1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* The file intends to implement the platform dependent EEH operations on pseries.
* Actually, the pseries platform is built based on RTAS heavily. That means the
* pseries platform dependent EEH operations will be built on RTAS calls. The functions
* are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
* been done.
*
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
* Copyright IBM Corporation 2001, 2005, 2006
* Copyright Dave Engebretsen & Todd Inglett 2001
* Copyright Linas Vepstas 2005, 2006
*/
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/crash_dump.h>
#include <asm/eeh.h>
#include <asm/eeh_event.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/ppc-pci.h>
#include <asm/rtas.h>
/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;
static int ibm_get_config_addr_info;
static int ibm_get_config_addr_info2;
static int ibm_configure_pe;
static void pseries_eeh_init_edev(struct pci_dn *pdn);
static void pseries_pcibios_bus_add_device(struct pci_dev *pdev)
{
struct pci_dn *pdn = pci_get_pdn(pdev);
if (eeh_has_flag(EEH_FORCE_DISABLED))
return;
dev_dbg(&pdev->dev, "EEH: Setting up device\n");
#ifdef CONFIG_PCI_IOV
if (pdev->is_virtfn) {
pdn->device_id = pdev->device;
pdn->vendor_id = pdev->vendor;
pdn->class_code = pdev->class;
/*
* Last allow unfreeze return code used for retrieval
* by user space in eeh-sysfs to show the last command
* completion from platform.
*/
pdn->last_allow_rc = 0;
}
#endif
pseries_eeh_init_edev(pdn);
#ifdef CONFIG_PCI_IOV
if (pdev->is_virtfn) {
/*
* FIXME: This really should be handled by choosing the right
* parent PE in pseries_eeh_init_edev().
*/
struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe;
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
edev->pe_config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */
eeh_pe_tree_insert(edev, physfn_pe); /* Add as VF PE type */
}
#endif
eeh_probe_device(pdev);
}
/**
* pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device
* @pdn: pci_dn of the input device
*
* The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo,
* pe_config_addr) as a handle to a given PE. This function finds the
* pe_config_addr based on the device's config addr.
*
* Keep in mind that the pe_config_addr *might* be numerically identical to the
* device's config addr, but the two are conceptually distinct.
*
* Returns the pe_config_addr, or a negative error code.
*/
static int pseries_eeh_get_pe_config_addr(struct pci_dn *pdn)
{
int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
struct pci_controller *phb = pdn->phb;
int ret, rets[3];
if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
/*
* First of all, use function 1 to determine if this device is
* part of a PE or not. ret[0] being zero indicates it's not.
*/
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid), 1);
if (ret || (rets[0] == 0))
return -ENOENT;
/* Retrieve the associated PE config address with function 0 */
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid), 0);
if (ret) {
pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
__func__, phb->global_number, config_addr);
return -ENXIO;
}
return rets[0];
}
if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid), 0);
if (ret) {
pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
__func__, phb->global_number, config_addr);
return -ENXIO;
}
return rets[0];
}
/*
* PAPR does describe a process for finding the pe_config_addr that was
* used before the ibm,get-config-addr-info calls were added. However,
* I haven't found *any* systems that don't have that RTAS call
* implemented. If you happen to find one that needs the old DT based
* process, patches are welcome!
*/
return -ENOENT;
}
/**
* pseries_eeh_phb_reset - Reset the specified PHB
* @phb: PCI controller
* @config_addr: the associated config address
* @option: reset option
*
* Reset the specified PHB/PE
*/
static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option)
{
int ret;
/* Reset PE through RTAS call */
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid), option);
/* If fundamental-reset not supported, try hot-reset */
if (option == EEH_RESET_FUNDAMENTAL && ret == -8) {
option = EEH_RESET_HOT;
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid), option);
}
/* We need reset hold or settlement delay */
if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT)
msleep(EEH_PE_RST_HOLD_TIME);
else
msleep(EEH_PE_RST_SETTLE_TIME);
return ret;
}
/**
* pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE
* @phb: PCI controller
* @config_addr: the associated config address
*
* The function will be called to reconfigure the bridges included
* in the specified PE so that the mulfunctional PE would be recovered
* again.
*/
static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr)
{
int ret;
/* Waiting 0.2s maximum before skipping configuration */
int max_wait = 200;
while (max_wait > 0) {
ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid));
if (!ret)
return ret;
if (ret < 0)
break;
/*
* If RTAS returns a delay value that's above 100ms, cut it
* down to 100ms in case firmware made a mistake. For more
* on how these delay values work see rtas_busy_delay_time
*/
if (ret > RTAS_EXTENDED_DELAY_MIN+2 &&
ret <= RTAS_EXTENDED_DELAY_MAX)
ret = RTAS_EXTENDED_DELAY_MIN+2;
max_wait -= rtas_busy_delay_time(ret);
if (max_wait < 0)
break;
rtas_busy_delay(ret);
}
pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n",
__func__, phb->global_number, config_addr, ret);
/* PAPR defines -3 as "Parameter Error" for this function: */
if (ret == -3)
return -EINVAL;
else
return -EIO;
}
/*
* Buffer for reporting slot-error-detail rtas calls. Its here
* in BSS, and not dynamically alloced, so that it ends up in
* RMO where RTAS can access it.
*/
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;
static int pseries_eeh_cap_start(struct pci_dn *pdn)
{
u32 status;
if (!pdn)
return 0;
rtas_read_config(pdn, PCI_STATUS, 2, &status);
if (!(status & PCI_STATUS_CAP_LIST))
return 0;
return PCI_CAPABILITY_LIST;
}
static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
{
int pos = pseries_eeh_cap_start(pdn);
int cnt = 48; /* Maximal number of capabilities */
u32 id;
if (!pos)
return 0;
while (cnt--) {
rtas_read_config(pdn, pos, 1, &pos);
if (pos < 0x40)
break;
pos &= ~3;
rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
if (id == 0xff)
break;
if (id == cap)
return pos;
pos += PCI_CAP_LIST_NEXT;
}
return 0;
}
static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
{
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
u32 header;
int pos = 256;
int ttl = (4096 - 256) / 8;
if (!edev || !edev->pcie_cap)
return 0;
if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
return 0;
else if (!header)
return 0;
while (ttl-- > 0) {
if (PCI_EXT_CAP_ID(header) == cap && pos)
return pos;
pos = PCI_EXT_CAP_NEXT(header);
if (pos < 256)
break;
if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
break;
}
return 0;
}
/**
* pseries_eeh_pe_get_parent - Retrieve the parent PE
* @edev: EEH device
*
* The whole PEs existing in the system are organized as hierarchy
* tree. The function is used to retrieve the parent PE according
* to the parent EEH device.
*/
static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev)
{
struct eeh_dev *parent;
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
/*
* It might have the case for the indirect parent
* EEH device already having associated PE, but
* the direct parent EEH device doesn't have yet.
*/
if (edev->physfn)
pdn = pci_get_pdn(edev->physfn);
else
pdn = pdn ? pdn->parent : NULL;
while (pdn) {
/* We're poking out of PCI territory */
parent = pdn_to_eeh_dev(pdn);
if (!parent)
return NULL;
if (parent->pe)
return parent->pe;
pdn = pdn->parent;
}
return NULL;
}
/**
* pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn
*
* @pdn: PCI device node
*
* When we discover a new PCI device via the device-tree we create a
* corresponding pci_dn and we allocate, but don't initialise, an eeh_dev.
* This function takes care of the initialisation and inserts the eeh_dev
* into the correct eeh_pe. If no eeh_pe exists we'll allocate one.
*/
static void pseries_eeh_init_edev(struct pci_dn *pdn)
{
struct eeh_pe pe, *parent;
struct eeh_dev *edev;
u32 pcie_flags;
int ret;
if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE)))
return;
/*
* Find the eeh_dev for this pdn. The storage for the eeh_dev was
* allocated at the same time as the pci_dn.
*
* XXX: We should probably re-visit that.
*/
edev = pdn_to_eeh_dev(pdn);
if (!edev)
return;
/*
* If ->pe is set then we've already probed this device. We hit
* this path when a pci_dev is removed and rescanned while recovering
* a PE (i.e. for devices where the driver doesn't support error
* recovery).
*/
if (edev->pe)
return;
/* Check class/vendor/device IDs */
if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
return;
/* Skip for PCI-ISA bridge */
if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
return;
eeh_edev_dbg(edev, "Probing device\n");
/*
* Update class code and mode of eeh device. We need
* correctly reflects that current device is root port
* or PCIe switch downstream port.
*/
edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
edev->mode &= 0xFFFFFF00;
if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
edev->mode |= EEH_DEV_BRIDGE;
if (edev->pcie_cap) {
rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
2, &pcie_flags);
pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
edev->mode |= EEH_DEV_ROOT_PORT;
else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
edev->mode |= EEH_DEV_DS_PORT;
}
}
/* first up, find the pe_config_addr for the PE containing the device */
ret = pseries_eeh_get_pe_config_addr(pdn);
if (ret < 0) {
eeh_edev_dbg(edev, "Unable to find pe_config_addr\n");
goto err;
}
/* Try enable EEH on the fake PE */
memset(&pe, 0, sizeof(struct eeh_pe));
pe.phb = pdn->phb;
pe.addr = ret;
eeh_edev_dbg(edev, "Enabling EEH on device\n");
ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
if (ret) {
eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret);
goto err;
}
edev->pe_config_addr = pe.addr;
eeh_add_flag(EEH_ENABLED);
parent = pseries_eeh_pe_get_parent(edev);
eeh_pe_tree_insert(edev, parent);
eeh_save_bars(edev);
eeh_edev_dbg(edev, "EEH enabled for device");
return;
err:
eeh_edev_dbg(edev, "EEH is unsupported on device (code = %d)\n", ret);
}
static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev)
{
struct eeh_dev *edev;
struct pci_dn *pdn;
pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn);
if (!pdn)
return NULL;
/*
* If the system supports EEH on this device then the eeh_dev was
* configured and inserted into a PE in pseries_eeh_init_edev()
*/
edev = pdn_to_eeh_dev(pdn);
if (!edev || !edev->pe)
return NULL;
return edev;
}
/**
* pseries_eeh_init_edev_recursive - Enable EEH for the indicated device
* @pdn: PCI device node
*
* This routine must be used to perform EEH initialization for the
* indicated PCI device that was added after system boot (e.g.
* hotplug, dlpar).
*/
void pseries_eeh_init_edev_recursive(struct pci_dn *pdn)
{
struct pci_dn *n;
if (!pdn)
return;
list_for_each_entry(n, &pdn->child_list, list)
pseries_eeh_init_edev_recursive(n);
pseries_eeh_init_edev(pdn);
}
EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive);
/**
* pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
* @pe: EEH PE
* @option: operation to be issued
*
* The function is used to control the EEH functionality globally.
* Currently, following options are support according to PAPR:
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
*/
static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
{
int ret = 0;
/*
* When we're enabling or disabling EEH functionality on
* the particular PE, the PE config address is possibly
* unavailable. Therefore, we have to figure it out from
* the FDT node.
*/
switch (option) {
case EEH_OPT_DISABLE:
case EEH_OPT_ENABLE:
case EEH_OPT_THAW_MMIO:
case EEH_OPT_THAW_DMA:
break;
case EEH_OPT_FREEZE_PE:
/* Not support */
return 0;
default:
pr_err("%s: Invalid option %d\n", __func__, option);
return -EINVAL;
}
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
pe->addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid), option);
return ret;
}
/**
* pseries_eeh_get_state - Retrieve PE state
* @pe: EEH PE
* @delay: suggested time to wait if state is unavailable
*
* Retrieve the state of the specified PE. On RTAS compliant
* pseries platform, there already has one dedicated RTAS function
* for the purpose. It's notable that the associated PE config address
* might be ready when calling the function. Therefore, endeavour to
* use the PE config address if possible. Further more, there're 2
* RTAS calls for the purpose, we need to try the new one and back
* to the old one if the new one couldn't work properly.
*/
static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay)
{
int ret;
int rets[4];
int result;
if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
pe->addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid));
} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
/* Fake PE unavailable info */
rets[2] = 0;
ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
pe->addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid));
} else {
return EEH_STATE_NOT_SUPPORT;
}
if (ret)
return ret;
/* Parse the result out */
if (!rets[1])
return EEH_STATE_NOT_SUPPORT;
switch(rets[0]) {
case 0:
result = EEH_STATE_MMIO_ACTIVE |
EEH_STATE_DMA_ACTIVE;
break;
case 1:
result = EEH_STATE_RESET_ACTIVE |
EEH_STATE_MMIO_ACTIVE |
EEH_STATE_DMA_ACTIVE;
break;
case 2:
result = 0;
break;
case 4:
result = EEH_STATE_MMIO_ENABLED;
break;
case 5:
if (rets[2]) {
if (delay)
*delay = rets[2];
result = EEH_STATE_UNAVAILABLE;
} else {
result = EEH_STATE_NOT_SUPPORT;
}
break;
default:
result = EEH_STATE_NOT_SUPPORT;
}
return result;
}
/**
* pseries_eeh_reset - Reset the specified PE
* @pe: EEH PE
* @option: reset option
*
* Reset the specified PE
*/
static int pseries_eeh_reset(struct eeh_pe *pe, int option)
{
return pseries_eeh_phb_reset(pe->phb, pe->addr, option);
}
/**
* pseries_eeh_get_log - Retrieve error log
* @pe: EEH PE
* @severity: temporary or permanent error log
* @drv_log: driver log to be combined with retrieved error log
* @len: length of driver log
*
* Retrieve the temporary or permanent error from the PE.
* Actually, the error will be retrieved through the dedicated
* RTAS call.
*/
static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&slot_errbuf_lock, flags);
memset(slot_errbuf, 0, eeh_error_buf_size);
ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, pe->addr,
BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
virt_to_phys(drv_log), len,
virt_to_phys(slot_errbuf), eeh_error_buf_size,
severity);
if (!ret)
log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
spin_unlock_irqrestore(&slot_errbuf_lock, flags);
return ret;
}
/**
* pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
* @pe: EEH PE
*
*/
static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
{
return pseries_eeh_phb_configure_bridge(pe->phb, pe->addr);
}
/**
* pseries_eeh_read_config - Read PCI config space
* @edev: EEH device handle
* @where: PCI config space offset
* @size: size to read
* @val: return value
*
* Read config space from the speicifed device
*/
static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val)
{
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
return rtas_read_config(pdn, where, size, val);
}
/**
* pseries_eeh_write_config - Write PCI config space
* @edev: EEH device handle
* @where: PCI config space offset
* @size: size to write
* @val: value to be written
*
* Write config space to the specified device
*/
static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val)
{
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
return rtas_write_config(pdn, where, size, val);
}
#ifdef CONFIG_PCI_IOV
static int pseries_send_allow_unfreeze(struct pci_dn *pdn, u16 *vf_pe_array, int cur_vfs)
{
int rc;
int ibm_allow_unfreeze = rtas_token("ibm,open-sriov-allow-unfreeze");
unsigned long buid, addr;
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
buid = pdn->phb->buid;
spin_lock(&rtas_data_buf_lock);
memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE);
rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL,
addr,
BUID_HI(buid),
BUID_LO(buid),
rtas_data_buf, cur_vfs * sizeof(u16));
spin_unlock(&rtas_data_buf_lock);
if (rc)
pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n",
__func__,
pdn->phb->global_number, addr, rc);
return rc;
}
static int pseries_call_allow_unfreeze(struct eeh_dev *edev)
{
int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num;
struct pci_dn *pdn, *tmp, *parent, *physfn_pdn;
u16 *vf_pe_array;
vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
if (!vf_pe_array)
return -ENOMEM;
if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) {
if (edev->pdev->is_physfn) {
cur_vfs = pci_num_vf(edev->pdev);
pdn = eeh_dev_to_pdn(edev);
parent = pdn->parent;
for (vf_index = 0; vf_index < cur_vfs; vf_index++)
vf_pe_array[vf_index] =
cpu_to_be16(pdn->pe_num_map[vf_index]);
rc = pseries_send_allow_unfreeze(pdn, vf_pe_array,
cur_vfs);
pdn->last_allow_rc = rc;
for (vf_index = 0; vf_index < cur_vfs; vf_index++) {
list_for_each_entry_safe(pdn, tmp,
&parent->child_list,
list) {
bus = pci_iov_virtfn_bus(edev->pdev,
vf_index);
devfn = pci_iov_virtfn_devfn(edev->pdev,
vf_index);
if (pdn->busno != bus ||
pdn->devfn != devfn)
continue;
pdn->last_allow_rc = rc;
}
}
} else {
pdn = pci_get_pdn(edev->pdev);
physfn_pdn = pci_get_pdn(edev->physfn);
vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index];
vf_pe_array[0] = cpu_to_be16(vf_pe_num);
rc = pseries_send_allow_unfreeze(physfn_pdn,
vf_pe_array, 1);
pdn->last_allow_rc = rc;
}
}
kfree(vf_pe_array);
return rc;
}
static int pseries_notify_resume(struct eeh_dev *edev)
{
if (!edev)
return -EEXIST;
if (rtas_token("ibm,open-sriov-allow-unfreeze") == RTAS_UNKNOWN_SERVICE)
return -EINVAL;
if (edev->pdev->is_physfn || edev->pdev->is_virtfn)
return pseries_call_allow_unfreeze(edev);
return 0;
}
#endif
static struct eeh_ops pseries_eeh_ops = {
.name = "pseries",
.probe = pseries_eeh_probe,
.set_option = pseries_eeh_set_option,
.get_state = pseries_eeh_get_state,
.reset = pseries_eeh_reset,
.get_log = pseries_eeh_get_log,
.configure_bridge = pseries_eeh_configure_bridge,
.err_inject = NULL,
.read_config = pseries_eeh_read_config,
.write_config = pseries_eeh_write_config,
.next_error = NULL,
.restore_config = NULL, /* NB: configure_bridge() does this */
#ifdef CONFIG_PCI_IOV
.notify_resume = pseries_notify_resume
#endif
};
/**
* eeh_pseries_init - Register platform dependent EEH operations
*
* EEH initialization on pseries platform. This function should be
* called before any EEH related functions.
*/
static int __init eeh_pseries_init(void)
{
struct pci_controller *phb;
struct pci_dn *pdn;
int ret, config_addr;
/* figure out EEH RTAS function call tokens */
ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
ibm_configure_pe = rtas_token("ibm,configure-pe");
/*
* ibm,configure-pe and ibm,configure-bridge have the same semantics,
* however ibm,configure-pe can be faster. If we can't find
* ibm,configure-pe then fall back to using ibm,configure-bridge.
*/
if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE)
ibm_configure_pe = rtas_token("ibm,configure-bridge");
/*
* Necessary sanity check. We needn't check "get-config-addr-info"
* and its variant since the old firmware probably support address
* of domain/bus/slot/function for EEH RTAS operations.
*/
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE ||
ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE ||
(ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) ||
ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE ||
ibm_configure_pe == RTAS_UNKNOWN_SERVICE) {
pr_info("EEH functionality not supported\n");
return -EINVAL;
}
/* Initialize error log size */
eeh_error_buf_size = rtas_get_error_log_max();
/* Set EEH probe mode */
eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
/* Set EEH machine dependent code */
ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device;
if (is_kdump_kernel() || reset_devices) {
pr_info("Issue PHB reset ...\n");
list_for_each_entry(phb, &hose_list, list_node) {
// Skip if the slot is empty
if (list_empty(&PCI_DN(phb->dn)->child_list))
continue;
pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list);
config_addr = pseries_eeh_get_pe_config_addr(pdn);
/* invalid PE config addr */
if (config_addr < 0)
continue;
pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL);
pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE);
pseries_eeh_phb_configure_bridge(phb, config_addr);
}
}
ret = eeh_init(&pseries_eeh_ops);
if (!ret)
pr_info("EEH: pSeries platform initialized\n");
else
pr_info("EEH: pSeries platform initialization failure (%d)\n",
ret);
return ret;
}
machine_arch_initcall(pseries, eeh_pseries_init);
|