1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2023 Red Hat
*/
#include "funnel-requestqueue.h"
#include <linux/atomic.h>
#include <linux/compiler.h>
#include <linux/wait.h>
#include "funnel-queue.h"
#include "logger.h"
#include "memory-alloc.h"
#include "thread-utils.h"
/*
* This queue will attempt to handle requests in reasonably sized batches instead of reacting
* immediately to each new request. The wait time between batches is dynamically adjusted up or
* down to try to balance responsiveness against wasted thread run time.
*
* If the wait time becomes long enough, the queue will become dormant and must be explicitly
* awoken when a new request is enqueued. The enqueue operation updates "newest" in the funnel
* queue via xchg (which is a memory barrier), and later checks "dormant" to decide whether to do a
* wakeup of the worker thread.
*
* When deciding to go to sleep, the worker thread sets "dormant" and then examines "newest" to
* decide if the funnel queue is idle. In dormant mode, the last examination of "newest" before
* going to sleep is done inside the wait_event_interruptible() macro, after a point where one or
* more memory barriers have been issued. (Preparing to sleep uses spin locks.) Even if the funnel
* queue's "next" field update isn't visible yet to make the entry accessible, its existence will
* kick the worker thread out of dormant mode and back into timer-based mode.
*
* Unbatched requests are used to communicate between different zone threads and will also cause
* the queue to awaken immediately.
*/
enum {
NANOSECOND = 1,
MICROSECOND = 1000 * NANOSECOND,
MILLISECOND = 1000 * MICROSECOND,
DEFAULT_WAIT_TIME = 20 * MICROSECOND,
MINIMUM_WAIT_TIME = DEFAULT_WAIT_TIME / 2,
MAXIMUM_WAIT_TIME = MILLISECOND,
MINIMUM_BATCH = 32,
MAXIMUM_BATCH = 64,
};
struct uds_request_queue {
/* Wait queue for synchronizing producers and consumer */
struct wait_queue_head wait_head;
/* Function to process a request */
uds_request_queue_processor_fn processor;
/* Queue of new incoming requests */
struct funnel_queue *main_queue;
/* Queue of old requests to retry */
struct funnel_queue *retry_queue;
/* The thread id of the worker thread */
struct thread *thread;
/* True if the worker was started */
bool started;
/* When true, requests can be enqueued */
bool running;
/* A flag set when the worker is waiting without a timeout */
atomic_t dormant;
};
static inline struct uds_request *poll_queues(struct uds_request_queue *queue)
{
struct funnel_queue_entry *entry;
entry = uds_funnel_queue_poll(queue->retry_queue);
if (entry != NULL)
return container_of(entry, struct uds_request, queue_link);
entry = uds_funnel_queue_poll(queue->main_queue);
if (entry != NULL)
return container_of(entry, struct uds_request, queue_link);
return NULL;
}
static inline bool are_queues_idle(struct uds_request_queue *queue)
{
return uds_is_funnel_queue_idle(queue->retry_queue) &&
uds_is_funnel_queue_idle(queue->main_queue);
}
/*
* Determine if there is a next request to process, and return it if there is. Also return flags
* indicating whether the worker thread can sleep (for the use of wait_event() macros) and whether
* the thread did sleep before returning a new request.
*/
static inline bool dequeue_request(struct uds_request_queue *queue,
struct uds_request **request_ptr, bool *waited_ptr)
{
struct uds_request *request = poll_queues(queue);
if (request != NULL) {
*request_ptr = request;
return true;
}
if (!READ_ONCE(queue->running)) {
/* Wake the worker thread so it can exit. */
*request_ptr = NULL;
return true;
}
*request_ptr = NULL;
*waited_ptr = true;
return false;
}
static void wait_for_request(struct uds_request_queue *queue, bool dormant,
unsigned long timeout, struct uds_request **request,
bool *waited)
{
if (dormant) {
wait_event_interruptible(queue->wait_head,
(dequeue_request(queue, request, waited) ||
!are_queues_idle(queue)));
return;
}
wait_event_interruptible_hrtimeout(queue->wait_head,
dequeue_request(queue, request, waited),
ns_to_ktime(timeout));
}
static void request_queue_worker(void *arg)
{
struct uds_request_queue *queue = arg;
struct uds_request *request = NULL;
unsigned long time_batch = DEFAULT_WAIT_TIME;
bool dormant = atomic_read(&queue->dormant);
bool waited = false;
long current_batch = 0;
for (;;) {
wait_for_request(queue, dormant, time_batch, &request, &waited);
if (likely(request != NULL)) {
current_batch++;
queue->processor(request);
} else if (!READ_ONCE(queue->running)) {
break;
}
if (dormant) {
/*
* The queue has been roused from dormancy. Clear the flag so enqueuers can
* stop broadcasting. No fence is needed for this transition.
*/
atomic_set(&queue->dormant, false);
dormant = false;
time_batch = DEFAULT_WAIT_TIME;
} else if (waited) {
/*
* We waited for this request to show up. Adjust the wait time to smooth
* out the batch size.
*/
if (current_batch < MINIMUM_BATCH) {
/*
* If the last batch of requests was too small, increase the wait
* time.
*/
time_batch += time_batch / 4;
if (time_batch >= MAXIMUM_WAIT_TIME) {
atomic_set(&queue->dormant, true);
dormant = true;
}
} else if (current_batch > MAXIMUM_BATCH) {
/*
* If the last batch of requests was too large, decrease the wait
* time.
*/
time_batch -= time_batch / 4;
if (time_batch < MINIMUM_WAIT_TIME)
time_batch = MINIMUM_WAIT_TIME;
}
current_batch = 0;
}
}
/*
* Ensure that we process any remaining requests that were enqueued before trying to shut
* down. The corresponding write barrier is in uds_request_queue_finish().
*/
smp_rmb();
while ((request = poll_queues(queue)) != NULL)
queue->processor(request);
}
int uds_make_request_queue(const char *queue_name,
uds_request_queue_processor_fn processor,
struct uds_request_queue **queue_ptr)
{
int result;
struct uds_request_queue *queue;
result = vdo_allocate(1, struct uds_request_queue, __func__, &queue);
if (result != VDO_SUCCESS)
return result;
queue->processor = processor;
queue->running = true;
atomic_set(&queue->dormant, false);
init_waitqueue_head(&queue->wait_head);
result = uds_make_funnel_queue(&queue->main_queue);
if (result != UDS_SUCCESS) {
uds_request_queue_finish(queue);
return result;
}
result = uds_make_funnel_queue(&queue->retry_queue);
if (result != UDS_SUCCESS) {
uds_request_queue_finish(queue);
return result;
}
result = vdo_create_thread(request_queue_worker, queue, queue_name,
&queue->thread);
if (result != VDO_SUCCESS) {
uds_request_queue_finish(queue);
return result;
}
queue->started = true;
*queue_ptr = queue;
return UDS_SUCCESS;
}
static inline void wake_up_worker(struct uds_request_queue *queue)
{
if (wq_has_sleeper(&queue->wait_head))
wake_up(&queue->wait_head);
}
void uds_request_queue_enqueue(struct uds_request_queue *queue,
struct uds_request *request)
{
struct funnel_queue *sub_queue;
bool unbatched = request->unbatched;
sub_queue = request->requeued ? queue->retry_queue : queue->main_queue;
uds_funnel_queue_put(sub_queue, &request->queue_link);
/*
* We must wake the worker thread when it is dormant. A read fence isn't needed here since
* we know the queue operation acts as one.
*/
if (atomic_read(&queue->dormant) || unbatched)
wake_up_worker(queue);
}
void uds_request_queue_finish(struct uds_request_queue *queue)
{
if (queue == NULL)
return;
/*
* This memory barrier ensures that any requests we queued will be seen. The point is that
* when dequeue_request() sees the following update to the running flag, it will also be
* able to see any change we made to a next field in the funnel queue entry. The
* corresponding read barrier is in request_queue_worker().
*/
smp_wmb();
WRITE_ONCE(queue->running, false);
if (queue->started) {
wake_up_worker(queue);
vdo_join_threads(queue->thread);
}
uds_free_funnel_queue(queue->main_queue);
uds_free_funnel_queue(queue->retry_queue);
vdo_free(queue);
}
|