summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/vc4/vc4_kms.c
blob: 58bbb9efc2dfa0fe034f6d7ddc087d7478152f49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2015 Broadcom
 */

/**
 * DOC: VC4 KMS
 *
 * This is the general code for implementing KMS mode setting that
 * doesn't clearly associate with any of the other objects (plane,
 * crtc, HDMI encoder).
 */

#include <linux/clk.h>
#include <linux/sort.h>

#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>

#include "vc4_drv.h"
#include "vc4_regs.h"

struct vc4_ctm_state {
	struct drm_private_state base;
	struct drm_color_ctm *ctm;
	int fifo;
};

#define to_vc4_ctm_state(_state)				\
	container_of_const(_state, struct vc4_ctm_state, base)

struct vc4_load_tracker_state {
	struct drm_private_state base;
	u64 hvs_load;
	u64 membus_load;
};

#define to_vc4_load_tracker_state(_state)				\
	container_of_const(_state, struct vc4_load_tracker_state, base)

static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
					       struct drm_private_obj *manager)
{
	struct drm_device *dev = state->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_private_state *priv_state;
	int ret;

	ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
	if (ret)
		return ERR_PTR(ret);

	priv_state = drm_atomic_get_private_obj_state(state, manager);
	if (IS_ERR(priv_state))
		return ERR_CAST(priv_state);

	return to_vc4_ctm_state(priv_state);
}

static struct drm_private_state *
vc4_ctm_duplicate_state(struct drm_private_obj *obj)
{
	struct vc4_ctm_state *state;

	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
	if (!state)
		return NULL;

	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);

	return &state->base;
}

static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
				  struct drm_private_state *state)
{
	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);

	kfree(ctm_state);
}

static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
	.atomic_duplicate_state = vc4_ctm_duplicate_state,
	.atomic_destroy_state = vc4_ctm_destroy_state,
};

static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);

	drm_atomic_private_obj_fini(&vc4->ctm_manager);
}

static int vc4_ctm_obj_init(struct vc4_dev *vc4)
{
	struct vc4_ctm_state *ctm_state;

	drm_modeset_lock_init(&vc4->ctm_state_lock);

	ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
	if (!ctm_state)
		return -ENOMEM;

	drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
				    &vc4_ctm_state_funcs);

	return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
}

/* Converts a DRM S31.32 value to the HW S0.9 format. */
static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
{
	u16 r;

	/* Sign bit. */
	r = in & BIT_ULL(63) ? BIT(9) : 0;

	if ((in & GENMASK_ULL(62, 32)) > 0) {
		/* We have zero integer bits so we can only saturate here. */
		r |= GENMASK(8, 0);
	} else {
		/* Otherwise take the 9 most important fractional bits. */
		r |= (in >> 23) & GENMASK(8, 0);
	}

	return r;
}

static void
vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
{
	struct vc4_hvs *hvs = vc4->hvs;
	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
	struct drm_color_ctm *ctm = ctm_state->ctm;

	if (ctm_state->fifo) {
		HVS_WRITE(SCALER_OLEDCOEF2,
			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
					SCALER_OLEDCOEF2_R_TO_R) |
			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
					SCALER_OLEDCOEF2_R_TO_G) |
			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
					SCALER_OLEDCOEF2_R_TO_B));
		HVS_WRITE(SCALER_OLEDCOEF1,
			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
					SCALER_OLEDCOEF1_G_TO_R) |
			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
					SCALER_OLEDCOEF1_G_TO_G) |
			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
					SCALER_OLEDCOEF1_G_TO_B));
		HVS_WRITE(SCALER_OLEDCOEF0,
			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
					SCALER_OLEDCOEF0_B_TO_R) |
			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
					SCALER_OLEDCOEF0_B_TO_G) |
			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
					SCALER_OLEDCOEF0_B_TO_B));
	}

	HVS_WRITE(SCALER_OLEDOFFS,
		  VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
}

struct vc4_hvs_state *
vc4_hvs_get_new_global_state(const struct drm_atomic_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
	struct drm_private_state *priv_state;

	priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
	if (!priv_state)
		return ERR_PTR(-EINVAL);

	return to_vc4_hvs_state(priv_state);
}

struct vc4_hvs_state *
vc4_hvs_get_old_global_state(const struct drm_atomic_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
	struct drm_private_state *priv_state;

	priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
	if (!priv_state)
		return ERR_PTR(-EINVAL);

	return to_vc4_hvs_state(priv_state);
}

struct vc4_hvs_state *
vc4_hvs_get_global_state(struct drm_atomic_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
	struct drm_private_state *priv_state;

	priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
	if (IS_ERR(priv_state))
		return ERR_CAST(priv_state);

	return to_vc4_hvs_state(priv_state);
}

static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
				     struct drm_atomic_state *state)
{
	struct vc4_hvs *hvs = vc4->hvs;
	struct drm_crtc_state *crtc_state;
	struct drm_crtc *crtc;
	unsigned int i;

	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
		u32 dispctrl;
		u32 dsp3_mux;

		if (!crtc_state->active)
			continue;

		if (vc4_state->assigned_channel != 2)
			continue;

		/*
		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
		 * FIFO X'.
		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
		 *
		 * DSP3 is connected to FIFO2 unless the transposer is
		 * enabled. In this case, FIFO 2 is directly accessed by the
		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
		 * route.
		 */
		if (vc4_crtc->feeds_txp)
			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
		else
			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);

		dispctrl = HVS_READ(SCALER_DISPCTRL) &
			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
	}
}

static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
				     struct drm_atomic_state *state)
{
	struct vc4_hvs *hvs = vc4->hvs;
	struct drm_crtc_state *crtc_state;
	struct drm_crtc *crtc;
	unsigned char mux;
	unsigned int i;
	u32 reg;

	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
		unsigned int channel = vc4_state->assigned_channel;

		if (!vc4_state->update_muxing)
			continue;

		switch (vc4_crtc->data->hvs_output) {
		case 2:
			drm_WARN_ON(&vc4->base,
				    VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
						  SCALER_DISPCTRL_DSP3_MUX) == channel);

			mux = (channel == 2) ? 0 : 1;
			reg = HVS_READ(SCALER_DISPECTRL);
			HVS_WRITE(SCALER_DISPECTRL,
				  (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
				  VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
			break;

		case 3:
			if (channel == VC4_HVS_CHANNEL_DISABLED)
				mux = 3;
			else
				mux = channel;

			reg = HVS_READ(SCALER_DISPCTRL);
			HVS_WRITE(SCALER_DISPCTRL,
				  (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
				  VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
			break;

		case 4:
			if (channel == VC4_HVS_CHANNEL_DISABLED)
				mux = 3;
			else
				mux = channel;

			reg = HVS_READ(SCALER_DISPEOLN);
			HVS_WRITE(SCALER_DISPEOLN,
				  (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
				  VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));

			break;

		case 5:
			if (channel == VC4_HVS_CHANNEL_DISABLED)
				mux = 3;
			else
				mux = channel;

			reg = HVS_READ(SCALER_DISPDITHER);
			HVS_WRITE(SCALER_DISPDITHER,
				  (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
				  VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
			break;

		default:
			break;
		}
	}
}

static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_hvs *hvs = vc4->hvs;
	struct drm_crtc_state *new_crtc_state;
	struct vc4_hvs_state *new_hvs_state;
	struct drm_crtc *crtc;
	struct vc4_hvs_state *old_hvs_state;
	unsigned int channel;
	int i;

	old_hvs_state = vc4_hvs_get_old_global_state(state);
	if (WARN_ON(IS_ERR(old_hvs_state)))
		return;

	new_hvs_state = vc4_hvs_get_new_global_state(state);
	if (WARN_ON(IS_ERR(new_hvs_state)))
		return;

	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
		struct vc4_crtc_state *vc4_crtc_state;

		if (!new_crtc_state->commit)
			continue;

		vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
		vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
	}

	for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
		struct drm_crtc_commit *commit;
		int ret;

		if (!old_hvs_state->fifo_state[channel].in_use)
			continue;

		commit = old_hvs_state->fifo_state[channel].pending_commit;
		if (!commit)
			continue;

		ret = drm_crtc_commit_wait(commit);
		if (ret)
			drm_err(dev, "Timed out waiting for commit\n");

		drm_crtc_commit_put(commit);
		old_hvs_state->fifo_state[channel].pending_commit = NULL;
	}

	if (vc4->gen == VC4_GEN_5) {
		unsigned long state_rate = max(old_hvs_state->core_clock_rate,
					       new_hvs_state->core_clock_rate);
		unsigned long core_rate = clamp_t(unsigned long, state_rate,
						  500000000, hvs->max_core_rate);

		drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);

		/*
		 * Do a temporary request on the core clock during the
		 * modeset.
		 */
		WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
	}

	drm_atomic_helper_commit_modeset_disables(dev, state);

	vc4_ctm_commit(vc4, state);

	if (vc4->gen == VC4_GEN_5)
		vc5_hvs_pv_muxing_commit(vc4, state);
	else
		vc4_hvs_pv_muxing_commit(vc4, state);

	drm_atomic_helper_commit_planes(dev, state,
					DRM_PLANE_COMMIT_ACTIVE_ONLY);

	drm_atomic_helper_commit_modeset_enables(dev, state);

	drm_atomic_helper_fake_vblank(state);

	drm_atomic_helper_commit_hw_done(state);

	drm_atomic_helper_wait_for_flip_done(dev, state);

	drm_atomic_helper_cleanup_planes(dev, state);

	if (vc4->gen == VC4_GEN_5) {
		unsigned long core_rate = min_t(unsigned long,
						hvs->max_core_rate,
						new_hvs_state->core_clock_rate);

		drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate);

		/*
		 * Request a clock rate based on the current HVS
		 * requirements.
		 */
		WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));

		drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
			clk_get_rate(hvs->core_clk));
	}
}

static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
{
	struct drm_crtc_state *crtc_state;
	struct vc4_hvs_state *hvs_state;
	struct drm_crtc *crtc;
	unsigned int i;

	hvs_state = vc4_hvs_get_new_global_state(state);
	if (WARN_ON(IS_ERR(hvs_state)))
		return PTR_ERR(hvs_state);

	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		struct vc4_crtc_state *vc4_crtc_state =
			to_vc4_crtc_state(crtc_state);
		unsigned int channel =
			vc4_crtc_state->assigned_channel;

		if (channel == VC4_HVS_CHANNEL_DISABLED)
			continue;

		if (!hvs_state->fifo_state[channel].in_use)
			continue;

		hvs_state->fifo_state[channel].pending_commit =
			drm_crtc_commit_get(crtc_state->commit);
	}

	return 0;
}

static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
					     struct drm_file *file_priv,
					     const struct drm_mode_fb_cmd2 *mode_cmd)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_mode_fb_cmd2 mode_cmd_local;

	if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4))
		return ERR_PTR(-ENODEV);

	/* If the user didn't specify a modifier, use the
	 * vc4_set_tiling_ioctl() state for the BO.
	 */
	if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
		struct drm_gem_object *gem_obj;
		struct vc4_bo *bo;

		gem_obj = drm_gem_object_lookup(file_priv,
						mode_cmd->handles[0]);
		if (!gem_obj) {
			DRM_DEBUG("Failed to look up GEM BO %d\n",
				  mode_cmd->handles[0]);
			return ERR_PTR(-ENOENT);
		}
		bo = to_vc4_bo(gem_obj);

		mode_cmd_local = *mode_cmd;

		if (bo->t_format) {
			mode_cmd_local.modifier[0] =
				DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
		} else {
			mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
		}

		drm_gem_object_put(gem_obj);

		mode_cmd = &mode_cmd_local;
	}

	return drm_gem_fb_create(dev, file_priv, mode_cmd);
}

/* Our CTM has some peculiar limitations: we can only enable it for one CRTC
 * at a time and the HW only supports S0.9 scalars. To account for the latter,
 * we don't allow userland to set a CTM that we have no hope of approximating.
 */
static int
vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_ctm_state *ctm_state = NULL;
	struct drm_crtc *crtc;
	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
	struct drm_color_ctm *ctm;
	int i;

	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
		/* CTM is being disabled. */
		if (!new_crtc_state->ctm && old_crtc_state->ctm) {
			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
			if (IS_ERR(ctm_state))
				return PTR_ERR(ctm_state);
			ctm_state->fifo = 0;
		}
	}

	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
		if (new_crtc_state->ctm == old_crtc_state->ctm)
			continue;

		if (!ctm_state) {
			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
			if (IS_ERR(ctm_state))
				return PTR_ERR(ctm_state);
		}

		/* CTM is being enabled or the matrix changed. */
		if (new_crtc_state->ctm) {
			struct vc4_crtc_state *vc4_crtc_state =
				to_vc4_crtc_state(new_crtc_state);

			/* fifo is 1-based since 0 disables CTM. */
			int fifo = vc4_crtc_state->assigned_channel + 1;

			/* Check userland isn't trying to turn on CTM for more
			 * than one CRTC at a time.
			 */
			if (ctm_state->fifo && ctm_state->fifo != fifo) {
				DRM_DEBUG_DRIVER("Too many CTM configured\n");
				return -EINVAL;
			}

			/* Check we can approximate the specified CTM.
			 * We disallow scalars |c| > 1.0 since the HW has
			 * no integer bits.
			 */
			ctm = new_crtc_state->ctm->data;
			for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
				u64 val = ctm->matrix[i];

				val &= ~BIT_ULL(63);
				if (val > BIT_ULL(32))
					return -EINVAL;
			}

			ctm_state->fifo = fifo;
			ctm_state->ctm = ctm;
		}
	}

	return 0;
}

static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
{
	struct drm_plane_state *old_plane_state, *new_plane_state;
	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
	struct vc4_load_tracker_state *load_state;
	struct drm_private_state *priv_state;
	struct drm_plane *plane;
	int i;

	priv_state = drm_atomic_get_private_obj_state(state,
						      &vc4->load_tracker);
	if (IS_ERR(priv_state))
		return PTR_ERR(priv_state);

	load_state = to_vc4_load_tracker_state(priv_state);
	for_each_oldnew_plane_in_state(state, plane, old_plane_state,
				       new_plane_state, i) {
		struct vc4_plane_state *vc4_plane_state;

		if (old_plane_state->fb && old_plane_state->crtc) {
			vc4_plane_state = to_vc4_plane_state(old_plane_state);
			load_state->membus_load -= vc4_plane_state->membus_load;
			load_state->hvs_load -= vc4_plane_state->hvs_load;
		}

		if (new_plane_state->fb && new_plane_state->crtc) {
			vc4_plane_state = to_vc4_plane_state(new_plane_state);
			load_state->membus_load += vc4_plane_state->membus_load;
			load_state->hvs_load += vc4_plane_state->hvs_load;
		}
	}

	/* Don't check the load when the tracker is disabled. */
	if (!vc4->load_tracker_enabled)
		return 0;

	/* The absolute limit is 2Gbyte/sec, but let's take a margin to let
	 * the system work when other blocks are accessing the memory.
	 */
	if (load_state->membus_load > SZ_1G + SZ_512M)
		return -ENOSPC;

	/* HVS clock is supposed to run @ 250Mhz, let's take a margin and
	 * consider the maximum number of cycles is 240M.
	 */
	if (load_state->hvs_load > 240000000ULL)
		return -ENOSPC;

	return 0;
}

static struct drm_private_state *
vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
{
	struct vc4_load_tracker_state *state;

	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
	if (!state)
		return NULL;

	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);

	return &state->base;
}

static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
					   struct drm_private_state *state)
{
	struct vc4_load_tracker_state *load_state;

	load_state = to_vc4_load_tracker_state(state);
	kfree(load_state);
}

static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
	.atomic_duplicate_state = vc4_load_tracker_duplicate_state,
	.atomic_destroy_state = vc4_load_tracker_destroy_state,
};

static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);

	drm_atomic_private_obj_fini(&vc4->load_tracker);
}

static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
{
	struct vc4_load_tracker_state *load_state;

	load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
	if (!load_state)
		return -ENOMEM;

	drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
				    &load_state->base,
				    &vc4_load_tracker_state_funcs);

	return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
}

static struct drm_private_state *
vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
{
	struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
	struct vc4_hvs_state *state;
	unsigned int i;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (!state)
		return NULL;

	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);

	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
		state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
		state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
	}

	state->core_clock_rate = old_state->core_clock_rate;

	return &state->base;
}

static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
					   struct drm_private_state *state)
{
	struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
	unsigned int i;

	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
		if (!hvs_state->fifo_state[i].pending_commit)
			continue;

		drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
	}

	kfree(hvs_state);
}

static void vc4_hvs_channels_print_state(struct drm_printer *p,
					 const struct drm_private_state *state)
{
	const struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
	unsigned int i;

	drm_printf(p, "HVS State\n");
	drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);

	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
		drm_printf(p, "\tChannel %d\n", i);
		drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
		drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
	}
}

static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
	.atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
	.atomic_destroy_state = vc4_hvs_channels_destroy_state,
	.atomic_print_state = vc4_hvs_channels_print_state,
};

static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);

	drm_atomic_private_obj_fini(&vc4->hvs_channels);
}

static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
{
	struct vc4_hvs_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;

	drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
				    &state->base,
				    &vc4_hvs_state_funcs);

	return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
}

static int cmp_vc4_crtc_hvs_output(const void *a, const void *b)
{
	const struct vc4_crtc *crtc_a =
		to_vc4_crtc(*(const struct drm_crtc **)a);
	const struct vc4_crtc_data *data_a =
		vc4_crtc_to_vc4_crtc_data(crtc_a);
	const struct vc4_crtc *crtc_b =
		to_vc4_crtc(*(const struct drm_crtc **)b);
	const struct vc4_crtc_data *data_b =
		vc4_crtc_to_vc4_crtc_data(crtc_b);

	return data_a->hvs_output - data_b->hvs_output;
}

/*
 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
 * the TXP (and therefore all the CRTCs found on that platform).
 *
 * The naive (and our initial) implementation would just iterate over
 * all the active CRTCs, try to find a suitable FIFO, and then remove it
 * from the pool of available FIFOs. However, there are a few corner
 * cases that need to be considered:
 *
 * - When running in a dual-display setup (so with two CRTCs involved),
 *   we can update the state of a single CRTC (for example by changing
 *   its mode using xrandr under X11) without affecting the other. In
 *   this case, the other CRTC wouldn't be in the state at all, so we
 *   need to consider all the running CRTCs in the DRM device to assign
 *   a FIFO, not just the one in the state.
 *
 * - To fix the above, we can't use drm_atomic_get_crtc_state on all
 *   enabled CRTCs to pull their CRTC state into the global state, since
 *   a page flip would start considering their vblank to complete. Since
 *   we don't have a guarantee that they are actually active, that
 *   vblank might never happen, and shouldn't even be considered if we
 *   want to do a page flip on a single CRTC. That can be tested by
 *   doing a modetest -v first on HDMI1 and then on HDMI0.
 *
 * - Since we need the pixelvalve to be disabled and enabled back when
 *   the FIFO is changed, we should keep the FIFO assigned for as long
 *   as the CRTC is enabled, only considering it free again once that
 *   CRTC has been disabled. This can be tested by booting X11 on a
 *   single display, and changing the resolution down and then back up.
 */
static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
				      struct drm_atomic_state *state)
{
	struct vc4_hvs_state *hvs_new_state;
	struct drm_crtc **sorted_crtcs;
	struct drm_crtc *crtc;
	unsigned int unassigned_channels = 0;
	unsigned int i;
	int ret;

	hvs_new_state = vc4_hvs_get_global_state(state);
	if (IS_ERR(hvs_new_state))
		return PTR_ERR(hvs_new_state);

	for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
		if (!hvs_new_state->fifo_state[i].in_use)
			unassigned_channels |= BIT(i);

	/*
	 * The problem we have to solve here is that we have up to 7
	 * encoders, connected to up to 6 CRTCs.
	 *
	 * Those CRTCs, depending on the instance, can be routed to 1, 2
	 * or 3 HVS FIFOs, and we need to set the muxing between FIFOs and
	 * outputs in the HVS accordingly.
	 *
	 * It would be pretty hard to come up with an algorithm that
	 * would generically solve this. However, the current routing
	 * trees we support allow us to simplify a bit the problem.
	 *
	 * Indeed, with the current supported layouts, if we try to
	 * assign in the ascending crtc index order the FIFOs, we can't
	 * fall into the situation where an earlier CRTC that had
	 * multiple routes is assigned one that was the only option for
	 * a later CRTC.
	 *
	 * If the layout changes and doesn't give us that in the future,
	 * we will need to have something smarter, but it works so far.
	 */
	sorted_crtcs = kmalloc_array(dev->num_crtcs, sizeof(*sorted_crtcs), GFP_KERNEL);
	if (!sorted_crtcs)
		return -ENOMEM;

	i = 0;
	drm_for_each_crtc(crtc, dev)
		sorted_crtcs[i++] = crtc;

	sort(sorted_crtcs, i, sizeof(*sorted_crtcs), cmp_vc4_crtc_hvs_output, NULL);

	for (i = 0; i < dev->num_crtcs; i++) {
		struct vc4_crtc_state *old_vc4_crtc_state, *new_vc4_crtc_state;
		struct drm_crtc_state *old_crtc_state, *new_crtc_state;
		struct vc4_crtc *vc4_crtc;
		unsigned int matching_channels;
		unsigned int channel;

		crtc = sorted_crtcs[i];
		if (!crtc)
			continue;
		vc4_crtc = to_vc4_crtc(crtc);

		old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
		if (!old_crtc_state)
			continue;
		old_vc4_crtc_state = to_vc4_crtc_state(old_crtc_state);

		new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
		if (!new_crtc_state)
			continue;
		new_vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);

		drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);

		/* Nothing to do here, let's skip it */
		if (old_crtc_state->enable == new_crtc_state->enable) {
			if (new_crtc_state->enable)
				drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
					crtc->name, new_vc4_crtc_state->assigned_channel);
			else
				drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);

			continue;
		}

		/* Muxing will need to be modified, mark it as such */
		new_vc4_crtc_state->update_muxing = true;

		/* If we're disabling our CRTC, we put back our channel */
		if (!new_crtc_state->enable) {
			channel = old_vc4_crtc_state->assigned_channel;

			drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
				crtc->name, channel);

			hvs_new_state->fifo_state[channel].in_use = false;
			new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
			continue;
		}

		matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
		if (!matching_channels) {
			ret = -EINVAL;
			goto err_free_crtc_array;
		}

		channel = ffs(matching_channels) - 1;

		drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
		new_vc4_crtc_state->assigned_channel = channel;
		unassigned_channels &= ~BIT(channel);
		hvs_new_state->fifo_state[channel].in_use = true;
	}

	kfree(sorted_crtcs);
	return 0;

err_free_crtc_array:
	kfree(sorted_crtcs);
	return ret;
}

static int
vc4_core_clock_atomic_check(struct drm_atomic_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
	struct drm_private_state *priv_state;
	struct vc4_hvs_state *hvs_new_state;
	struct vc4_load_tracker_state *load_state;
	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
	struct drm_crtc *crtc;
	unsigned int num_outputs;
	unsigned long pixel_rate;
	unsigned long cob_rate;
	unsigned int i;

	priv_state = drm_atomic_get_private_obj_state(state,
						      &vc4->load_tracker);
	if (IS_ERR(priv_state))
		return PTR_ERR(priv_state);

	load_state = to_vc4_load_tracker_state(priv_state);

	hvs_new_state = vc4_hvs_get_global_state(state);
	if (IS_ERR(hvs_new_state))
		return PTR_ERR(hvs_new_state);

	for_each_oldnew_crtc_in_state(state, crtc,
				      old_crtc_state,
				      new_crtc_state,
				      i) {
		if (old_crtc_state->active) {
			struct vc4_crtc_state *old_vc4_state =
				to_vc4_crtc_state(old_crtc_state);
			unsigned int channel = old_vc4_state->assigned_channel;

			hvs_new_state->fifo_state[channel].fifo_load = 0;
		}

		if (new_crtc_state->active) {
			struct vc4_crtc_state *new_vc4_state =
				to_vc4_crtc_state(new_crtc_state);
			unsigned int channel = new_vc4_state->assigned_channel;

			hvs_new_state->fifo_state[channel].fifo_load =
				new_vc4_state->hvs_load;
		}
	}

	cob_rate = 0;
	num_outputs = 0;
	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
		if (!hvs_new_state->fifo_state[i].in_use)
			continue;

		num_outputs++;
		cob_rate = max_t(unsigned long,
				 hvs_new_state->fifo_state[i].fifo_load,
				 cob_rate);
	}

	pixel_rate = load_state->hvs_load;
	if (num_outputs > 1) {
		pixel_rate = (pixel_rate * 40) / 100;
	} else {
		pixel_rate = (pixel_rate * 60) / 100;
	}

	hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);

	return 0;
}


static int
vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
{
	int ret;

	ret = vc4_pv_muxing_atomic_check(dev, state);
	if (ret)
		return ret;

	ret = vc4_ctm_atomic_check(dev, state);
	if (ret < 0)
		return ret;

	ret = drm_atomic_helper_check(dev, state);
	if (ret)
		return ret;

	ret = vc4_load_tracker_atomic_check(state);
	if (ret)
		return ret;

	return vc4_core_clock_atomic_check(state);
}

static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
	.atomic_commit_setup	= vc4_atomic_commit_setup,
	.atomic_commit_tail	= vc4_atomic_commit_tail,
};

static const struct drm_mode_config_funcs vc4_mode_funcs = {
	.atomic_check = vc4_atomic_check,
	.atomic_commit = drm_atomic_helper_commit,
	.fb_create = vc4_fb_create,
};

static const struct drm_mode_config_funcs vc5_mode_funcs = {
	.atomic_check = vc4_atomic_check,
	.atomic_commit = drm_atomic_helper_commit,
	.fb_create = drm_gem_fb_create,
};

int vc4_kms_load(struct drm_device *dev)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	int ret;

	/*
	 * The limits enforced by the load tracker aren't relevant for
	 * the BCM2711, but the load tracker computations are used for
	 * the core clock rate calculation.
	 */
	if (vc4->gen == VC4_GEN_4) {
		/* Start with the load tracker enabled. Can be
		 * disabled through the debugfs load_tracker file.
		 */
		vc4->load_tracker_enabled = true;
	}

	/* Set support for vblank irq fast disable, before drm_vblank_init() */
	dev->vblank_disable_immediate = true;

	ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
	if (ret < 0) {
		dev_err(dev->dev, "failed to initialize vblank\n");
		return ret;
	}

	if (vc4->gen == VC4_GEN_5) {
		dev->mode_config.max_width = 7680;
		dev->mode_config.max_height = 7680;
	} else {
		dev->mode_config.max_width = 2048;
		dev->mode_config.max_height = 2048;
	}

	dev->mode_config.funcs = (vc4->gen > VC4_GEN_4) ? &vc5_mode_funcs : &vc4_mode_funcs;
	dev->mode_config.helper_private = &vc4_mode_config_helpers;
	dev->mode_config.preferred_depth = 24;
	dev->mode_config.async_page_flip = true;
	dev->mode_config.normalize_zpos = true;

	ret = vc4_ctm_obj_init(vc4);
	if (ret)
		return ret;

	ret = vc4_load_tracker_obj_init(vc4);
	if (ret)
		return ret;

	ret = vc4_hvs_channels_obj_init(vc4);
	if (ret)
		return ret;

	drm_mode_config_reset(dev);

	drm_kms_helper_poll_init(dev);

	return 0;
}