summaryrefslogtreecommitdiffstats
path: root/drivers/hwtracing/coresight/coresight-etm-perf.c
blob: 711f451b69469404cc4a0835c266e9854860e3be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright(C) 2015 Linaro Limited. All rights reserved.
 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
 */

#include <linux/bitfield.h>
#include <linux/coresight.h>
#include <linux/coresight-pmu.h>
#include <linux/cpumask.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/perf_event.h>
#include <linux/percpu-defs.h>
#include <linux/slab.h>
#include <linux/stringhash.h>
#include <linux/types.h>
#include <linux/workqueue.h>

#include "coresight-config.h"
#include "coresight-etm-perf.h"
#include "coresight-priv.h"
#include "coresight-syscfg.h"
#include "coresight-trace-id.h"

static struct pmu etm_pmu;
static bool etm_perf_up;

/*
 * An ETM context for a running event includes the perf aux handle
 * and aux_data. For ETM, the aux_data (etm_event_data), consists of
 * the trace path and the sink configuration. The event data is accessible
 * via perf_get_aux(handle). However, a sink could "end" a perf output
 * handle via the IRQ handler. And if the "sink" encounters a failure
 * to "begin" another session (e.g due to lack of space in the buffer),
 * the handle will be cleared. Thus, the event_data may not be accessible
 * from the handle when we get to the etm_event_stop(), which is required
 * for stopping the trace path. The event_data is guaranteed to stay alive
 * until "free_aux()", which cannot happen as long as the event is active on
 * the ETM. Thus the event_data for the session must be part of the ETM context
 * to make sure we can disable the trace path.
 */
struct etm_ctxt {
	struct perf_output_handle handle;
	struct etm_event_data *event_data;
};

static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
static DEFINE_PER_CPU(struct coresight_device *, csdev_src);

/*
 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
 * now take them as general formats and apply on all ETMs.
 */
PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
/* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
/* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
/* preset - if sink ID is used as a configuration selector */
PMU_FORMAT_ATTR(preset,		"config:0-3");
/* Sink ID - same for all ETMs */
PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
/* config ID - set if a system configuration is selected */
PMU_FORMAT_ATTR(configid,	"config2:32-63");


/*
 * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
 * when the kernel is running at EL1; when the kernel is at EL2,
 * the PID is in CONTEXTIDR_EL2.
 */
static ssize_t format_attr_contextid_show(struct device *dev,
					  struct device_attribute *attr,
					  char *page)
{
	int pid_fmt = ETM_OPT_CTXTID;

#if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
#endif
	return sprintf(page, "config:%d\n", pid_fmt);
}

static struct device_attribute format_attr_contextid =
	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);

static struct attribute *etm_config_formats_attr[] = {
	&format_attr_cycacc.attr,
	&format_attr_contextid.attr,
	&format_attr_contextid1.attr,
	&format_attr_contextid2.attr,
	&format_attr_timestamp.attr,
	&format_attr_retstack.attr,
	&format_attr_sinkid.attr,
	&format_attr_preset.attr,
	&format_attr_configid.attr,
	&format_attr_branch_broadcast.attr,
	NULL,
};

static const struct attribute_group etm_pmu_format_group = {
	.name   = "format",
	.attrs  = etm_config_formats_attr,
};

static struct attribute *etm_config_sinks_attr[] = {
	NULL,
};

static const struct attribute_group etm_pmu_sinks_group = {
	.name   = "sinks",
	.attrs  = etm_config_sinks_attr,
};

static struct attribute *etm_config_events_attr[] = {
	NULL,
};

static const struct attribute_group etm_pmu_events_group = {
	.name   = "events",
	.attrs  = etm_config_events_attr,
};

static const struct attribute_group *etm_pmu_attr_groups[] = {
	&etm_pmu_format_group,
	&etm_pmu_sinks_group,
	&etm_pmu_events_group,
	NULL,
};

static inline struct list_head **
etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
{
	return per_cpu_ptr(data->path, cpu);
}

static inline struct list_head *
etm_event_cpu_path(struct etm_event_data *data, int cpu)
{
	return *etm_event_cpu_path_ptr(data, cpu);
}

static void etm_event_read(struct perf_event *event) {}

static int etm_addr_filters_alloc(struct perf_event *event)
{
	struct etm_filters *filters;
	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);

	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
	if (!filters)
		return -ENOMEM;

	if (event->parent)
		memcpy(filters, event->parent->hw.addr_filters,
		       sizeof(*filters));

	event->hw.addr_filters = filters;

	return 0;
}

static void etm_event_destroy(struct perf_event *event)
{
	kfree(event->hw.addr_filters);
	event->hw.addr_filters = NULL;
}

static int etm_event_init(struct perf_event *event)
{
	int ret = 0;

	if (event->attr.type != etm_pmu.type) {
		ret = -ENOENT;
		goto out;
	}

	ret = etm_addr_filters_alloc(event);
	if (ret)
		goto out;

	event->destroy = etm_event_destroy;
out:
	return ret;
}

static void free_sink_buffer(struct etm_event_data *event_data)
{
	int cpu;
	cpumask_t *mask = &event_data->mask;
	struct coresight_device *sink;

	if (!event_data->snk_config)
		return;

	if (WARN_ON(cpumask_empty(mask)))
		return;

	cpu = cpumask_first(mask);
	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
	sink_ops(sink)->free_buffer(event_data->snk_config);
}

static void free_event_data(struct work_struct *work)
{
	int cpu;
	cpumask_t *mask;
	struct etm_event_data *event_data;

	event_data = container_of(work, struct etm_event_data, work);
	mask = &event_data->mask;

	/* Free the sink buffers, if there are any */
	free_sink_buffer(event_data);

	/* clear any configuration we were using */
	if (event_data->cfg_hash)
		cscfg_deactivate_config(event_data->cfg_hash);

	for_each_cpu(cpu, mask) {
		struct list_head **ppath;

		ppath = etm_event_cpu_path_ptr(event_data, cpu);
		if (!(IS_ERR_OR_NULL(*ppath)))
			coresight_release_path(*ppath);
		*ppath = NULL;
		coresight_trace_id_put_cpu_id(cpu);
	}

	/* mark perf event as done for trace id allocator */
	coresight_trace_id_perf_stop();

	free_percpu(event_data->path);
	kfree(event_data);
}

static void *alloc_event_data(int cpu)
{
	cpumask_t *mask;
	struct etm_event_data *event_data;

	/* First get memory for the session's data */
	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
	if (!event_data)
		return NULL;


	mask = &event_data->mask;
	if (cpu != -1)
		cpumask_set_cpu(cpu, mask);
	else
		cpumask_copy(mask, cpu_present_mask);

	/*
	 * Each CPU has a single path between source and destination.  As such
	 * allocate an array using CPU numbers as indexes.  That way a path
	 * for any CPU can easily be accessed at any given time.  We proceed
	 * the same way for sessions involving a single CPU.  The cost of
	 * unused memory when dealing with single CPU trace scenarios is small
	 * compared to the cost of searching through an optimized array.
	 */
	event_data->path = alloc_percpu(struct list_head *);

	if (!event_data->path) {
		kfree(event_data);
		return NULL;
	}

	return event_data;
}

static void etm_free_aux(void *data)
{
	struct etm_event_data *event_data = data;

	schedule_work(&event_data->work);
}

/*
 * Check if two given sinks are compatible with each other,
 * so that they can use the same sink buffers, when an event
 * moves around.
 */
static bool sinks_compatible(struct coresight_device *a,
			     struct coresight_device *b)
{
	if (!a || !b)
		return false;
	/*
	 * If the sinks are of the same subtype and driven
	 * by the same driver, we can use the same buffer
	 * on these sinks.
	 */
	return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
	       (sink_ops(a) == sink_ops(b));
}

static void *etm_setup_aux(struct perf_event *event, void **pages,
			   int nr_pages, bool overwrite)
{
	u32 id, cfg_hash;
	int cpu = event->cpu;
	int trace_id;
	cpumask_t *mask;
	struct coresight_device *sink = NULL;
	struct coresight_device *user_sink = NULL, *last_sink = NULL;
	struct etm_event_data *event_data = NULL;

	event_data = alloc_event_data(cpu);
	if (!event_data)
		return NULL;
	INIT_WORK(&event_data->work, free_event_data);

	/* First get the selected sink from user space. */
	if (event->attr.config2 & GENMASK_ULL(31, 0)) {
		id = (u32)event->attr.config2;
		sink = user_sink = coresight_get_sink_by_id(id);
	}

	/* tell the trace ID allocator that a perf event is starting up */
	coresight_trace_id_perf_start();

	/* check if user wants a coresight configuration selected */
	cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
	if (cfg_hash) {
		if (cscfg_activate_config(cfg_hash))
			goto err;
		event_data->cfg_hash = cfg_hash;
	}

	mask = &event_data->mask;

	/*
	 * Setup the path for each CPU in a trace session. We try to build
	 * trace path for each CPU in the mask. If we don't find an ETM
	 * for the CPU or fail to build a path, we clear the CPU from the
	 * mask and continue with the rest. If ever we try to trace on those
	 * CPUs, we can handle it and fail the session.
	 */
	for_each_cpu(cpu, mask) {
		struct list_head *path;
		struct coresight_device *csdev;

		csdev = per_cpu(csdev_src, cpu);
		/*
		 * If there is no ETM associated with this CPU clear it from
		 * the mask and continue with the rest. If ever we try to trace
		 * on this CPU, we handle it accordingly.
		 */
		if (!csdev) {
			cpumask_clear_cpu(cpu, mask);
			continue;
		}

		/*
		 * No sink provided - look for a default sink for all the ETMs,
		 * where this event can be scheduled.
		 * We allocate the sink specific buffers only once for this
		 * event. If the ETMs have different default sink devices, we
		 * can only use a single "type" of sink as the event can carry
		 * only one sink specific buffer. Thus we have to make sure
		 * that the sinks are of the same type and driven by the same
		 * driver, as the one we allocate the buffer for. As such
		 * we choose the first sink and check if the remaining ETMs
		 * have a compatible default sink. We don't trace on a CPU
		 * if the sink is not compatible.
		 */
		if (!user_sink) {
			/* Find the default sink for this ETM */
			sink = coresight_find_default_sink(csdev);
			if (!sink) {
				cpumask_clear_cpu(cpu, mask);
				continue;
			}

			/* Check if this sink compatible with the last sink */
			if (last_sink && !sinks_compatible(last_sink, sink)) {
				cpumask_clear_cpu(cpu, mask);
				continue;
			}
			last_sink = sink;
		}

		/*
		 * Building a path doesn't enable it, it simply builds a
		 * list of devices from source to sink that can be
		 * referenced later when the path is actually needed.
		 */
		path = coresight_build_path(csdev, sink);
		if (IS_ERR(path)) {
			cpumask_clear_cpu(cpu, mask);
			continue;
		}

		/* ensure we can allocate a trace ID for this CPU */
		trace_id = coresight_trace_id_get_cpu_id(cpu);
		if (!IS_VALID_CS_TRACE_ID(trace_id)) {
			cpumask_clear_cpu(cpu, mask);
			continue;
		}

		*etm_event_cpu_path_ptr(event_data, cpu) = path;
	}

	/* no sink found for any CPU - cannot trace */
	if (!sink)
		goto err;

	/* If we don't have any CPUs ready for tracing, abort */
	cpu = cpumask_first(mask);
	if (cpu >= nr_cpu_ids)
		goto err;

	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
		goto err;

	/*
	 * Allocate the sink buffer for this session. All the sinks
	 * where this event can be scheduled are ensured to be of the
	 * same type. Thus the same sink configuration is used by the
	 * sinks.
	 */
	event_data->snk_config =
			sink_ops(sink)->alloc_buffer(sink, event, pages,
						     nr_pages, overwrite);
	if (!event_data->snk_config)
		goto err;

out:
	return event_data;

err:
	etm_free_aux(event_data);
	event_data = NULL;
	goto out;
}

static void etm_event_start(struct perf_event *event, int flags)
{
	int cpu = smp_processor_id();
	struct etm_event_data *event_data;
	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
	struct perf_output_handle *handle = &ctxt->handle;
	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
	struct list_head *path;
	u64 hw_id;

	if (!csdev)
		goto fail;

	/* Have we messed up our tracking ? */
	if (WARN_ON(ctxt->event_data))
		goto fail;

	/*
	 * Deal with the ring buffer API and get a handle on the
	 * session's information.
	 */
	event_data = perf_aux_output_begin(handle, event);
	if (!event_data)
		goto fail;

	/*
	 * Check if this ETM is allowed to trace, as decided
	 * at etm_setup_aux(). This could be due to an unreachable
	 * sink from this ETM. We can't do much in this case if
	 * the sink was specified or hinted to the driver. For
	 * now, simply don't record anything on this ETM.
	 *
	 * As such we pretend that everything is fine, and let
	 * it continue without actually tracing. The event could
	 * continue tracing when it moves to a CPU where it is
	 * reachable to a sink.
	 */
	if (!cpumask_test_cpu(cpu, &event_data->mask))
		goto out;

	path = etm_event_cpu_path(event_data, cpu);
	/* We need a sink, no need to continue without one */
	sink = coresight_get_sink(path);
	if (WARN_ON_ONCE(!sink))
		goto fail_end_stop;

	/* Nothing will happen without a path */
	if (coresight_enable_path(path, CS_MODE_PERF, handle))
		goto fail_end_stop;

	/* Finally enable the tracer */
	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
		goto fail_disable_path;

	/*
	 * output cpu / trace ID in perf record, once for the lifetime
	 * of the event.
	 */
	if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) {
		cpumask_set_cpu(cpu, &event_data->aux_hwid_done);
		hw_id = FIELD_PREP(CS_AUX_HW_ID_VERSION_MASK,
				   CS_AUX_HW_ID_CURR_VERSION);
		hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK,
				    coresight_trace_id_read_cpu_id(cpu));
		perf_report_aux_output_id(event, hw_id);
	}

out:
	/* Tell the perf core the event is alive */
	event->hw.state = 0;
	/* Save the event_data for this ETM */
	ctxt->event_data = event_data;
	return;

fail_disable_path:
	coresight_disable_path(path);
fail_end_stop:
	/*
	 * Check if the handle is still associated with the event,
	 * to handle cases where if the sink failed to start the
	 * trace and TRUNCATED the handle already.
	 */
	if (READ_ONCE(handle->event)) {
		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
		perf_aux_output_end(handle, 0);
	}
fail:
	event->hw.state = PERF_HES_STOPPED;
	return;
}

static void etm_event_stop(struct perf_event *event, int mode)
{
	int cpu = smp_processor_id();
	unsigned long size;
	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
	struct perf_output_handle *handle = &ctxt->handle;
	struct etm_event_data *event_data;
	struct list_head *path;

	/*
	 * If we still have access to the event_data via handle,
	 * confirm that we haven't messed up the tracking.
	 */
	if (handle->event &&
	    WARN_ON(perf_get_aux(handle) != ctxt->event_data))
		return;

	event_data = ctxt->event_data;
	/* Clear the event_data as this ETM is stopping the trace. */
	ctxt->event_data = NULL;

	if (event->hw.state == PERF_HES_STOPPED)
		return;

	/* We must have a valid event_data for a running event */
	if (WARN_ON(!event_data))
		return;

	/*
	 * Check if this ETM was allowed to trace, as decided at
	 * etm_setup_aux(). If it wasn't allowed to trace, then
	 * nothing needs to be torn down other than outputting a
	 * zero sized record.
	 */
	if (handle->event && (mode & PERF_EF_UPDATE) &&
	    !cpumask_test_cpu(cpu, &event_data->mask)) {
		event->hw.state = PERF_HES_STOPPED;
		perf_aux_output_end(handle, 0);
		return;
	}

	if (!csdev)
		return;

	path = etm_event_cpu_path(event_data, cpu);
	if (!path)
		return;

	sink = coresight_get_sink(path);
	if (!sink)
		return;

	/* stop tracer */
	source_ops(csdev)->disable(csdev, event);

	/* tell the core */
	event->hw.state = PERF_HES_STOPPED;

	/*
	 * If the handle is not bound to an event anymore
	 * (e.g, the sink driver was unable to restart the
	 * handle due to lack of buffer space), we don't
	 * have to do anything here.
	 */
	if (handle->event && (mode & PERF_EF_UPDATE)) {
		if (WARN_ON_ONCE(handle->event != event))
			return;

		/* update trace information */
		if (!sink_ops(sink)->update_buffer)
			return;

		size = sink_ops(sink)->update_buffer(sink, handle,
					      event_data->snk_config);
		/*
		 * Make sure the handle is still valid as the
		 * sink could have closed it from an IRQ.
		 * The sink driver must handle the race with
		 * update_buffer() and IRQ. Thus either we
		 * should get a valid handle and valid size
		 * (which may be 0).
		 *
		 * But we should never get a non-zero size with
		 * an invalid handle.
		 */
		if (READ_ONCE(handle->event))
			perf_aux_output_end(handle, size);
		else
			WARN_ON(size);
	}

	/* Disabling the path make its elements available to other sessions */
	coresight_disable_path(path);
}

static int etm_event_add(struct perf_event *event, int mode)
{
	int ret = 0;
	struct hw_perf_event *hwc = &event->hw;

	if (mode & PERF_EF_START) {
		etm_event_start(event, 0);
		if (hwc->state & PERF_HES_STOPPED)
			ret = -EINVAL;
	} else {
		hwc->state = PERF_HES_STOPPED;
	}

	return ret;
}

static void etm_event_del(struct perf_event *event, int mode)
{
	etm_event_stop(event, PERF_EF_UPDATE);
}

static int etm_addr_filters_validate(struct list_head *filters)
{
	bool range = false, address = false;
	int index = 0;
	struct perf_addr_filter *filter;

	list_for_each_entry(filter, filters, entry) {
		/*
		 * No need to go further if there's no more
		 * room for filters.
		 */
		if (++index > ETM_ADDR_CMP_MAX)
			return -EOPNOTSUPP;

		/* filter::size==0 means single address trigger */
		if (filter->size) {
			/*
			 * The existing code relies on START/STOP filters
			 * being address filters.
			 */
			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
				return -EOPNOTSUPP;

			range = true;
		} else
			address = true;

		/*
		 * At this time we don't allow range and start/stop filtering
		 * to cohabitate, they have to be mutually exclusive.
		 */
		if (range && address)
			return -EOPNOTSUPP;
	}

	return 0;
}

static void etm_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
	unsigned long start, stop;
	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
	struct etm_filters *filters = event->hw.addr_filters;
	struct etm_filter *etm_filter;
	struct perf_addr_filter *filter;
	int i = 0;

	list_for_each_entry(filter, &head->list, entry) {
		start = fr[i].start;
		stop = start + fr[i].size;
		etm_filter = &filters->etm_filter[i];

		switch (filter->action) {
		case PERF_ADDR_FILTER_ACTION_FILTER:
			etm_filter->start_addr = start;
			etm_filter->stop_addr = stop;
			etm_filter->type = ETM_ADDR_TYPE_RANGE;
			break;
		case PERF_ADDR_FILTER_ACTION_START:
			etm_filter->start_addr = start;
			etm_filter->type = ETM_ADDR_TYPE_START;
			break;
		case PERF_ADDR_FILTER_ACTION_STOP:
			etm_filter->stop_addr = stop;
			etm_filter->type = ETM_ADDR_TYPE_STOP;
			break;
		}
		i++;
	}

	filters->nr_filters = i;
}

int etm_perf_symlink(struct coresight_device *csdev, bool link)
{
	char entry[sizeof("cpu9999999")];
	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
	struct device *pmu_dev = etm_pmu.dev;
	struct device *cs_dev = &csdev->dev;

	sprintf(entry, "cpu%d", cpu);

	if (!etm_perf_up)
		return -EPROBE_DEFER;

	if (link) {
		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
		if (ret)
			return ret;
		per_cpu(csdev_src, cpu) = csdev;
	} else {
		sysfs_remove_link(&pmu_dev->kobj, entry);
		per_cpu(csdev_src, cpu) = NULL;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(etm_perf_symlink);

static ssize_t etm_perf_sink_name_show(struct device *dev,
				       struct device_attribute *dattr,
				       char *buf)
{
	struct dev_ext_attribute *ea;

	ea = container_of(dattr, struct dev_ext_attribute, attr);
	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
}

static struct dev_ext_attribute *
etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
{
	struct dev_ext_attribute *ea;
	unsigned long hash;
	int ret;
	struct device *pmu_dev = etm_pmu.dev;

	if (!etm_perf_up)
		return ERR_PTR(-EPROBE_DEFER);

	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
	if (!ea)
		return ERR_PTR(-ENOMEM);

	/*
	 * If this function is called adding a sink then the hash is used for
	 * sink selection - see function coresight_get_sink_by_id().
	 * If adding a configuration then the hash is used for selection in
	 * cscfg_activate_config()
	 */
	hash = hashlen_hash(hashlen_string(NULL, name));

	sysfs_attr_init(&ea->attr.attr);
	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
	if (!ea->attr.attr.name)
		return ERR_PTR(-ENOMEM);

	ea->attr.attr.mode = 0444;
	ea->var = (unsigned long *)hash;

	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
				      &ea->attr.attr, group_name);

	return ret ? ERR_PTR(ret) : ea;
}

int etm_perf_add_symlink_sink(struct coresight_device *csdev)
{
	const char *name;
	struct device *dev = &csdev->dev;
	int err = 0;

	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
		return -EINVAL;

	if (csdev->ea != NULL)
		return -EINVAL;

	name = dev_name(dev);
	csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
	if (IS_ERR(csdev->ea)) {
		err = PTR_ERR(csdev->ea);
		csdev->ea = NULL;
	} else
		csdev->ea->attr.show = etm_perf_sink_name_show;

	return err;
}

static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
{
	struct device *pmu_dev = etm_pmu.dev;

	sysfs_remove_file_from_group(&pmu_dev->kobj,
				     &ea->attr.attr, group_name);
}

void etm_perf_del_symlink_sink(struct coresight_device *csdev)
{
	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
		return;

	if (!csdev->ea)
		return;

	etm_perf_del_symlink_group(csdev->ea, "sinks");
	csdev->ea = NULL;
}

static ssize_t etm_perf_cscfg_event_show(struct device *dev,
					 struct device_attribute *dattr,
					 char *buf)
{
	struct dev_ext_attribute *ea;

	ea = container_of(dattr, struct dev_ext_attribute, attr);
	return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
}

int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
{
	int err = 0;

	if (config_desc->event_ea != NULL)
		return 0;

	config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");

	/* set the show function to the custom cscfg event */
	if (!IS_ERR(config_desc->event_ea))
		config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
	else {
		err = PTR_ERR(config_desc->event_ea);
		config_desc->event_ea = NULL;
	}

	return err;
}

void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
{
	if (!config_desc->event_ea)
		return;

	etm_perf_del_symlink_group(config_desc->event_ea, "events");
	config_desc->event_ea = NULL;
}

int __init etm_perf_init(void)
{
	int ret;

	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
					   PERF_PMU_CAP_ITRACE);

	etm_pmu.attr_groups		= etm_pmu_attr_groups;
	etm_pmu.task_ctx_nr		= perf_sw_context;
	etm_pmu.read			= etm_event_read;
	etm_pmu.event_init		= etm_event_init;
	etm_pmu.setup_aux		= etm_setup_aux;
	etm_pmu.free_aux		= etm_free_aux;
	etm_pmu.start			= etm_event_start;
	etm_pmu.stop			= etm_event_stop;
	etm_pmu.add			= etm_event_add;
	etm_pmu.del			= etm_event_del;
	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
	etm_pmu.module			= THIS_MODULE;

	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
	if (ret == 0)
		etm_perf_up = true;

	return ret;
}

void etm_perf_exit(void)
{
	perf_pmu_unregister(&etm_pmu);
}