summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/gma500/cdv_intel_display.c
blob: 1ed854f498b7a2eba99f5e99c1f600fb17497d05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright © 2006-2011 Intel Corporation
 *
 * Authors:
 *	Eric Anholt <eric@anholt.net>
 */

#include <linux/delay.h>
#include <linux/i2c.h>

#include <drm/drm_crtc.h>

#include "cdv_device.h"
#include "framebuffer.h"
#include "gma_display.h"
#include "power.h"
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"

static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
				  struct drm_crtc *crtc, int target,
				  int refclk, struct gma_clock_t *best_clock);


#define CDV_LIMIT_SINGLE_LVDS_96	0
#define CDV_LIMIT_SINGLE_LVDS_100	1
#define CDV_LIMIT_DAC_HDMI_27		2
#define CDV_LIMIT_DAC_HDMI_96		3
#define CDV_LIMIT_DP_27			4
#define CDV_LIMIT_DP_100		5

static const struct gma_limit_t cdv_intel_limits[] = {
	{			/* CDV_SINGLE_LVDS_96MHz */
	 .dot = {.min = 20000, .max = 115500},
	 .vco = {.min = 1800000, .max = 3600000},
	 .n = {.min = 2, .max = 6},
	 .m = {.min = 60, .max = 160},
	 .m1 = {.min = 0, .max = 0},
	 .m2 = {.min = 58, .max = 158},
	 .p = {.min = 28, .max = 140},
	 .p1 = {.min = 2, .max = 10},
	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
	 .find_pll = gma_find_best_pll,
	 },
	{			/* CDV_SINGLE_LVDS_100MHz */
	 .dot = {.min = 20000, .max = 115500},
	 .vco = {.min = 1800000, .max = 3600000},
	 .n = {.min = 2, .max = 6},
	 .m = {.min = 60, .max = 160},
	 .m1 = {.min = 0, .max = 0},
	 .m2 = {.min = 58, .max = 158},
	 .p = {.min = 28, .max = 140},
	 .p1 = {.min = 2, .max = 10},
	 /* The single-channel range is 25-112Mhz, and dual-channel
	  * is 80-224Mhz.  Prefer single channel as much as possible.
	  */
	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
	 .find_pll = gma_find_best_pll,
	 },
	{			/* CDV_DAC_HDMI_27MHz */
	 .dot = {.min = 20000, .max = 400000},
	 .vco = {.min = 1809000, .max = 3564000},
	 .n = {.min = 1, .max = 1},
	 .m = {.min = 67, .max = 132},
	 .m1 = {.min = 0, .max = 0},
	 .m2 = {.min = 65, .max = 130},
	 .p = {.min = 5, .max = 90},
	 .p1 = {.min = 1, .max = 9},
	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
	 .find_pll = gma_find_best_pll,
	 },
	{			/* CDV_DAC_HDMI_96MHz */
	 .dot = {.min = 20000, .max = 400000},
	 .vco = {.min = 1800000, .max = 3600000},
	 .n = {.min = 2, .max = 6},
	 .m = {.min = 60, .max = 160},
	 .m1 = {.min = 0, .max = 0},
	 .m2 = {.min = 58, .max = 158},
	 .p = {.min = 5, .max = 100},
	 .p1 = {.min = 1, .max = 10},
	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
	 .find_pll = gma_find_best_pll,
	 },
	{			/* CDV_DP_27MHz */
	 .dot = {.min = 160000, .max = 272000},
	 .vco = {.min = 1809000, .max = 3564000},
	 .n = {.min = 1, .max = 1},
	 .m = {.min = 67, .max = 132},
	 .m1 = {.min = 0, .max = 0},
	 .m2 = {.min = 65, .max = 130},
	 .p = {.min = 5, .max = 90},
	 .p1 = {.min = 1, .max = 9},
	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
	 .find_pll = cdv_intel_find_dp_pll,
	 },
	{			/* CDV_DP_100MHz */
	 .dot = {.min = 160000, .max = 272000},
	 .vco = {.min = 1800000, .max = 3600000},
	 .n = {.min = 2, .max = 6},
	 .m = {.min = 60, .max = 164},
	 .m1 = {.min = 0, .max = 0},
	 .m2 = {.min = 58, .max = 162},
	 .p = {.min = 5, .max = 100},
	 .p1 = {.min = 1, .max = 10},
	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
	 .find_pll = cdv_intel_find_dp_pll,
	}
};

#define _wait_for(COND, MS, W) ({ \
	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);	\
	int ret__ = 0;							\
	while (!(COND)) {						\
		if (time_after(jiffies, timeout__)) {			\
			ret__ = -ETIMEDOUT;				\
			break;						\
		}							\
		if (W && !in_dbg_master())				\
			msleep(W);					\
	}								\
	ret__;								\
})

#define wait_for(COND, MS) _wait_for(COND, MS, 1)


int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
{
	int ret;

	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
	if (ret) {
		DRM_ERROR("timeout waiting for SB to idle before read\n");
		return ret;
	}

	REG_WRITE(SB_ADDR, reg);
	REG_WRITE(SB_PCKT,
		   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
		   SET_FIELD(0xf, SB_BYTE_ENABLE));

	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
	if (ret) {
		DRM_ERROR("timeout waiting for SB to idle after read\n");
		return ret;
	}

	*val = REG_READ(SB_DATA);

	return 0;
}

int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
{
	int ret;
	static bool dpio_debug = true;
	u32 temp;

	if (dpio_debug) {
		if (cdv_sb_read(dev, reg, &temp) == 0)
			DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
		DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
	}

	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
	if (ret) {
		DRM_ERROR("timeout waiting for SB to idle before write\n");
		return ret;
	}

	REG_WRITE(SB_ADDR, reg);
	REG_WRITE(SB_DATA, val);
	REG_WRITE(SB_PCKT,
		   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
		   SET_FIELD(0xf, SB_BYTE_ENABLE));

	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
	if (ret) {
		DRM_ERROR("timeout waiting for SB to idle after write\n");
		return ret;
	}

	if (dpio_debug) {
		if (cdv_sb_read(dev, reg, &temp) == 0)
			DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
	}

	return 0;
}

/* Reset the DPIO configuration register.  The BIOS does this at every
 * mode set.
 */
void cdv_sb_reset(struct drm_device *dev)
{

	REG_WRITE(DPIO_CFG, 0);
	REG_READ(DPIO_CFG);
	REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
}

/* Unlike most Intel display engines, on Cedarview the DPLL registers
 * are behind this sideband bus.  They must be programmed while the
 * DPLL reference clock is on in the DPLL control register, but before
 * the DPLL is enabled in the DPLL control register.
 */
static int
cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
		       struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
{
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
	int pipe = gma_crtc->pipe;
	u32 m, n_vco, p;
	int ret = 0;
	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
	int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
	u32 ref_value;
	u32 lane_reg, lane_value;

	cdv_sb_reset(dev);

	REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);

	udelay(100);

	/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
	ref_value = 0x68A701;

	cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);

	/* We don't know what the other fields of these regs are, so
	 * leave them in place.
	 */
	/*
	 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
	 * for the pipe A/B. Display spec 1.06 has wrong definition.
	 * Correct definition is like below:
	 *
	 * refclka mean use clock from same PLL
	 *
	 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
	 *
	 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
	 *
	 */
	ret = cdv_sb_read(dev, ref_sfr, &ref_value);
	if (ret)
		return ret;
	ref_value &= ~(REF_CLK_MASK);

	/* use DPLL_A for pipeB on CRT/HDMI */
	if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
		DRM_DEBUG_KMS("use DPLLA for pipe B\n");
		ref_value |= REF_CLK_DPLLA;
	} else {
		DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
		ref_value |= REF_CLK_DPLL;
	}
	ret = cdv_sb_write(dev, ref_sfr, ref_value);
	if (ret)
		return ret;

	ret = cdv_sb_read(dev, SB_M(pipe), &m);
	if (ret)
		return ret;
	m &= ~SB_M_DIVIDER_MASK;
	m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
	ret = cdv_sb_write(dev, SB_M(pipe), m);
	if (ret)
		return ret;

	ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
	if (ret)
		return ret;

	/* Follow the BIOS to program the N_DIVIDER REG */
	n_vco &= 0xFFFF;
	n_vco |= 0x107;
	n_vco &= ~(SB_N_VCO_SEL_MASK |
		   SB_N_DIVIDER_MASK |
		   SB_N_CB_TUNE_MASK);

	n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);

	if (clock->vco < 2250000) {
		n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
		n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
	} else if (clock->vco < 2750000) {
		n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
		n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
	} else if (clock->vco < 3300000) {
		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
		n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
	} else {
		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
		n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
	}

	ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
	if (ret)
		return ret;

	ret = cdv_sb_read(dev, SB_P(pipe), &p);
	if (ret)
		return ret;
	p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
	p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
	switch (clock->p2) {
	case 5:
		p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
		break;
	case 10:
		p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
		break;
	case 14:
		p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
		break;
	case 7:
		p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
		break;
	default:
		DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
		return -EINVAL;
	}
	ret = cdv_sb_write(dev, SB_P(pipe), p);
	if (ret)
		return ret;

	if (ddi_select) {
		if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
			lane_reg = PSB_LANE0;
			cdv_sb_read(dev, lane_reg, &lane_value);
			lane_value &= ~(LANE_PLL_MASK);
			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
			cdv_sb_write(dev, lane_reg, lane_value);

			lane_reg = PSB_LANE1;
			cdv_sb_read(dev, lane_reg, &lane_value);
			lane_value &= ~(LANE_PLL_MASK);
			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
			cdv_sb_write(dev, lane_reg, lane_value);
		} else {
			lane_reg = PSB_LANE2;
			cdv_sb_read(dev, lane_reg, &lane_value);
			lane_value &= ~(LANE_PLL_MASK);
			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
			cdv_sb_write(dev, lane_reg, lane_value);

			lane_reg = PSB_LANE3;
			cdv_sb_read(dev, lane_reg, &lane_value);
			lane_value &= ~(LANE_PLL_MASK);
			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
			cdv_sb_write(dev, lane_reg, lane_value);
		}
	}
	return 0;
}

static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
						 int refclk)
{
	const struct gma_limit_t *limit;
	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
		/*
		 * Now only single-channel LVDS is supported on CDV. If it is
		 * incorrect, please add the dual-channel LVDS.
		 */
		if (refclk == 96000)
			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
		else
			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
	} else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
			gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
		if (refclk == 27000)
			limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
		else
			limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
	} else {
		if (refclk == 27000)
			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
		else
			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
	}
	return limit;
}

/* m1 is reserved as 0 in CDV, n is a ring counter */
static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
{
	clock->m = clock->m2 + 2;
	clock->p = clock->p1 * clock->p2;
	clock->vco = (refclk * clock->m) / clock->n;
	clock->dot = clock->vco / clock->p;
}

static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
				  struct drm_crtc *crtc, int target,
				  int refclk,
				  struct gma_clock_t *best_clock)
{
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
	struct gma_clock_t clock;

	memset(&clock, 0, sizeof(clock));

	switch (refclk) {
	case 27000:
		if (target < 200000) {
			clock.p1 = 2;
			clock.p2 = 10;
			clock.n = 1;
			clock.m1 = 0;
			clock.m2 = 118;
		} else {
			clock.p1 = 1;
			clock.p2 = 10;
			clock.n = 1;
			clock.m1 = 0;
			clock.m2 = 98;
		}
		break;

	case 100000:
		if (target < 200000) {
			clock.p1 = 2;
			clock.p2 = 10;
			clock.n = 5;
			clock.m1 = 0;
			clock.m2 = 160;
		} else {
			clock.p1 = 1;
			clock.p2 = 10;
			clock.n = 5;
			clock.m1 = 0;
			clock.m2 = 133;
		}
		break;

	default:
		return false;
	}

	gma_crtc->clock_funcs->clock(refclk, &clock);
	memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
	return true;
}

#define		FIFO_PIPEA		(1 << 0)
#define		FIFO_PIPEB		(1 << 1)

static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
{
	struct drm_crtc *crtc;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct gma_crtc *gma_crtc = NULL;

	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
	gma_crtc = to_gma_crtc(crtc);

	if (crtc->primary->fb == NULL || !gma_crtc->active)
		return false;
	return true;
}

void cdv_disable_sr(struct drm_device *dev)
{
	if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {

		/* Disable self-refresh before adjust WM */
		REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
		REG_READ(FW_BLC_SELF);

		gma_wait_for_vblank(dev);

		/* Cedarview workaround to write ovelay plane, which force to leave
		 * MAX_FIFO state.
		 */
		REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
		REG_READ(OV_OVADD);

		gma_wait_for_vblank(dev);
	}

}

void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
{
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);

	/* Is only one pipe enabled? */
	if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
		u32 fw;

		fw = REG_READ(DSPFW1);
		fw &= ~DSP_FIFO_SR_WM_MASK;
		fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
		fw &= ~CURSOR_B_FIFO_WM_MASK;
		fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
		REG_WRITE(DSPFW1, fw);

		fw = REG_READ(DSPFW2);
		fw &= ~CURSOR_A_FIFO_WM_MASK;
		fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
		fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
		fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
		REG_WRITE(DSPFW2, fw);

		REG_WRITE(DSPFW3, 0x36000000);

		/* ignore FW4 */

		/* Is pipe b lvds ? */
		if (gma_crtc->pipe == 1 &&
		    gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
			REG_WRITE(DSPFW5, 0x00040330);
		} else {
			fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
			     (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
			     (3 << CURSOR_B_FIFO_WM1_SHIFT) |
			     (4 << CURSOR_FIFO_SR_WM1_SHIFT);
			REG_WRITE(DSPFW5, fw);
		}

		REG_WRITE(DSPFW6, 0x10);

		gma_wait_for_vblank(dev);

		/* enable self-refresh for single pipe active */
		REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
		REG_READ(FW_BLC_SELF);
		gma_wait_for_vblank(dev);

	} else {

		/* HW team suggested values... */
		REG_WRITE(DSPFW1, 0x3f880808);
		REG_WRITE(DSPFW2, 0x0b020202);
		REG_WRITE(DSPFW3, 0x24000000);
		REG_WRITE(DSPFW4, 0x08030202);
		REG_WRITE(DSPFW5, 0x01010101);
		REG_WRITE(DSPFW6, 0x1d0);

		gma_wait_for_vblank(dev);

		dev_priv->ops->disable_sr(dev);
	}
}

/**
 * Return the pipe currently connected to the panel fitter,
 * or -1 if the panel fitter is not present or not in use
 */
static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
{
	u32 pfit_control;

	pfit_control = REG_READ(PFIT_CONTROL);

	/* See if the panel fitter is in use */
	if ((pfit_control & PFIT_ENABLE) == 0)
		return -1;
	return (pfit_control >> 29) & 0x3;
}

static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
			       struct drm_display_mode *mode,
			       struct drm_display_mode *adjusted_mode,
			       int x, int y,
			       struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
	int pipe = gma_crtc->pipe;
	const struct psb_offset *map = &dev_priv->regmap[pipe];
	int refclk;
	struct gma_clock_t clock;
	u32 dpll = 0, dspcntr, pipeconf;
	bool ok;
	bool is_lvds = false, is_tv = false;
	bool is_dp = false;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *connector;
	const struct gma_limit_t *limit;
	u32 ddi_select = 0;
	bool is_edp = false;

	list_for_each_entry(connector, &mode_config->connector_list, head) {
		struct gma_encoder *gma_encoder =
					gma_attached_encoder(connector);

		if (!connector->encoder
		    || connector->encoder->crtc != crtc)
			continue;

		ddi_select = gma_encoder->ddi_select;
		switch (gma_encoder->type) {
		case INTEL_OUTPUT_LVDS:
			is_lvds = true;
			break;
		case INTEL_OUTPUT_TVOUT:
			is_tv = true;
			break;
		case INTEL_OUTPUT_ANALOG:
		case INTEL_OUTPUT_HDMI:
			break;
		case INTEL_OUTPUT_DISPLAYPORT:
			is_dp = true;
			break;
		case INTEL_OUTPUT_EDP:
			is_edp = true;
			break;
		default:
			DRM_ERROR("invalid output type.\n");
			return 0;
		}
	}

	if (dev_priv->dplla_96mhz)
		/* low-end sku, 96/100 mhz */
		refclk = 96000;
	else
		/* high-end sku, 27/100 mhz */
		refclk = 27000;
	if (is_dp || is_edp) {
		/*
		 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
		 * unnecessary to consider it for DP/eDP.
		 * On the high-end SKU, it will use the 27/100M reference clk
		 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
		 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
		 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
		 */
		if (pipe == 0)
			refclk = 27000;
		else
			refclk = 100000;
	}

	if (is_lvds && dev_priv->lvds_use_ssc) {
		refclk = dev_priv->lvds_ssc_freq * 1000;
		DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
	}

	drm_mode_debug_printmodeline(adjusted_mode);

	limit = gma_crtc->clock_funcs->limit(crtc, refclk);

	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
				 &clock);
	if (!ok) {
		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
			  adjusted_mode->clock, clock.dot);
		return 0;
	}

	dpll = DPLL_VGA_MODE_DIS;
	if (is_tv) {
		/* XXX: just matching BIOS for now */
/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
		dpll |= 3;
	}
/*		dpll |= PLL_REF_INPUT_DREFCLK; */

	if (is_dp || is_edp) {
		cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
	} else {
		REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
		REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
		REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
		REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
	}

	dpll |= DPLL_SYNCLOCK_ENABLE;
/*	if (is_lvds)
		dpll |= DPLLB_MODE_LVDS;
	else
		dpll |= DPLLB_MODE_DAC_SERIAL; */
	/* dpll |= (2 << 11); */

	/* setup pipeconf */
	pipeconf = REG_READ(map->conf);

	pipeconf &= ~(PIPE_BPC_MASK);
	if (is_edp) {
		switch (dev_priv->edp.bpp) {
		case 24:
			pipeconf |= PIPE_8BPC;
			break;
		case 18:
			pipeconf |= PIPE_6BPC;
			break;
		case 30:
			pipeconf |= PIPE_10BPC;
			break;
		default:
			pipeconf |= PIPE_8BPC;
			break;
		}
	} else if (is_lvds) {
		/* the BPC will be 6 if it is 18-bit LVDS panel */
		if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
			pipeconf |= PIPE_8BPC;
		else
			pipeconf |= PIPE_6BPC;
	} else
		pipeconf |= PIPE_8BPC;

	/* Set up the display plane register */
	dspcntr = DISPPLANE_GAMMA_ENABLE;

	if (pipe == 0)
		dspcntr |= DISPPLANE_SEL_PIPE_A;
	else
		dspcntr |= DISPPLANE_SEL_PIPE_B;

	dspcntr |= DISPLAY_PLANE_ENABLE;
	pipeconf |= PIPEACONF_ENABLE;

	REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
	REG_READ(map->dpll);

	cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);

	udelay(150);


	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
	 * This is an exception to the general rule that mode_set doesn't turn
	 * things on.
	 */
	if (is_lvds) {
		u32 lvds = REG_READ(LVDS);

		lvds |=
		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
		    LVDS_PIPEB_SELECT;
		/* Set the B0-B3 data pairs corresponding to
		 * whether we're going to
		 * set the DPLLs for dual-channel mode or not.
		 */
		if (clock.p2 == 7)
			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
		else
			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);

		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
		 * appropriately here, but we need to look more
		 * thoroughly into how panels behave in the two modes.
		 */

		REG_WRITE(LVDS, lvds);
		REG_READ(LVDS);
	}

	dpll |= DPLL_VCO_ENABLE;

	/* Disable the panel fitter if it was on our pipe */
	if (cdv_intel_panel_fitter_pipe(dev) == pipe)
		REG_WRITE(PFIT_CONTROL, 0);

	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
	drm_mode_debug_printmodeline(mode);

	REG_WRITE(map->dpll,
		(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
	REG_READ(map->dpll);
	/* Wait for the clocks to stabilize. */
	udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */

	if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
		dev_err(dev->dev, "Failed to get DPLL lock\n");
		return -EBUSY;
	}

	{
		int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
		REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
	}

	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
		  ((adjusted_mode->crtc_htotal - 1) << 16));
	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
		  ((adjusted_mode->crtc_vtotal - 1) << 16));
	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
	/* pipesrc and dspsize control the size that is scaled from,
	 * which should always be the user's requested size.
	 */
	REG_WRITE(map->size,
		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
	REG_WRITE(map->pos, 0);
	REG_WRITE(map->src,
		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
	REG_WRITE(map->conf, pipeconf);
	REG_READ(map->conf);

	gma_wait_for_vblank(dev);

	REG_WRITE(map->cntr, dspcntr);

	/* Flush the plane changes */
	{
		const struct drm_crtc_helper_funcs *crtc_funcs =
		    crtc->helper_private;
		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
	}

	gma_wait_for_vblank(dev);

	return 0;
}

/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */

/* FIXME: why are we using this, should it be cdv_ in this tree ? */

static void i8xx_clock(int refclk, struct gma_clock_t *clock)
{
	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
	clock->p = clock->p1 * clock->p2;
	clock->vco = refclk * clock->m / (clock->n + 2);
	clock->dot = clock->vco / clock->p;
}

/* Returns the clock of the currently programmed mode of the given pipe. */
static int cdv_intel_crtc_clock_get(struct drm_device *dev,
				struct drm_crtc *crtc)
{
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
	int pipe = gma_crtc->pipe;
	const struct psb_offset *map = &dev_priv->regmap[pipe];
	u32 dpll;
	u32 fp;
	struct gma_clock_t clock;
	bool is_lvds;
	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];

	if (gma_power_begin(dev, false)) {
		dpll = REG_READ(map->dpll);
		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
			fp = REG_READ(map->fp0);
		else
			fp = REG_READ(map->fp1);
		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
		gma_power_end(dev);
	} else {
		dpll = p->dpll;
		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
			fp = p->fp0;
		else
			fp = p->fp1;

		is_lvds = (pipe == 1) &&
				(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
	}

	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;

	if (is_lvds) {
		clock.p1 =
		    ffs((dpll &
			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
			DPLL_FPA01_P1_POST_DIV_SHIFT);
		if (clock.p1 == 0) {
			clock.p1 = 4;
			dev_err(dev->dev, "PLL %d\n", dpll);
		}
		clock.p2 = 14;

		if ((dpll & PLL_REF_INPUT_MASK) ==
		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
			/* XXX: might not be 66MHz */
			i8xx_clock(66000, &clock);
		} else
			i8xx_clock(48000, &clock);
	} else {
		if (dpll & PLL_P1_DIVIDE_BY_TWO)
			clock.p1 = 2;
		else {
			clock.p1 =
			    ((dpll &
			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
		}
		if (dpll & PLL_P2_DIVIDE_BY_4)
			clock.p2 = 4;
		else
			clock.p2 = 2;

		i8xx_clock(48000, &clock);
	}

	/* XXX: It would be nice to validate the clocks, but we can't reuse
	 * i830PllIsValid() because it relies on the xf86_config connector
	 * configuration being accurate, which it isn't necessarily.
	 */

	return clock.dot;
}

/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
					     struct drm_crtc *crtc)
{
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
	int pipe = gma_crtc->pipe;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
	const struct psb_offset *map = &dev_priv->regmap[pipe];
	struct drm_display_mode *mode;
	int htot;
	int hsync;
	int vtot;
	int vsync;

	if (gma_power_begin(dev, false)) {
		htot = REG_READ(map->htotal);
		hsync = REG_READ(map->hsync);
		vtot = REG_READ(map->vtotal);
		vsync = REG_READ(map->vsync);
		gma_power_end(dev);
	} else {
		htot = p->htotal;
		hsync = p->hsync;
		vtot = p->vtotal;
		vsync = p->vsync;
	}

	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
	if (!mode)
		return NULL;

	mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
	mode->hdisplay = (htot & 0xffff) + 1;
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
	mode->hsync_start = (hsync & 0xffff) + 1;
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
	mode->vdisplay = (vtot & 0xffff) + 1;
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
	mode->vsync_start = (vsync & 0xffff) + 1;
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;

	drm_mode_set_name(mode);
	drm_mode_set_crtcinfo(mode, 0);

	return mode;
}

const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
	.dpms = gma_crtc_dpms,
	.mode_set = cdv_intel_crtc_mode_set,
	.mode_set_base = gma_pipe_set_base,
	.prepare = gma_crtc_prepare,
	.commit = gma_crtc_commit,
	.disable = gma_crtc_disable,
};

const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
	.cursor_set = gma_crtc_cursor_set,
	.cursor_move = gma_crtc_cursor_move,
	.gamma_set = gma_crtc_gamma_set,
	.set_config = gma_crtc_set_config,
	.destroy = gma_crtc_destroy,
	.page_flip = gma_crtc_page_flip,
};

const struct gma_clock_funcs cdv_clock_funcs = {
	.clock = cdv_intel_clock,
	.limit = cdv_intel_limit,
	.pll_is_valid = gma_pll_is_valid,
};