1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/string_helpers.h>
#include "i915_drv.h"
#include "intel_gt_debugfs.h"
#include "intel_gt_regs.h"
#include "intel_sseu_debugfs.h"
static void sseu_copy_subslices(const struct sseu_dev_info *sseu,
int slice, u8 *to_mask)
{
int offset = slice * sseu->ss_stride;
memcpy(&to_mask[offset], &sseu->subslice_mask[offset], sseu->ss_stride);
}
static void cherryview_sseu_device_status(struct intel_gt *gt,
struct sseu_dev_info *sseu)
{
#define SS_MAX 2
struct intel_uncore *uncore = gt->uncore;
const int ss_max = SS_MAX;
u32 sig1[SS_MAX], sig2[SS_MAX];
int ss;
sig1[0] = intel_uncore_read(uncore, CHV_POWER_SS0_SIG1);
sig1[1] = intel_uncore_read(uncore, CHV_POWER_SS1_SIG1);
sig2[0] = intel_uncore_read(uncore, CHV_POWER_SS0_SIG2);
sig2[1] = intel_uncore_read(uncore, CHV_POWER_SS1_SIG2);
for (ss = 0; ss < ss_max; ss++) {
unsigned int eu_cnt;
if (sig1[ss] & CHV_SS_PG_ENABLE)
/* skip disabled subslice */
continue;
sseu->slice_mask = BIT(0);
sseu->subslice_mask[0] |= BIT(ss);
eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice, eu_cnt);
}
#undef SS_MAX
}
static void gen11_sseu_device_status(struct intel_gt *gt,
struct sseu_dev_info *sseu)
{
#define SS_MAX 8
struct intel_uncore *uncore = gt->uncore;
const struct intel_gt_info *info = >->info;
u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
int s, ss;
for (s = 0; s < info->sseu.max_slices; s++) {
/*
* FIXME: Valid SS Mask respects the spec and read
* only valid bits for those registers, excluding reserved
* although this seems wrong because it would leave many
* subslices without ACK.
*/
s_reg[s] = intel_uncore_read(uncore, GEN10_SLICE_PGCTL_ACK(s)) &
GEN10_PGCTL_VALID_SS_MASK(s);
eu_reg[2 * s] = intel_uncore_read(uncore,
GEN10_SS01_EU_PGCTL_ACK(s));
eu_reg[2 * s + 1] = intel_uncore_read(uncore,
GEN10_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < info->sseu.max_slices; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
sseu_copy_subslices(&info->sseu, s, sseu->subslice_mask);
for (ss = 0; ss < info->sseu.max_subslices; ss++) {
unsigned int eu_cnt;
if (info->sseu.has_subslice_pg &&
!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
eu_mask[ss % 2]);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
#undef SS_MAX
}
static void gen9_sseu_device_status(struct intel_gt *gt,
struct sseu_dev_info *sseu)
{
#define SS_MAX 3
struct intel_uncore *uncore = gt->uncore;
const struct intel_gt_info *info = >->info;
u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
int s, ss;
for (s = 0; s < info->sseu.max_slices; s++) {
s_reg[s] = intel_uncore_read(uncore, GEN9_SLICE_PGCTL_ACK(s));
eu_reg[2 * s] =
intel_uncore_read(uncore, GEN9_SS01_EU_PGCTL_ACK(s));
eu_reg[2 * s + 1] =
intel_uncore_read(uncore, GEN9_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < info->sseu.max_slices; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
if (IS_GEN9_BC(gt->i915))
sseu_copy_subslices(&info->sseu, s,
sseu->subslice_mask);
for (ss = 0; ss < info->sseu.max_subslices; ss++) {
unsigned int eu_cnt;
u8 ss_idx = s * info->sseu.ss_stride +
ss / BITS_PER_BYTE;
if (IS_GEN9_LP(gt->i915)) {
if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
sseu->subslice_mask[ss_idx] |=
BIT(ss % BITS_PER_BYTE);
}
eu_cnt = eu_reg[2 * s + ss / 2] & eu_mask[ss % 2];
eu_cnt = 2 * hweight32(eu_cnt);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
#undef SS_MAX
}
static void bdw_sseu_device_status(struct intel_gt *gt,
struct sseu_dev_info *sseu)
{
const struct intel_gt_info *info = >->info;
u32 slice_info = intel_uncore_read(gt->uncore, GEN8_GT_SLICE_INFO);
int s;
sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
if (sseu->slice_mask) {
sseu->eu_per_subslice = info->sseu.eu_per_subslice;
for (s = 0; s < fls(sseu->slice_mask); s++)
sseu_copy_subslices(&info->sseu, s,
sseu->subslice_mask);
sseu->eu_total = sseu->eu_per_subslice *
intel_sseu_subslice_total(sseu);
/* subtract fused off EU(s) from enabled slice(s) */
for (s = 0; s < fls(sseu->slice_mask); s++) {
u8 subslice_7eu = info->sseu.subslice_7eu[s];
sseu->eu_total -= hweight8(subslice_7eu);
}
}
}
static void i915_print_sseu_info(struct seq_file *m,
bool is_available_info,
bool has_pooled_eu,
const struct sseu_dev_info *sseu)
{
const char *type = is_available_info ? "Available" : "Enabled";
int s;
seq_printf(m, " %s Slice Mask: %04x\n", type,
sseu->slice_mask);
seq_printf(m, " %s Slice Total: %u\n", type,
hweight8(sseu->slice_mask));
seq_printf(m, " %s Subslice Total: %u\n", type,
intel_sseu_subslice_total(sseu));
for (s = 0; s < fls(sseu->slice_mask); s++) {
seq_printf(m, " %s Slice%i subslices: %u\n", type,
s, intel_sseu_subslices_per_slice(sseu, s));
}
seq_printf(m, " %s EU Total: %u\n", type,
sseu->eu_total);
seq_printf(m, " %s EU Per Subslice: %u\n", type,
sseu->eu_per_subslice);
if (!is_available_info)
return;
seq_printf(m, " Has Pooled EU: %s\n", str_yes_no(has_pooled_eu));
if (has_pooled_eu)
seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
seq_printf(m, " Has Slice Power Gating: %s\n",
str_yes_no(sseu->has_slice_pg));
seq_printf(m, " Has Subslice Power Gating: %s\n",
str_yes_no(sseu->has_subslice_pg));
seq_printf(m, " Has EU Power Gating: %s\n",
str_yes_no(sseu->has_eu_pg));
}
/*
* this is called from top-level debugfs as well, so we can't get the gt from
* the seq_file.
*/
int intel_sseu_status(struct seq_file *m, struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
const struct intel_gt_info *info = >->info;
struct sseu_dev_info *sseu;
intel_wakeref_t wakeref;
if (GRAPHICS_VER(i915) < 8)
return -ENODEV;
seq_puts(m, "SSEU Device Info\n");
i915_print_sseu_info(m, true, HAS_POOLED_EU(i915), &info->sseu);
seq_puts(m, "SSEU Device Status\n");
sseu = kzalloc(sizeof(*sseu), GFP_KERNEL);
if (!sseu)
return -ENOMEM;
intel_sseu_set_info(sseu, info->sseu.max_slices,
info->sseu.max_subslices,
info->sseu.max_eus_per_subslice);
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
if (IS_CHERRYVIEW(i915))
cherryview_sseu_device_status(gt, sseu);
else if (IS_BROADWELL(i915))
bdw_sseu_device_status(gt, sseu);
else if (GRAPHICS_VER(i915) == 9)
gen9_sseu_device_status(gt, sseu);
else if (GRAPHICS_VER(i915) >= 11)
gen11_sseu_device_status(gt, sseu);
}
i915_print_sseu_info(m, false, HAS_POOLED_EU(i915), sseu);
kfree(sseu);
return 0;
}
static int sseu_status_show(struct seq_file *m, void *unused)
{
struct intel_gt *gt = m->private;
return intel_sseu_status(m, gt);
}
DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(sseu_status);
static int sseu_topology_show(struct seq_file *m, void *unused)
{
struct intel_gt *gt = m->private;
struct drm_printer p = drm_seq_file_printer(m);
intel_sseu_print_topology(gt->i915, >->info.sseu, &p);
return 0;
}
DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(sseu_topology);
void intel_sseu_debugfs_register(struct intel_gt *gt, struct dentry *root)
{
static const struct intel_gt_debugfs_file files[] = {
{ "sseu_status", &sseu_status_fops, NULL },
{ "sseu_topology", &sseu_topology_fops, NULL },
};
intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), gt);
}
|