1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
// SPDX-License-Identifier: GPL-2.0
#include <linux/ptrace.h>
#include <asm/bugs.h>
#include <asm/traps.h>
enum cp_error_code {
CP_EC = (1 << 15) - 1,
CP_RET = 1,
CP_IRET = 2,
CP_ENDBR = 3,
CP_RSTRORSSP = 4,
CP_SETSSBSY = 5,
CP_ENCL = 1 << 15,
};
static const char cp_err[][10] = {
[0] = "unknown",
[1] = "near ret",
[2] = "far/iret",
[3] = "endbranch",
[4] = "rstorssp",
[5] = "setssbsy",
};
static const char *cp_err_string(unsigned long error_code)
{
unsigned int cpec = error_code & CP_EC;
if (cpec >= ARRAY_SIZE(cp_err))
cpec = 0;
return cp_err[cpec];
}
static void do_unexpected_cp(struct pt_regs *regs, unsigned long error_code)
{
WARN_ONCE(1, "Unexpected %s #CP, error_code: %s\n",
user_mode(regs) ? "user mode" : "kernel mode",
cp_err_string(error_code));
}
static DEFINE_RATELIMIT_STATE(cpf_rate, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
static void do_user_cp_fault(struct pt_regs *regs, unsigned long error_code)
{
struct task_struct *tsk;
unsigned long ssp;
/*
* An exception was just taken from userspace. Since interrupts are disabled
* here, no scheduling should have messed with the registers yet and they
* will be whatever is live in userspace. So read the SSP before enabling
* interrupts so locking the fpregs to do it later is not required.
*/
rdmsrl(MSR_IA32_PL3_SSP, ssp);
cond_local_irq_enable(regs);
tsk = current;
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_CP;
/* Ratelimit to prevent log spamming. */
if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
__ratelimit(&cpf_rate)) {
pr_emerg("%s[%d] control protection ip:%lx sp:%lx ssp:%lx error:%lx(%s)%s",
tsk->comm, task_pid_nr(tsk),
regs->ip, regs->sp, ssp, error_code,
cp_err_string(error_code),
error_code & CP_ENCL ? " in enclave" : "");
print_vma_addr(KERN_CONT " in ", regs->ip);
pr_cont("\n");
}
force_sig_fault(SIGSEGV, SEGV_CPERR, (void __user *)0);
cond_local_irq_disable(regs);
}
static __ro_after_init bool ibt_fatal = true;
/*
* By definition, all missing-ENDBRANCH #CPs are a result of WFE && !ENDBR.
*
* For the kernel IBT no ENDBR selftest where #CPs are deliberately triggered,
* the WFE state of the interrupted context needs to be cleared to let execution
* continue. Otherwise when the CPU resumes from the instruction that just
* caused the previous #CP, another missing-ENDBRANCH #CP is raised and the CPU
* enters a dead loop.
*
* This is not a problem with IDT because it doesn't preserve WFE and IRET doesn't
* set WFE. But FRED provides space on the entry stack (in an expanded CS area)
* to save and restore the WFE state, thus the WFE state is no longer clobbered,
* so software must clear it.
*/
static void ibt_clear_fred_wfe(struct pt_regs *regs)
{
/*
* No need to do any FRED checks.
*
* For IDT event delivery, the high-order 48 bits of CS are pushed
* as 0s into the stack, and later IRET ignores these bits.
*
* For FRED, a test to check if fred_cs.wfe is set would be dropped
* by compilers.
*/
regs->fred_cs.wfe = 0;
}
static void do_kernel_cp_fault(struct pt_regs *regs, unsigned long error_code)
{
if ((error_code & CP_EC) != CP_ENDBR) {
do_unexpected_cp(regs, error_code);
return;
}
if (unlikely(regs->ip == (unsigned long)&ibt_selftest_noendbr)) {
regs->ax = 0;
ibt_clear_fred_wfe(regs);
return;
}
pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs));
if (!ibt_fatal) {
printk(KERN_DEFAULT CUT_HERE);
__warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
ibt_clear_fred_wfe(regs);
return;
}
BUG();
}
static int __init ibt_setup(char *str)
{
if (!strcmp(str, "off"))
setup_clear_cpu_cap(X86_FEATURE_IBT);
if (!strcmp(str, "warn"))
ibt_fatal = false;
return 1;
}
__setup("ibt=", ibt_setup);
DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)
{
if (user_mode(regs)) {
if (cpu_feature_enabled(X86_FEATURE_USER_SHSTK))
do_user_cp_fault(regs, error_code);
else
do_unexpected_cp(regs, error_code);
} else {
if (cpu_feature_enabled(X86_FEATURE_IBT))
do_kernel_cp_fault(regs, error_code);
else
do_unexpected_cp(regs, error_code);
}
}
|