With CRm == 0, reg should be one of :
 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
 */
static inline int emulate_id_reg(u32 id, u64 *valp)
{
	switch (id) {
	case SYS_MIDR_EL1:
		*valp = read_cpuid_id();
		break;
	case SYS_MPIDR_EL1:
		*valp = SYS_MPIDR_SAFE_VAL;
		break;
	case SYS_REVIDR_EL1:
		/* IMPLEMENTATION DEFINED values are emulated with 0 */
		*valp = 0;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int emulate_sys_reg(u32 id, u64 *valp)
{
	struct arm64_ftr_reg *regp;

	if (!is_emulated(id))
		return -EINVAL;

	if (sys_reg_CRm(id) == 0)
		return emulate_id_reg(id, valp);

	regp = get_arm64_ftr_reg(id);
	if (regp)
		*valp = arm64_ftr_reg_user_value(regp);
	else
		/*
		 * The untracked registers are either IMPLEMENTATION DEFINED
		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
		 */
		*valp = 0;
	return 0;
}

static int emulate_mrs(struct pt_regs *regs, u32 insn)
{
	int rc;
	u32 sys_reg, dst;
	u64 val;

	/*
	 * sys_reg values are defined as used in mrs/msr instruction.
	 * shift the imm value to get the encoding.
	 */
	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
	rc = emulate_sys_reg(sys_reg, &val);
	if (!rc) {
		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
		pt_regs_write_reg(regs, dst, val);
		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
	}

	return rc;
}

static struct undef_hook mrs_hook = {
	.instr_mask = 0xfff00000,
	.instr_val  = 0xd5300000,
	.pstate_mask = COMPAT_PSR_MODE_MASK,
	.pstate_val = PSR_MODE_EL0t,
	.fn = emulate_mrs,
};

static int __init enable_mrs_emulation(void)
{
	register_undef_hook(&mrs_hook);
	return 0;
}

core_initcall(enable_mrs_emulation);

void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
{
	/* Firmware may have left a deferred SError in this register. */
	write_sysreg_s(0, SYS_DISR_EL1);
}