1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* acpi_pad.c ACPI Processor Aggregator Driver
*
* Copyright (c) 2009, Intel Corporation.
*/
#include <linux/kernel.h>
#include <linux/cpumask.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/kthread.h>
#include <uapi/linux/sched/types.h>
#include <linux/freezer.h>
#include <linux/cpu.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/perf_event.h>
#include <linux/platform_device.h>
#include <asm/mwait.h>
#include <xen/xen.h>
#define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
#define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
#define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
#define ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS 0
#define ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION 1
static DEFINE_MUTEX(isolated_cpus_lock);
static DEFINE_MUTEX(round_robin_lock);
static unsigned long power_saving_mwait_eax;
static unsigned char tsc_detected_unstable;
static unsigned char tsc_marked_unstable;
static void power_saving_mwait_init(void)
{
unsigned int eax, ebx, ecx, edx;
unsigned int highest_cstate = 0;
unsigned int highest_subcstate = 0;
int i;
if (!boot_cpu_has(X86_FEATURE_MWAIT))
return;
if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
return;
cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
!(ecx & CPUID5_ECX_INTERRUPT_BREAK))
return;
edx >>= MWAIT_SUBSTATE_SIZE;
for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
if (edx & MWAIT_SUBSTATE_MASK) {
highest_cstate = i;
highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
}
}
power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
(highest_subcstate - 1);
#if defined(CONFIG_X86)
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_HYGON:
case X86_VENDOR_AMD:
case X86_VENDOR_INTEL:
case X86_VENDOR_ZHAOXIN:
case X86_VENDOR_CENTAUR:
/*
* AMD Fam10h TSC will tick in all
* C/P/S0/S1 states when this bit is set.
*/
if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
tsc_detected_unstable = 1;
break;
default:
/* TSC could halt in idle */
tsc_detected_unstable = 1;
}
#endif
}
static unsigned long cpu_weight[NR_CPUS];
static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
static void round_robin_cpu(unsigned int tsk_index)
{
struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
cpumask_var_t tmp;
int cpu;
unsigned long min_weight = -1;
unsigned long preferred_cpu;
if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
return;
mutex_lock(&round_robin_lock);
cpumask_clear(tmp);
for_each_cpu(cpu, pad_busy_cpus)
cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
cpumask_andnot(tmp, cpu_online_mask, tmp);
/* avoid HT siblings if possible */
if (cpumask_empty(tmp))
cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
if (cpumask_empty(tmp)) {
mutex_unlock(&round_robin_lock);
free_cpumask_var(tmp);
return;
}
for_each_cpu(cpu, tmp) {
if (cpu_weight[cpu] < min_weight) {
min_weight = cpu_weight[cpu];
preferred_cpu = cpu;
}
}
if (tsk_in_cpu[tsk_index] != -1)
cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
tsk_in_cpu[tsk_index] = preferred_cpu;
cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
cpu_weight[preferred_cpu]++;
mutex_unlock(&round_robin_lock);
set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
free_cpumask_var(tmp);
}
static void exit_round_robin(unsigned int tsk_index)
{
struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
if (tsk_in_cpu[tsk_index] != -1) {
cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
tsk_in_cpu[tsk_index] = -1;
}
}
static unsigned int idle_pct = 5; /* percentage */
static unsigned int round_robin_time = 1; /* second */
static int power_saving_thread(void *data)
{
int do_sleep;
unsigned int tsk_index = (unsigned long)data;
u64 last_jiffies = 0;
sched_set_fifo_low(current);
while (!kthread_should_stop()) {
unsigned long expire_time;
/* round robin to cpus */
expire_time = last_jiffies + round_robin_time * HZ;
if (time_before(expire_time, jiffies)) {
last_jiffies = jiffies;
round_robin_cpu(tsk_index);
}
do_sleep = 0;
expire_time = jiffies + HZ * (100 - idle_pct) / 100;
while (!need_resched()) {
if (tsc_detected_unstable && !tsc_marked_unstable) {
/* TSC could halt in idle, so notify users */
mark_tsc_unstable("TSC halts in idle");
tsc_marked_unstable = 1;
}
local_irq_disable();
perf_lopwr_cb(true);
tick_broadcast_enable();
tick_broadcast_enter();
stop_critical_timings();
mwait_idle_with_hints(power_saving_mwait_eax, 1);
start_critical_timings();
tick_broadcast_exit();
perf_lopwr_cb(false);
local_irq_enable();
if (time_before(expire_time, jiffies)) {
do_sleep = 1;
break;
}
}
/*
* current sched_rt has threshold for rt task running time.
* When a rt task uses 95% CPU time, the rt thread will be
* scheduled out for 5% CPU time to not starve other tasks. But
* the mechanism only works when all CPUs have RT task running,
* as if one CPU hasn't RT task, RT task from other CPUs will
* borrow CPU time from this CPU and cause RT task use > 95%
* CPU time. To make 'avoid starvation' work, takes a nap here.
*/
if (unlikely(do_sleep))
schedule_timeout_killable(HZ * idle_pct / 100);
/* If an external event has set the need_resched flag, then
* we need to deal with it, or this loop will continue to
* spin without calling __mwait().
*/
if (unlikely(need_resched()))
schedule();
}
exit_round_robin(tsk_index);
return 0;
}
static struct task_struct *ps_tsks[NR_CPUS];
static unsigned int ps_tsk_num;
static int create_power_saving_task(void)
{
int rc;
ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
(void *)(unsigned long)ps_tsk_num,
"acpi_pad/%d", ps_tsk_num);
if (IS_ERR(ps_tsks[ps_tsk_num])) {
rc = PTR_ERR(ps_tsks[ps_tsk_num]);
ps_tsks[ps_tsk_num] = NULL;
} else {
rc = 0;
ps_tsk_num++;
}
return rc;
}
static void destroy_power_saving_task(void)
{
if (ps_tsk_num > 0) {
ps_tsk_num--;
kthread_stop(ps_tsks[ps_tsk_num]);
ps_tsks[ps_tsk_num] = NULL;
}
}
static void set_power_saving_task_num(unsigned int num)
{
if (num > ps_tsk_num) {
while (ps_tsk_num < num) {
if (create_power_saving_task())
return;
}
} else if (num < ps_tsk_num) {
while (ps_tsk_num > num)
destroy_power_saving_task();
}
}
static void acpi_pad_idle_cpus(unsigned int num_cpus)
{
cpus_read_lock();
num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
set_power_saving_task_num(num_cpus);
cpus_read_unlock();
}
static uint32_t acpi_pad_idle_cpus_num(void)
{
return ps_tsk_num;
}
static ssize_t rrtime_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned long num;
if (kstrtoul(buf, 0, &num))
return -EINVAL;
if (num < 1 || num >= 100)
return -EINVAL;
mutex_lock(&isolated_cpus_lock);
round_robin_time = num;
mutex_unlock(&isolated_cpus_lock);
return count;
}
static ssize_t rrtime_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sysfs_emit(buf, "%d\n", round_robin_time);
}
static DEVICE_ATTR_RW(rrtime);
static ssize_t idlepct_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned long num;
if (kstrtoul(buf, 0, &num))
return -EINVAL;
if (num < 1 || num >= 100)
return -EINVAL;
mutex_lock(&isolated_cpus_lock);
idle_pct = num;
mutex_unlock(&isolated_cpus_lock);
return count;
}
static ssize_t idlepct_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sysfs_emit(buf, "%d\n", idle_pct);
}
static DEVICE_ATTR_RW(idlepct);
static ssize_t idlecpus_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned long num;
if (kstrtoul(buf, 0, &num))
return -EINVAL;
mutex_lock(&isolated_cpus_lock);
acpi_pad_idle_cpus(num);
mutex_unlock(&isolated_cpus_lock);
return count;
}
static ssize_t idlecpus_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return cpumap_print_to_pagebuf(false, buf,
to_cpumask(pad_busy_cpus_bits));
}
static DEVICE_ATTR_RW(idlecpus);
static struct attribute *acpi_pad_attrs[] = {
&dev_attr_idlecpus.attr,
&dev_attr_idlepct.attr,
&dev_attr_rrtime.attr,
NULL
};
ATTRIBUTE_GROUPS(acpi_pad);
/*
* Query firmware how many CPUs should be idle
* return -1 on failure
*/
static int acpi_pad_pur(acpi_handle handle)
{
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
union acpi_object *package;
int num = -1;
if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
return num;
if (!buffer.length || !buffer.pointer)
return num;
package = buffer.pointer;
if (package->type == ACPI_TYPE_PACKAGE &&
package->package.count == 2 &&
package->package.elements[0].integer.value == 1) /* rev 1 */
num = package->package.elements[1].integer.value;
kfree(buffer.pointer);
return num;
}
static void acpi_pad_handle_notify(acpi_handle handle)
{
int num_cpus;
uint32_t idle_cpus;
struct acpi_buffer param = {
.length = 4,
.pointer = (void *)&idle_cpus,
};
u32 status;
mutex_lock(&isolated_cpus_lock);
num_cpus = acpi_pad_pur(handle);
if (num_cpus < 0) {
/* The ACPI specification says that if no action was performed when
* processing the _PUR object, _OST should still be evaluated, albeit
* with a different status code.
*/
status = ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION;
} else {
status = ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS;
acpi_pad_idle_cpus(num_cpus);
}
idle_cpus = acpi_pad_idle_cpus_num();
acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, status, ¶m);
mutex_unlock(&isolated_cpus_lock);
}
static void acpi_pad_notify(acpi_handle handle, u32 event,
void *data)
{
struct acpi_device *adev = data;
switch (event) {
case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
acpi_pad_handle_notify(handle);
acpi_bus_generate_netlink_event(adev->pnp.device_class,
dev_name(&adev->dev), event, 0);
break;
default:
pr_warn("Unsupported event [0x%x]\n", event);
break;
}
}
static int acpi_pad_probe(struct platform_device *pdev)
{
struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
acpi_status status;
strscpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
strscpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS);
status = acpi_install_notify_handler(adev->handle,
ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev);
if (ACPI_FAILURE(status))
return -ENODEV;
return 0;
}
static void acpi_pad_remove(struct platform_device *pdev)
{
struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
mutex_lock(&isolated_cpus_lock);
acpi_pad_idle_cpus(0);
mutex_unlock(&isolated_cpus_lock);
acpi_remove_notify_handler(adev->handle,
ACPI_DEVICE_NOTIFY, acpi_pad_notify);
}
static const struct acpi_device_id pad_device_ids[] = {
{"ACPI000C", 0},
{"", 0},
};
MODULE_DEVICE_TABLE(acpi, pad_device_ids);
static struct platform_driver acpi_pad_driver = {
.probe = acpi_pad_probe,
.remove = acpi_pad_remove,
.driver = {
.dev_groups = acpi_pad_groups,
.name = "processor_aggregator",
.acpi_match_table = pad_device_ids,
},
};
static int __init acpi_pad_init(void)
{
/* Xen ACPI PAD is used when running as Xen Dom0. */
if (xen_initial_domain())
return -ENODEV;
power_saving_mwait_init();
if (power_saving_mwait_eax == 0)
return -EINVAL;
return platform_driver_register(&acpi_pad_driver);
}
static void __exit acpi_pad_exit(void)
{
platform_driver_unregister(&acpi_pad_driver);
}
module_init(acpi_pad_init);
module_exit(acpi_pad_exit);
MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
MODULE_LICENSE("GPL");
|