1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2014-2019 Intel Corporation
*/
#include "gem/i915_gem_lmem.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_irq.h"
#include "gt/intel_gt_pm_irq.h"
#include "gt/intel_gt_regs.h"
#include "intel_guc.h"
#include "intel_guc_ads.h"
#include "intel_guc_capture.h"
#include "intel_guc_print.h"
#include "intel_guc_slpc.h"
#include "intel_guc_submission.h"
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_reg.h"
/**
* DOC: GuC
*
* The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
* designed to offload some of the functionality usually performed by the host
* driver; currently the main operations it can take care of are:
*
* - Authentication of the HuC, which is required to fully enable HuC usage.
* - Low latency graphics context scheduling (a.k.a. GuC submission).
* - GT Power management.
*
* The enable_guc module parameter can be used to select which of those
* operations to enable within GuC. Note that not all the operations are
* supported on all gen9+ platforms.
*
* Enabling the GuC is not mandatory and therefore the firmware is only loaded
* if at least one of the operations is selected. However, not loading the GuC
* might result in the loss of some features that do require the GuC (currently
* just the HuC, but more are expected to land in the future).
*/
void intel_guc_notify(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
/*
* On Gen11+, the value written to the register is passes as a payload
* to the FW. However, the FW currently treats all values the same way
* (H2G interrupt), so we can just write the value that the HW expects
* on older gens.
*/
intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
}
static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
{
GEM_BUG_ON(!guc->send_regs.base);
GEM_BUG_ON(!guc->send_regs.count);
GEM_BUG_ON(i >= guc->send_regs.count);
return _MMIO(guc->send_regs.base + 4 * i);
}
void intel_guc_init_send_regs(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
enum forcewake_domains fw_domains = 0;
unsigned int i;
GEM_BUG_ON(!guc->send_regs.base);
GEM_BUG_ON(!guc->send_regs.count);
for (i = 0; i < guc->send_regs.count; i++) {
fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
guc_send_reg(guc, i),
FW_REG_READ | FW_REG_WRITE);
}
guc->send_regs.fw_domains = fw_domains;
}
static void gen9_reset_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
assert_rpm_wakelock_held(>->i915->runtime_pm);
spin_lock_irq(gt->irq_lock);
gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
spin_unlock_irq(gt->irq_lock);
}
static void gen9_enable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
assert_rpm_wakelock_held(>->i915->runtime_pm);
spin_lock_irq(gt->irq_lock);
guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
gt->pm_guc_events);
gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
spin_unlock_irq(gt->irq_lock);
guc->interrupts.enabled = true;
}
static void gen9_disable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
assert_rpm_wakelock_held(>->i915->runtime_pm);
guc->interrupts.enabled = false;
spin_lock_irq(gt->irq_lock);
gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
spin_unlock_irq(gt->irq_lock);
intel_synchronize_irq(gt->i915);
gen9_reset_guc_interrupts(guc);
}
static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
{
u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
lockdep_assert_held(gt->irq_lock);
return gen11_gt_reset_one_iir(gt, 0, irq);
}
static void gen11_reset_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
spin_lock_irq(gt->irq_lock);
__gen11_reset_guc_interrupts(gt);
spin_unlock_irq(gt->irq_lock);
}
static void gen11_enable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
spin_lock_irq(gt->irq_lock);
__gen11_reset_guc_interrupts(gt);
spin_unlock_irq(gt->irq_lock);
guc->interrupts.enabled = true;
}
static void gen11_disable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
guc->interrupts.enabled = false;
intel_synchronize_irq(gt->i915);
gen11_reset_guc_interrupts(guc);
}
static void guc_dead_worker_func(struct work_struct *w)
{
struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker);
struct intel_gt *gt = guc_to_gt(guc);
unsigned long last = guc->last_dead_guc_jiffies;
unsigned long delta = jiffies_to_msecs(jiffies - last);
if (delta < 500) {
intel_gt_set_wedged(gt);
} else {
intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC");
guc->last_dead_guc_jiffies = jiffies;
}
}
void intel_guc_init_early(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
struct drm_i915_private *i915 = gt->i915;
intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true);
intel_guc_ct_init_early(&guc->ct);
intel_guc_log_init_early(&guc->log);
intel_guc_submission_init_early(guc);
intel_guc_slpc_init_early(&guc->slpc);
intel_guc_rc_init_early(guc);
INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func);
mutex_init(&guc->send_mutex);
spin_lock_init(&guc->irq_lock);
if (GRAPHICS_VER(i915) >= 11) {
guc->interrupts.reset = gen11_reset_guc_interrupts;
guc->interrupts.enable = gen11_enable_guc_interrupts;
guc->interrupts.disable = gen11_disable_guc_interrupts;
if (gt->type == GT_MEDIA) {
guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
} else {
guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
}
guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
} else {
guc->notify_reg = GUC_SEND_INTERRUPT;
guc->interrupts.reset = gen9_reset_guc_interrupts;
guc->interrupts.enable = gen9_enable_guc_interrupts;
guc->interrupts.disable = gen9_disable_guc_interrupts;
guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
}
intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
}
void intel_guc_init_late(struct intel_guc *guc)
{
intel_guc_ads_init_late(guc);
}
static u32 guc_ctl_debug_flags(struct intel_guc *guc)
{
u32 level = intel_guc_log_get_level(&guc->log);
u32 flags = 0;
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
flags |= GUC_LOG_DISABLED;
else
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
GUC_LOG_VERBOSITY_SHIFT;
return flags;
}
static u32 guc_ctl_feature_flags(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
u32 flags = 0;
/*
* Enable PXP GuC autoteardown flow.
* NB: MTL does things differently.
*/
if (HAS_PXP(gt->i915) && !IS_METEORLAKE(gt->i915))
flags |= GUC_CTL_ENABLE_GUC_PXP_CTL;
if (!intel_guc_submission_is_used(guc))
flags |= GUC_CTL_DISABLE_SCHEDULER;
if (intel_guc_slpc_is_used(guc))
flags |= GUC_CTL_ENABLE_SLPC;
return flags;
}
static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
{
struct intel_guc_log *log = &guc->log;
u32 offset, flags;
GEM_BUG_ON(!log->sizes_initialised);
offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
flags = GUC_LOG_VALID |
GUC_LOG_NOTIFY_ON_HALF_FULL |
log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
(log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
(log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
(log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
(offset << GUC_LOG_BUF_ADDR_SHIFT);
return flags;
}
static u32 guc_ctl_ads_flags(struct intel_guc *guc)
{
u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
u32 flags = ads << GUC_ADS_ADDR_SHIFT;
return flags;
}
static u32 guc_ctl_wa_flags(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
u32 flags = 0;
/* Wa_22012773006:gen11,gen12 < XeHP */
if (GRAPHICS_VER(gt->i915) >= 11 &&
GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 55))
flags |= GUC_WA_POLLCS;
/* Wa_14014475959 */
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_DG2(gt->i915))
flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
/* Wa_16019325821 */
/* Wa_14019159160 */
if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
flags |= GUC_WA_RCS_CCS_SWITCHOUT;
/*
* Wa_14012197797
* Wa_22011391025
*
* The same WA bit is used for both and 22011391025 is applicable to
* all DG2.
*/
if (IS_DG2(gt->i915))
flags |= GUC_WA_DUAL_QUEUE;
/* Wa_22011802037: graphics version 11/12 */
if (intel_engine_reset_needs_wa_22011802037(gt))
flags |= GUC_WA_PRE_PARSER;
/*
* Wa_22012727170
* Wa_22012727685
*/
if (IS_DG2_G11(gt->i915))
flags |= GUC_WA_CONTEXT_ISOLATION;
/*
* Wa_14018913170: Applicable to all platforms supported by i915 so
* don't bother testing for all X/Y/Z platforms explicitly.
*/
if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0))
flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
return flags;
}
static u32 guc_ctl_devid(struct intel_guc *guc)
{
struct drm_i915_private *i915 = guc_to_i915(guc);
return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
}
/*
* Initialise the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
static void guc_init_params(struct intel_guc *guc)
{
u32 *params = guc->params;
int i;
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
}
/*
* Initialise the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
void intel_guc_write_params(struct intel_guc *guc)
{
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
int i;
/*
* All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
* they are power context saved so it's ok to release forcewake
* when we are done here and take it again at xfer time.
*/
intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
}
void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
{
struct intel_gt *gt = guc_to_gt(guc);
intel_wakeref_t wakeref;
u32 stamp = 0;
u64 ktime;
with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
ktime = ktime_get_boottime_ns();
drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
gt->clock_frequency, gt->clock_period_ns);
}
int intel_guc_init(struct intel_guc *guc)
{
int ret;
ret = intel_uc_fw_init(&guc->fw);
if (ret)
goto out;
ret = intel_guc_log_create(&guc->log);
if (ret)
goto err_fw;
ret = intel_guc_capture_init(guc);
if (ret)
goto err_log;
ret = intel_guc_ads_create(guc);
if (ret)
goto err_capture;
GEM_BUG_ON(!guc->ads_vma);
ret = intel_guc_ct_init(&guc->ct);
if (ret)
goto err_ads;
if (intel_guc_submission_is_used(guc)) {
/*
* This is stuff we need to have available at fw load time
* if we are planning to enable submission later
*/
ret = intel_guc_submission_init(guc);
if (ret)
goto err_ct;
}
if (intel_guc_slpc_is_used(guc)) {
ret = intel_guc_slpc_init(&guc->slpc);
if (ret)
goto err_submission;
}
/* now that everything is perma-pinned, initialize the parameters */
guc_init_params(guc);
intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
return 0;
err_submission:
intel_guc_submission_fini(guc);
err_ct:
intel_guc_ct_fini(&guc->ct);
err_ads:
intel_guc_ads_destroy(guc);
err_capture:
intel_guc_capture_destroy(guc);
err_log:
intel_guc_log_destroy(&guc->log);
err_fw:
intel_uc_fw_fini(&guc->fw);
out:
intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
return ret;
}
void intel_guc_fini(struct intel_guc *guc)
{
if (!intel_uc_fw_is_loadable(&guc->fw))
return;
flush_work(&guc->dead_guc_worker);
if (intel_guc_slpc_is_used(guc))
intel_guc_slpc_fini(&guc->slpc);
if (intel_guc_submission_is_used(guc))
intel_guc_submission_fini(guc);
intel_guc_ct_fini(&guc->ct);
intel_guc_ads_destroy(guc);
intel_guc_capture_destroy(guc);
intel_guc_log_destroy(&guc->log);
intel_uc_fw_fini(&guc->fw);
}
/*
* This function implements the MMIO based host to GuC interface.
*/
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
u32 *response_buf, u32 response_buf_size)
{
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
u32 header;
int i;
int ret;
GEM_BUG_ON(!len);
GEM_BUG_ON(len > guc->send_regs.count);
GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
mutex_lock(&guc->send_mutex);
intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
retry:
for (i = 0; i < len; i++)
intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
intel_guc_notify(guc);
/*
* No GuC command should ever take longer than 10ms.
* Fast commands should still complete in 10us.
*/
ret = __intel_wait_for_register_fw(uncore,
guc_send_reg(guc, 0),
GUC_HXG_MSG_0_ORIGIN,
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
GUC_HXG_ORIGIN_GUC),
10, 10, &header);
if (unlikely(ret)) {
timeout:
guc_err(guc, "mmio request %#x: no reply %x\n",
request[0], header);
goto out;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
#define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
ret = wait_for(done, 1000);
if (unlikely(ret))
goto timeout;
if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
GUC_HXG_ORIGIN_GUC))
goto proto;
#undef done
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
request[0], reason);
goto retry;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
guc_err(guc, "mmio request %#x: failure %x/%u\n",
request[0], error, hint);
ret = -ENXIO;
goto out;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
proto:
guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
request[0], header);
ret = -EPROTO;
goto out;
}
if (response_buf) {
int count = min(response_buf_size, guc->send_regs.count);
GEM_BUG_ON(!count);
response_buf[0] = header;
for (i = 1; i < count; i++)
response_buf[i] = intel_uncore_read(uncore,
guc_send_reg(guc, i));
/* Use number of copied dwords as our return value */
ret = count;
} else {
/* Use data from the GuC response as our return value */
ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
}
out:
intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
mutex_unlock(&guc->send_mutex);
return ret;
}
int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action)
{
if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
guc_err(guc, "Crash dump notification\n");
else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION)
guc_err(guc, "Exception notification\n");
else
guc_err(guc, "Unknown crash notification: 0x%04X\n", action);
queue_work(system_unbound_wq, &guc->dead_guc_worker);
return 0;
}
int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
const u32 *payload, u32 len)
{
u32 msg;
if (unlikely(!len))
return -EPROTO;
/* Make sure to handle only enabled messages */
msg = payload[0] & guc->msg_enabled_mask;
if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
guc_err(guc, "Received early crash dump notification!\n");
if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
guc_err(guc, "Received early exception notification!\n");
if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION))
queue_work(system_unbound_wq, &guc->dead_guc_worker);
return 0;
}
/**
* intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
* @guc: intel_guc structure
* @rsa_offset: rsa offset w.r.t ggtt base of huc vma
*
* Triggers a HuC firmware authentication request to the GuC via intel_guc_send
* INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
* intel_huc_auth().
*
* Return: non-zero code on error
*/
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
{
u32 action[] = {
INTEL_GUC_ACTION_AUTHENTICATE_HUC,
rsa_offset
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
/**
* intel_guc_suspend() - notify GuC entering suspend state
* @guc: the guc
*/
int intel_guc_suspend(struct intel_guc *guc)
{
int ret;
u32 action[] = {
INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
};
if (!intel_guc_is_ready(guc))
return 0;
if (intel_guc_submission_is_used(guc)) {
flush_work(&guc->dead_guc_worker);
/*
* This H2G MMIO command tears down the GuC in two steps. First it will
* generate a G2H CTB for every active context indicating a reset. In
* practice the i915 shouldn't ever get a G2H as suspend should only be
* called when the GPU is idle. Next, it tears down the CTBs and this
* H2G MMIO command completes.
*
* Don't abort on a failure code from the GuC. Keep going and do the
* clean up in santize() and re-initialisation on resume and hopefully
* the error here won't be problematic.
*/
ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
if (ret)
guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
ERR_PTR(ret));
}
/* Signal that the GuC isn't running. */
intel_guc_sanitize(guc);
return 0;
}
/**
* intel_guc_resume() - notify GuC resuming from suspend state
* @guc: the guc
*/
int intel_guc_resume(struct intel_guc *guc)
{
/*
* NB: This function can still be called even if GuC submission is
* disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
* if any code is later added here, it must be support doing nothing
* if submission is disabled (as per intel_guc_suspend).
*/
return 0;
}
/**
* DOC: GuC Memory Management
*
* GuC can't allocate any memory for its own usage, so all the allocations must
* be handled by the host driver. GuC accesses the memory via the GGTT, with the
* exception of the top and bottom parts of the 4GB address space, which are
* instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
* or other parts of the HW. The driver must take care not to place objects that
* the GuC is going to access in these reserved ranges. The layout of the GuC
* address space is shown below:
*
* ::
*
* +===========> +====================+ <== FFFF_FFFF
* ^ | Reserved |
* | +====================+ <== GUC_GGTT_TOP
* | | |
* | | DRAM |
* GuC | |
* Address +===> +====================+ <== GuC ggtt_pin_bias
* Space ^ | |
* | | | |
* | GuC | GuC |
* | WOPCM | WOPCM |
* | Size | |
* | | | |
* v v | |
* +=======+===> +====================+ <== 0000_0000
*
* The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
* while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
* to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
*/
/**
* intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
* @guc: the guc
* @size: size of area to allocate (both virtual space and memory)
*
* This is a wrapper to create an object for use with the GuC. In order to
* use it inside the GuC, an object needs to be pinned lifetime, so we allocate
* both some backing storage and a range inside the Global GTT. We must pin
* it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
* range is reserved inside GuC.
*
* Return: A i915_vma if successful, otherwise an ERR_PTR.
*/
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
{
struct intel_gt *gt = guc_to_gt(guc);
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
u64 flags;
int ret;
if (HAS_LMEM(gt->i915))
obj = i915_gem_object_create_lmem(gt->i915, size,
I915_BO_ALLOC_CPU_CLEAR |
I915_BO_ALLOC_CONTIGUOUS |
I915_BO_ALLOC_PM_EARLY);
else
obj = i915_gem_object_create_shmem(gt->i915, size);
if (IS_ERR(obj))
return ERR_CAST(obj);
/*
* Wa_22016122933: For Media version 13.0, all Media GT shared
* memory needs to be mapped as WC on CPU side and UC (PAT
* index 2) on GPU side.
*/
if (intel_gt_needs_wa_22016122933(gt))
i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
if (IS_ERR(vma))
goto err;
flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
ret = i915_ggtt_pin(vma, NULL, 0, flags);
if (ret) {
vma = ERR_PTR(ret);
goto err;
}
return i915_vma_make_unshrinkable(vma);
err:
i915_gem_object_put(obj);
return vma;
}
/**
* intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
* @guc: the guc
* @size: size of area to allocate (both virtual space and memory)
* @out_vma: return variable for the allocated vma pointer
* @out_vaddr: return variable for the obj mapping
*
* This wrapper calls intel_guc_allocate_vma() and then maps the allocated
* object with I915_MAP_WB.
*
* Return: 0 if successful, a negative errno code otherwise.
*/
int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
struct i915_vma **out_vma, void **out_vaddr)
{
struct i915_vma *vma;
void *vaddr;
vma = intel_guc_allocate_vma(guc, size);
if (IS_ERR(vma))
return PTR_ERR(vma);
vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
intel_gt_coherent_map_type(guc_to_gt(guc),
vma->obj, true));
if (IS_ERR(vaddr)) {
i915_vma_unpin_and_release(&vma, 0);
return PTR_ERR(vaddr);
}
*out_vma = vma;
*out_vaddr = vaddr;
return 0;
}
static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
{
u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
};
int ret;
GEM_BUG_ON(len > 2);
GEM_BUG_ON(len == 1 && upper_32_bits(value));
/* Self config must go over MMIO */
ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
if (unlikely(ret < 0))
return ret;
if (unlikely(ret > 1))
return -EPROTO;
if (unlikely(!ret))
return -ENOKEY;
return 0;
}
static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
{
int err = __guc_action_self_cfg(guc, key, len, value);
if (unlikely(err))
guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
ERR_PTR(err), key, value);
return err;
}
int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
{
return __guc_self_cfg(guc, key, 1, value);
}
int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
{
return __guc_self_cfg(guc, key, 2, value);
}
/**
* intel_guc_load_status - dump information about GuC load status
* @guc: the GuC
* @p: the &drm_printer
*
* Pretty printer for GuC load status.
*/
void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
{
struct intel_gt *gt = guc_to_gt(guc);
struct intel_uncore *uncore = gt->uncore;
intel_wakeref_t wakeref;
if (!intel_guc_is_supported(guc)) {
drm_printf(p, "GuC not supported\n");
return;
}
if (!intel_guc_is_wanted(guc)) {
drm_printf(p, "GuC disabled\n");
return;
}
intel_uc_fw_dump(&guc->fw, p);
with_intel_runtime_pm(uncore->rpm, wakeref) {
u32 status = intel_uncore_read(uncore, GUC_STATUS);
u32 i;
drm_printf(p, "GuC status 0x%08x:\n", status);
drm_printf(p, "\tBootrom status = 0x%x\n",
(status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
drm_printf(p, "\tuKernel status = 0x%x\n",
(status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
drm_printf(p, "\tMIA Core status = 0x%x\n",
(status & GS_MIA_MASK) >> GS_MIA_SHIFT);
drm_puts(p, "Scratch registers:\n");
for (i = 0; i < 16; i++) {
drm_printf(p, "\t%2d: \t0x%x\n",
i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
}
}
}
void intel_guc_write_barrier(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
/*
* Ensure intel_uncore_write_fw can be used rather than
* intel_uncore_write.
*/
GEM_BUG_ON(guc->send_regs.fw_domains);
/*
* This register is used by the i915 and GuC for MMIO based
* communication. Once we are in this code CTBs are the only
* method the i915 uses to communicate with the GuC so it is
* safe to write to this register (a value of 0 is NOP for MMIO
* communication). If we ever start mixing CTBs and MMIOs a new
* register will have to be chosen. This function is also used
* to enforce ordering of a work queue item write and an update
* to the process descriptor. When a work queue is being used,
* CTBs are also the only mechanism of communication.
*/
intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
} else {
/* wmb() sufficient for a barrier if in smem */
wmb();
}
}
|