1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
|
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright (C) 2023 Intel Corporation */
#ifndef _IDPF_TXRX_H_
#define _IDPF_TXRX_H_
#include <net/page_pool/helpers.h>
#include <net/tcp.h>
#include <net/netdev_queues.h>
#include "virtchnl2_lan_desc.h"
#define IDPF_LARGE_MAX_Q 256
#define IDPF_MAX_Q 16
#define IDPF_MIN_Q 2
/* Mailbox Queue */
#define IDPF_MAX_MBXQ 1
#define IDPF_MIN_TXQ_DESC 64
#define IDPF_MIN_RXQ_DESC 64
#define IDPF_MIN_TXQ_COMPLQ_DESC 256
#define IDPF_MAX_QIDS 256
/* Number of descriptors in a queue should be a multiple of 32. RX queue
* descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE
* to achieve BufQ descriptors aligned to 32
*/
#define IDPF_REQ_DESC_MULTIPLE 32
#define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32)
#define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6)
#define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2)
#define IDPF_MAX_DESCS 8160
#define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE)
#define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE)
#define MIN_SUPPORT_TXDID (\
VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\
VIRTCHNL2_TXDID_FLEX_TSO_CTX)
#define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS 1
#define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS 1
#define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP 4
#define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP 4
#define IDPF_COMPLQ_PER_GROUP 1
#define IDPF_SINGLE_BUFQ_PER_RXQ_GRP 1
#define IDPF_MAX_BUFQS_PER_RXQ_GRP 2
#define IDPF_BUFQ2_ENA 1
#define IDPF_NUMQ_PER_CHUNK 1
#define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP 1
#define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP 1
/* Default vector sharing */
#define IDPF_MBX_Q_VEC 1
#define IDPF_MIN_Q_VEC 1
#define IDPF_DFLT_TX_Q_DESC_COUNT 512
#define IDPF_DFLT_TX_COMPLQ_DESC_COUNT 512
#define IDPF_DFLT_RX_Q_DESC_COUNT 512
/* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a
* given RX completion queue has descriptors. This includes _ALL_ buffer
* queues. E.g.: If you have two buffer queues of 512 descriptors and buffers,
* you have a total of 1024 buffers so your RX queue _must_ have at least that
* many descriptors. This macro divides a given number of RX descriptors by
* number of buffer queues to calculate how many descriptors each buffer queue
* can have without overrunning the RX queue.
*
* If you give hardware more buffers than completion descriptors what will
* happen is that if hardware gets a chance to post more than ring wrap of
* descriptors before SW gets an interrupt and overwrites SW head, the gen bit
* in the descriptor will be wrong. Any overwritten descriptors' buffers will
* be gone forever and SW has no reasonable way to tell that this has happened.
* From SW perspective, when we finally get an interrupt, it looks like we're
* still waiting for descriptor to be done, stalling forever.
*/
#define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ) ((RXD) / (NUM_BUFQ))
#define IDPF_RX_BUFQ_WORKING_SET(rxq) ((rxq)->desc_count - 1)
#define IDPF_RX_BUMP_NTC(rxq, ntc) \
do { \
if (unlikely(++(ntc) == (rxq)->desc_count)) { \
ntc = 0; \
change_bit(__IDPF_Q_GEN_CHK, (rxq)->flags); \
} \
} while (0)
#define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx) \
do { \
if (unlikely(++(idx) == (q)->desc_count)) \
idx = 0; \
} while (0)
#define IDPF_RX_HDR_SIZE 256
#define IDPF_RX_BUF_2048 2048
#define IDPF_RX_BUF_4096 4096
#define IDPF_RX_BUF_STRIDE 32
#define IDPF_RX_BUF_POST_STRIDE 16
#define IDPF_LOW_WATERMARK 64
/* Size of header buffer specifically for header split */
#define IDPF_HDR_BUF_SIZE 256
#define IDPF_PACKET_HDR_PAD \
(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN * 2)
#define IDPF_TX_TSO_MIN_MSS 88
/* Minimum number of descriptors between 2 descriptors with the RE bit set;
* only relevant in flow scheduling mode
*/
#define IDPF_TX_SPLITQ_RE_MIN_GAP 64
#define IDPF_RX_BI_BUFID_S 0
#define IDPF_RX_BI_BUFID_M GENMASK(14, 0)
#define IDPF_RX_BI_GEN_S 15
#define IDPF_RX_BI_GEN_M BIT(IDPF_RX_BI_GEN_S)
#define IDPF_RXD_EOF_SPLITQ VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M
#define IDPF_RXD_EOF_SINGLEQ VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M
#define IDPF_SINGLEQ_RX_BUF_DESC(rxq, i) \
(&(((struct virtchnl2_singleq_rx_buf_desc *)((rxq)->desc_ring))[i]))
#define IDPF_SPLITQ_RX_BUF_DESC(rxq, i) \
(&(((struct virtchnl2_splitq_rx_buf_desc *)((rxq)->desc_ring))[i]))
#define IDPF_SPLITQ_RX_BI_DESC(rxq, i) ((((rxq)->ring))[i])
#define IDPF_BASE_TX_DESC(txq, i) \
(&(((struct idpf_base_tx_desc *)((txq)->desc_ring))[i]))
#define IDPF_BASE_TX_CTX_DESC(txq, i) \
(&(((struct idpf_base_tx_ctx_desc *)((txq)->desc_ring))[i]))
#define IDPF_SPLITQ_TX_COMPLQ_DESC(txcq, i) \
(&(((struct idpf_splitq_tx_compl_desc *)((txcq)->desc_ring))[i]))
#define IDPF_FLEX_TX_DESC(txq, i) \
(&(((union idpf_tx_flex_desc *)((txq)->desc_ring))[i]))
#define IDPF_FLEX_TX_CTX_DESC(txq, i) \
(&(((struct idpf_flex_tx_ctx_desc *)((txq)->desc_ring))[i]))
#define IDPF_DESC_UNUSED(txq) \
((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \
(txq)->next_to_clean - (txq)->next_to_use - 1)
#define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->buf_stack.top)
#define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \
(txq)->desc_count >> 2)
#define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1)
/* Determine the absolute number of completions pending, i.e. the number of
* completions that are expected to arrive on the TX completion queue.
*/
#define IDPF_TX_COMPLQ_PENDING(txq) \
(((txq)->num_completions_pending >= (txq)->complq->num_completions ? \
0 : U64_MAX) + \
(txq)->num_completions_pending - (txq)->complq->num_completions)
#define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16
#define IDPF_SPLITQ_TX_INVAL_COMPL_TAG -1
/* Adjust the generation for the completion tag and wrap if necessary */
#define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \
((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \
0 : (txq)->compl_tag_cur_gen)
#define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS)
#define IDPF_TX_FLAGS_TSO BIT(0)
#define IDPF_TX_FLAGS_IPV4 BIT(1)
#define IDPF_TX_FLAGS_IPV6 BIT(2)
#define IDPF_TX_FLAGS_TUNNEL BIT(3)
union idpf_tx_flex_desc {
struct idpf_flex_tx_desc q; /* queue based scheduling */
struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */
};
/**
* struct idpf_tx_buf
* @next_to_watch: Next descriptor to clean
* @skb: Pointer to the skb
* @dma: DMA address
* @len: DMA length
* @bytecount: Number of bytes
* @gso_segs: Number of GSO segments
* @compl_tag: Splitq only, unique identifier for a buffer. Used to compare
* with completion tag returned in buffer completion event.
* Because the completion tag is expected to be the same in all
* data descriptors for a given packet, and a single packet can
* span multiple buffers, we need this field to track all
* buffers associated with this completion tag independently of
* the buf_id. The tag consists of a N bit buf_id and M upper
* order "generation bits". See compl_tag_bufid_m and
* compl_tag_gen_s in struct idpf_queue. We'll use a value of -1
* to indicate the tag is not valid.
* @ctx_entry: Singleq only. Used to indicate the corresponding entry
* in the descriptor ring was used for a context descriptor and
* this buffer entry should be skipped.
*/
struct idpf_tx_buf {
void *next_to_watch;
struct sk_buff *skb;
DEFINE_DMA_UNMAP_ADDR(dma);
DEFINE_DMA_UNMAP_LEN(len);
unsigned int bytecount;
unsigned short gso_segs;
union {
int compl_tag;
bool ctx_entry;
};
};
struct idpf_tx_stash {
struct hlist_node hlist;
struct idpf_tx_buf buf;
};
/**
* struct idpf_buf_lifo - LIFO for managing OOO completions
* @top: Used to know how many buffers are left
* @size: Total size of LIFO
* @bufs: Backing array
*/
struct idpf_buf_lifo {
u16 top;
u16 size;
struct idpf_tx_stash **bufs;
};
/**
* struct idpf_tx_offload_params - Offload parameters for a given packet
* @tx_flags: Feature flags enabled for this packet
* @hdr_offsets: Offset parameter for single queue model
* @cd_tunneling: Type of tunneling enabled for single queue model
* @tso_len: Total length of payload to segment
* @mss: Segment size
* @tso_segs: Number of segments to be sent
* @tso_hdr_len: Length of headers to be duplicated
* @td_cmd: Command field to be inserted into descriptor
*/
struct idpf_tx_offload_params {
u32 tx_flags;
u32 hdr_offsets;
u32 cd_tunneling;
u32 tso_len;
u16 mss;
u16 tso_segs;
u16 tso_hdr_len;
u16 td_cmd;
};
/**
* struct idpf_tx_splitq_params
* @dtype: General descriptor info
* @eop_cmd: Type of EOP
* @compl_tag: Associated tag for completion
* @td_tag: Descriptor tunneling tag
* @offload: Offload parameters
*/
struct idpf_tx_splitq_params {
enum idpf_tx_desc_dtype_value dtype;
u16 eop_cmd;
union {
u16 compl_tag;
u16 td_tag;
};
struct idpf_tx_offload_params offload;
};
enum idpf_tx_ctx_desc_eipt_offload {
IDPF_TX_CTX_EXT_IP_NONE = 0x0,
IDPF_TX_CTX_EXT_IP_IPV6 = 0x1,
IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2,
IDPF_TX_CTX_EXT_IP_IPV4 = 0x3
};
/* Checksum offload bits decoded from the receive descriptor. */
struct idpf_rx_csum_decoded {
u32 l3l4p : 1;
u32 ipe : 1;
u32 eipe : 1;
u32 eudpe : 1;
u32 ipv6exadd : 1;
u32 l4e : 1;
u32 pprs : 1;
u32 nat : 1;
u32 raw_csum_inv : 1;
u32 raw_csum : 16;
};
struct idpf_rx_extracted {
unsigned int size;
u16 rx_ptype;
};
#define IDPF_TX_COMPLQ_CLEAN_BUDGET 256
#define IDPF_TX_MIN_PKT_LEN 17
#define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1
#define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \
sizeof(struct idpf_flex_tx_desc))
#define IDPF_TX_DESCS_FOR_CTX 1
/* TX descriptors needed, worst case */
#define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \
IDPF_TX_DESCS_PER_CACHE_LINE + \
IDPF_TX_DESCS_FOR_SKB_DATA_PTR)
/* The size limit for a transmit buffer in a descriptor is (16K - 1).
* In order to align with the read requests we will align the value to
* the nearest 4K which represents our maximum read request size.
*/
#define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K
#define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1)
#define IDPF_TX_MAX_DESC_DATA_ALIGNED \
ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE)
#define IDPF_RX_DMA_ATTR \
(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
#define IDPF_RX_DESC(rxq, i) \
(&(((union virtchnl2_rx_desc *)((rxq)->desc_ring))[i]))
struct idpf_rx_buf {
struct page *page;
unsigned int page_offset;
u16 truesize;
};
#define IDPF_RX_MAX_PTYPE_PROTO_IDS 32
#define IDPF_RX_MAX_PTYPE_SZ (sizeof(struct virtchnl2_ptype) + \
(sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS))
#define IDPF_RX_PTYPE_HDR_SZ sizeof(struct virtchnl2_get_ptype_info)
#define IDPF_RX_MAX_PTYPES_PER_BUF \
DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \
IDPF_RX_MAX_PTYPE_SZ)
#define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count)
#define IDPF_TUN_IP_GRE (\
IDPF_PTYPE_TUNNEL_IP |\
IDPF_PTYPE_TUNNEL_IP_GRENAT)
#define IDPF_TUN_IP_GRE_MAC (\
IDPF_TUN_IP_GRE |\
IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC)
#define IDPF_RX_MAX_PTYPE 1024
#define IDPF_RX_MAX_BASE_PTYPE 256
#define IDPF_INVALID_PTYPE_ID 0xFFFF
/* Packet type non-ip values */
enum idpf_rx_ptype_l2 {
IDPF_RX_PTYPE_L2_RESERVED = 0,
IDPF_RX_PTYPE_L2_MAC_PAY2 = 1,
IDPF_RX_PTYPE_L2_TIMESYNC_PAY2 = 2,
IDPF_RX_PTYPE_L2_FIP_PAY2 = 3,
IDPF_RX_PTYPE_L2_OUI_PAY2 = 4,
IDPF_RX_PTYPE_L2_MACCNTRL_PAY2 = 5,
IDPF_RX_PTYPE_L2_LLDP_PAY2 = 6,
IDPF_RX_PTYPE_L2_ECP_PAY2 = 7,
IDPF_RX_PTYPE_L2_EVB_PAY2 = 8,
IDPF_RX_PTYPE_L2_QCN_PAY2 = 9,
IDPF_RX_PTYPE_L2_EAPOL_PAY2 = 10,
IDPF_RX_PTYPE_L2_ARP = 11,
};
enum idpf_rx_ptype_outer_ip {
IDPF_RX_PTYPE_OUTER_L2 = 0,
IDPF_RX_PTYPE_OUTER_IP = 1,
};
#define IDPF_RX_PTYPE_TO_IPV(ptype, ipv) \
(((ptype)->outer_ip == IDPF_RX_PTYPE_OUTER_IP) && \
((ptype)->outer_ip_ver == (ipv)))
enum idpf_rx_ptype_outer_ip_ver {
IDPF_RX_PTYPE_OUTER_NONE = 0,
IDPF_RX_PTYPE_OUTER_IPV4 = 1,
IDPF_RX_PTYPE_OUTER_IPV6 = 2,
};
enum idpf_rx_ptype_outer_fragmented {
IDPF_RX_PTYPE_NOT_FRAG = 0,
IDPF_RX_PTYPE_FRAG = 1,
};
enum idpf_rx_ptype_tunnel_type {
IDPF_RX_PTYPE_TUNNEL_NONE = 0,
IDPF_RX_PTYPE_TUNNEL_IP_IP = 1,
IDPF_RX_PTYPE_TUNNEL_IP_GRENAT = 2,
IDPF_RX_PTYPE_TUNNEL_IP_GRENAT_MAC = 3,
IDPF_RX_PTYPE_TUNNEL_IP_GRENAT_MAC_VLAN = 4,
};
enum idpf_rx_ptype_tunnel_end_prot {
IDPF_RX_PTYPE_TUNNEL_END_NONE = 0,
IDPF_RX_PTYPE_TUNNEL_END_IPV4 = 1,
IDPF_RX_PTYPE_TUNNEL_END_IPV6 = 2,
};
enum idpf_rx_ptype_inner_prot {
IDPF_RX_PTYPE_INNER_PROT_NONE = 0,
IDPF_RX_PTYPE_INNER_PROT_UDP = 1,
IDPF_RX_PTYPE_INNER_PROT_TCP = 2,
IDPF_RX_PTYPE_INNER_PROT_SCTP = 3,
IDPF_RX_PTYPE_INNER_PROT_ICMP = 4,
IDPF_RX_PTYPE_INNER_PROT_TIMESYNC = 5,
};
enum idpf_rx_ptype_payload_layer {
IDPF_RX_PTYPE_PAYLOAD_LAYER_NONE = 0,
IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY2 = 1,
IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY3 = 2,
IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY4 = 3,
};
enum idpf_tunnel_state {
IDPF_PTYPE_TUNNEL_IP = BIT(0),
IDPF_PTYPE_TUNNEL_IP_GRENAT = BIT(1),
IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC = BIT(2),
};
struct idpf_ptype_state {
bool outer_ip;
bool outer_frag;
u8 tunnel_state;
};
struct idpf_rx_ptype_decoded {
u32 ptype:10;
u32 known:1;
u32 outer_ip:1;
u32 outer_ip_ver:2;
u32 outer_frag:1;
u32 tunnel_type:3;
u32 tunnel_end_prot:2;
u32 tunnel_end_frag:1;
u32 inner_prot:4;
u32 payload_layer:3;
};
/**
* enum idpf_queue_flags_t
* @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to
* identify new descriptor writebacks on the ring. HW sets
* the gen bit to 1 on the first writeback of any given
* descriptor. After the ring wraps, HW sets the gen bit of
* those descriptors to 0, and continues flipping
* 0->1 or 1->0 on each ring wrap. SW maintains its own
* gen bit to know what value will indicate writebacks on
* the next pass around the ring. E.g. it is initialized
* to 1 and knows that reading a gen bit of 1 in any
* descriptor on the initial pass of the ring indicates a
* writeback. It also flips on every ring wrap.
* @__IDPF_RFLQ_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW bit
* and RFLGQ_GEN is the SW bit.
* @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling
* @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions
* @__IDPF_Q_POLL_MODE: Enable poll mode
* @__IDPF_Q_FLAGS_NBITS: Must be last
*/
enum idpf_queue_flags_t {
__IDPF_Q_GEN_CHK,
__IDPF_RFLQ_GEN_CHK,
__IDPF_Q_FLOW_SCH_EN,
__IDPF_Q_SW_MARKER,
__IDPF_Q_POLL_MODE,
__IDPF_Q_FLAGS_NBITS,
};
/**
* struct idpf_vec_regs
* @dyn_ctl_reg: Dynamic control interrupt register offset
* @itrn_reg: Interrupt Throttling Rate register offset
* @itrn_index_spacing: Register spacing between ITR registers of the same
* vector
*/
struct idpf_vec_regs {
u32 dyn_ctl_reg;
u32 itrn_reg;
u32 itrn_index_spacing;
};
/**
* struct idpf_intr_reg
* @dyn_ctl: Dynamic control interrupt register
* @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable
* @dyn_ctl_itridx_s: Register bit offset for ITR index
* @dyn_ctl_itridx_m: Mask for ITR index
* @dyn_ctl_intrvl_s: Register bit offset for ITR interval
* @rx_itr: RX ITR register
* @tx_itr: TX ITR register
* @icr_ena: Interrupt cause register offset
* @icr_ena_ctlq_m: Mask for ICR
*/
struct idpf_intr_reg {
void __iomem *dyn_ctl;
u32 dyn_ctl_intena_m;
u32 dyn_ctl_itridx_s;
u32 dyn_ctl_itridx_m;
u32 dyn_ctl_intrvl_s;
void __iomem *rx_itr;
void __iomem *tx_itr;
void __iomem *icr_ena;
u32 icr_ena_ctlq_m;
};
/**
* struct idpf_q_vector
* @vport: Vport back pointer
* @affinity_mask: CPU affinity mask
* @napi: napi handler
* @v_idx: Vector index
* @intr_reg: See struct idpf_intr_reg
* @num_txq: Number of TX queues
* @tx: Array of TX queues to service
* @tx_dim: Data for TX net_dim algorithm
* @tx_itr_value: TX interrupt throttling rate
* @tx_intr_mode: Dynamic ITR or not
* @tx_itr_idx: TX ITR index
* @num_rxq: Number of RX queues
* @rx: Array of RX queues to service
* @rx_dim: Data for RX net_dim algorithm
* @rx_itr_value: RX interrupt throttling rate
* @rx_intr_mode: Dynamic ITR or not
* @rx_itr_idx: RX ITR index
* @num_bufq: Number of buffer queues
* @bufq: Array of buffer queues to service
* @total_events: Number of interrupts processed
* @name: Queue vector name
*/
struct idpf_q_vector {
struct idpf_vport *vport;
cpumask_t affinity_mask;
struct napi_struct napi;
u16 v_idx;
struct idpf_intr_reg intr_reg;
u16 num_txq;
struct idpf_queue **tx;
struct dim tx_dim;
u16 tx_itr_value;
bool tx_intr_mode;
u32 tx_itr_idx;
u16 num_rxq;
struct idpf_queue **rx;
struct dim rx_dim;
u16 rx_itr_value;
bool rx_intr_mode;
u32 rx_itr_idx;
u16 num_bufq;
struct idpf_queue **bufq;
u16 total_events;
char *name;
};
struct idpf_rx_queue_stats {
u64_stats_t packets;
u64_stats_t bytes;
u64_stats_t rsc_pkts;
u64_stats_t hw_csum_err;
u64_stats_t hsplit_pkts;
u64_stats_t hsplit_buf_ovf;
u64_stats_t bad_descs;
};
struct idpf_tx_queue_stats {
u64_stats_t packets;
u64_stats_t bytes;
u64_stats_t lso_pkts;
u64_stats_t linearize;
u64_stats_t q_busy;
u64_stats_t skb_drops;
u64_stats_t dma_map_errs;
};
struct idpf_cleaned_stats {
u32 packets;
u32 bytes;
};
union idpf_queue_stats {
struct idpf_rx_queue_stats rx;
struct idpf_tx_queue_stats tx;
};
#define IDPF_ITR_DYNAMIC 1
#define IDPF_ITR_MAX 0x1FE0
#define IDPF_ITR_20K 0x0032
#define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */
#define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */
#define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK)
#define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode)
#define IDPF_ITR_TX_DEF IDPF_ITR_20K
#define IDPF_ITR_RX_DEF IDPF_ITR_20K
/* Index used for 'No ITR' update in DYN_CTL register */
#define IDPF_NO_ITR_UPDATE_IDX 3
#define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt)
#define IDPF_DIM_DEFAULT_PROFILE_IX 1
/**
* struct idpf_queue
* @dev: Device back pointer for DMA mapping
* @vport: Back pointer to associated vport
* @txq_grp: See struct idpf_txq_group
* @rxq_grp: See struct idpf_rxq_group
* @idx: For buffer queue, it is used as group id, either 0 or 1. On clean,
* buffer queue uses this index to determine which group of refill queues
* to clean.
* For TX queue, it is used as index to map between TX queue group and
* hot path TX pointers stored in vport. Used in both singleq/splitq.
* For RX queue, it is used to index to total RX queue across groups and
* used for skb reporting.
* @tail: Tail offset. Used for both queue models single and split. In splitq
* model relevant only for TX queue and RX queue.
* @tx_buf: See struct idpf_tx_buf
* @rx_buf: Struct with RX buffer related members
* @rx_buf.buf: See struct idpf_rx_buf
* @rx_buf.hdr_buf_pa: DMA handle
* @rx_buf.hdr_buf_va: Virtual address
* @pp: Page pool pointer
* @skb: Pointer to the skb
* @q_type: Queue type (TX, RX, TX completion, RX buffer)
* @q_id: Queue id
* @desc_count: Number of descriptors
* @next_to_use: Next descriptor to use. Relevant in both split & single txq
* and bufq.
* @next_to_clean: Next descriptor to clean. In split queue model, only
* relevant to TX completion queue and RX queue.
* @next_to_alloc: RX buffer to allocate at. Used only for RX. In splitq model
* only relevant to RX queue.
* @flags: See enum idpf_queue_flags_t
* @q_stats: See union idpf_queue_stats
* @stats_sync: See struct u64_stats_sync
* @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on
* the TX completion queue, it can be for any TXQ associated
* with that completion queue. This means we can clean up to
* N TXQs during a single call to clean the completion queue.
* cleaned_bytes|pkts tracks the clean stats per TXQ during
* that single call to clean the completion queue. By doing so,
* we can update BQL with aggregate cleaned stats for each TXQ
* only once at the end of the cleaning routine.
* @cleaned_pkts: Number of packets cleaned for the above said case
* @rx_hsplit_en: RX headsplit enable
* @rx_hbuf_size: Header buffer size
* @rx_buf_size: Buffer size
* @rx_max_pkt_size: RX max packet size
* @rx_buf_stride: RX buffer stride
* @rx_buffer_low_watermark: RX buffer low watermark
* @rxdids: Supported RX descriptor ids
* @q_vector: Backreference to associated vector
* @size: Length of descriptor ring in bytes
* @dma: Physical address of ring
* @desc_ring: Descriptor ring memory
* @tx_max_bufs: Max buffers that can be transmitted with scatter-gather
* @tx_min_pkt_len: Min supported packet length
* @num_completions: Only relevant for TX completion queue. It tracks the
* number of completions received to compare against the
* number of completions pending, as accumulated by the
* TX queues.
* @buf_stack: Stack of empty buffers to store buffer info for out of order
* buffer completions. See struct idpf_buf_lifo.
* @compl_tag_bufid_m: Completion tag buffer id mask
* @compl_tag_gen_s: Completion tag generation bit
* The format of the completion tag will change based on the TXQ
* descriptor ring size so that we can maintain roughly the same level
* of "uniqueness" across all descriptor sizes. For example, if the
* TXQ descriptor ring size is 64 (the minimum size supported), the
* completion tag will be formatted as below:
* 15 6 5 0
* --------------------------------
* | GEN=0-1023 |IDX = 0-63|
* --------------------------------
*
* This gives us 64*1024 = 65536 possible unique values. Similarly, if
* the TXQ descriptor ring size is 8160 (the maximum size supported),
* the completion tag will be formatted as below:
* 15 13 12 0
* --------------------------------
* |GEN | IDX = 0-8159 |
* --------------------------------
*
* This gives us 8*8160 = 65280 possible unique values.
* @compl_tag_cur_gen: Used to keep track of current completion tag generation
* @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset
* @sched_buf_hash: Hash table to stores buffers
*/
struct idpf_queue {
struct device *dev;
struct idpf_vport *vport;
union {
struct idpf_txq_group *txq_grp;
struct idpf_rxq_group *rxq_grp;
};
u16 idx;
void __iomem *tail;
union {
struct idpf_tx_buf *tx_buf;
struct {
struct idpf_rx_buf *buf;
dma_addr_t hdr_buf_pa;
void *hdr_buf_va;
} rx_buf;
};
struct page_pool *pp;
struct sk_buff *skb;
u16 q_type;
u32 q_id;
u16 desc_count;
u16 next_to_use;
u16 next_to_clean;
u16 next_to_alloc;
DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
union idpf_queue_stats q_stats;
struct u64_stats_sync stats_sync;
u32 cleaned_bytes;
u16 cleaned_pkts;
bool rx_hsplit_en;
u16 rx_hbuf_size;
u16 rx_buf_size;
u16 rx_max_pkt_size;
u16 rx_buf_stride;
u8 rx_buffer_low_watermark;
u64 rxdids;
struct idpf_q_vector *q_vector;
unsigned int size;
dma_addr_t dma;
void *desc_ring;
u16 tx_max_bufs;
u8 tx_min_pkt_len;
u32 num_completions;
struct idpf_buf_lifo buf_stack;
u16 compl_tag_bufid_m;
u16 compl_tag_gen_s;
u16 compl_tag_cur_gen;
u16 compl_tag_gen_max;
DECLARE_HASHTABLE(sched_buf_hash, 12);
} ____cacheline_internodealigned_in_smp;
/**
* struct idpf_sw_queue
* @next_to_clean: Next descriptor to clean
* @next_to_alloc: Buffer to allocate at
* @flags: See enum idpf_queue_flags_t
* @ring: Pointer to the ring
* @desc_count: Descriptor count
* @dev: Device back pointer for DMA mapping
*
* Software queues are used in splitq mode to manage buffers between rxq
* producer and the bufq consumer. These are required in order to maintain a
* lockless buffer management system and are strictly software only constructs.
*/
struct idpf_sw_queue {
u16 next_to_clean;
u16 next_to_alloc;
DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
u16 *ring;
u16 desc_count;
struct device *dev;
} ____cacheline_internodealigned_in_smp;
/**
* struct idpf_rxq_set
* @rxq: RX queue
* @refillq0: Pointer to refill queue 0
* @refillq1: Pointer to refill queue 1
*
* Splitq only. idpf_rxq_set associates an rxq with at an array of refillqs.
* Each rxq needs a refillq to return used buffers back to the respective bufq.
* Bufqs then clean these refillqs for buffers to give to hardware.
*/
struct idpf_rxq_set {
struct idpf_queue rxq;
struct idpf_sw_queue *refillq0;
struct idpf_sw_queue *refillq1;
};
/**
* struct idpf_bufq_set
* @bufq: Buffer queue
* @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets
* in idpf_rxq_group.
* @refillqs: Pointer to refill queues array.
*
* Splitq only. idpf_bufq_set associates a bufq to an array of refillqs.
* In this bufq_set, there will be one refillq for each rxq in this rxq_group.
* Used buffers received by rxqs will be put on refillqs which bufqs will
* clean to return new buffers back to hardware.
*
* Buffers needed by some number of rxqs associated in this rxq_group are
* managed by at most two bufqs (depending on performance configuration).
*/
struct idpf_bufq_set {
struct idpf_queue bufq;
int num_refillqs;
struct idpf_sw_queue *refillqs;
};
/**
* struct idpf_rxq_group
* @vport: Vport back pointer
* @singleq: Struct with single queue related members
* @singleq.num_rxq: Number of RX queues associated
* @singleq.rxqs: Array of RX queue pointers
* @splitq: Struct with split queue related members
* @splitq.num_rxq_sets: Number of RX queue sets
* @splitq.rxq_sets: Array of RX queue sets
* @splitq.bufq_sets: Buffer queue set pointer
*
* In singleq mode, an rxq_group is simply an array of rxqs. In splitq, a
* rxq_group contains all the rxqs, bufqs and refillqs needed to
* manage buffers in splitq mode.
*/
struct idpf_rxq_group {
struct idpf_vport *vport;
union {
struct {
u16 num_rxq;
struct idpf_queue *rxqs[IDPF_LARGE_MAX_Q];
} singleq;
struct {
u16 num_rxq_sets;
struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q];
struct idpf_bufq_set *bufq_sets;
} splitq;
};
};
/**
* struct idpf_txq_group
* @vport: Vport back pointer
* @num_txq: Number of TX queues associated
* @txqs: Array of TX queue pointers
* @complq: Associated completion queue pointer, split queue only
* @num_completions_pending: Total number of completions pending for the
* completion queue, acculumated for all TX queues
* associated with that completion queue.
*
* Between singleq and splitq, a txq_group is largely the same except for the
* complq. In splitq a single complq is responsible for handling completions
* for some number of txqs associated in this txq_group.
*/
struct idpf_txq_group {
struct idpf_vport *vport;
u16 num_txq;
struct idpf_queue *txqs[IDPF_LARGE_MAX_Q];
struct idpf_queue *complq;
u32 num_completions_pending;
};
/**
* idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag
* @size: transmit request size in bytes
*
* In the case where a large frag (>= 16K) needs to be split across multiple
* descriptors, we need to assume that we can have no more than 12K of data
* per descriptor due to hardware alignment restrictions (4K alignment).
*/
static inline u32 idpf_size_to_txd_count(unsigned int size)
{
return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED);
}
/**
* idpf_tx_singleq_build_ctob - populate command tag offset and size
* @td_cmd: Command to be filled in desc
* @td_offset: Offset to be filled in desc
* @size: Size of the buffer
* @td_tag: td tag to be filled
*
* Returns the 64 bit value populated with the input parameters
*/
static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset,
unsigned int size, u64 td_tag)
{
return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA |
(td_cmd << IDPF_TXD_QW1_CMD_S) |
(td_offset << IDPF_TXD_QW1_OFFSET_S) |
((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) |
(td_tag << IDPF_TXD_QW1_L2TAG1_S));
}
void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
struct idpf_tx_splitq_params *params,
u16 td_cmd, u16 size);
void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
struct idpf_tx_splitq_params *params,
u16 td_cmd, u16 size);
/**
* idpf_tx_splitq_build_desc - determine which type of data descriptor to build
* @desc: descriptor to populate
* @params: pointer to tx params struct
* @td_cmd: command to be filled in desc
* @size: size of buffer
*/
static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc,
struct idpf_tx_splitq_params *params,
u16 td_cmd, u16 size)
{
if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2)
idpf_tx_splitq_build_ctb(desc, params, td_cmd, size);
else
idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size);
}
/**
* idpf_alloc_page - Allocate a new RX buffer from the page pool
* @pool: page_pool to allocate from
* @buf: metadata struct to populate with page info
* @buf_size: 2K or 4K
*
* Returns &dma_addr_t to be passed to HW for Rx, %DMA_MAPPING_ERROR otherwise.
*/
static inline dma_addr_t idpf_alloc_page(struct page_pool *pool,
struct idpf_rx_buf *buf,
unsigned int buf_size)
{
if (buf_size == IDPF_RX_BUF_2048)
buf->page = page_pool_dev_alloc_frag(pool, &buf->page_offset,
buf_size);
else
buf->page = page_pool_dev_alloc_pages(pool);
if (!buf->page)
return DMA_MAPPING_ERROR;
buf->truesize = buf_size;
return page_pool_get_dma_addr(buf->page) + buf->page_offset +
pool->p.offset;
}
/**
* idpf_rx_put_page - Return RX buffer page to pool
* @rx_buf: RX buffer metadata struct
*/
static inline void idpf_rx_put_page(struct idpf_rx_buf *rx_buf)
{
page_pool_put_page(rx_buf->page->pp, rx_buf->page,
rx_buf->truesize, true);
rx_buf->page = NULL;
}
/**
* idpf_rx_sync_for_cpu - Synchronize DMA buffer
* @rx_buf: RX buffer metadata struct
* @len: frame length from descriptor
*/
static inline void idpf_rx_sync_for_cpu(struct idpf_rx_buf *rx_buf, u32 len)
{
struct page *page = rx_buf->page;
struct page_pool *pp = page->pp;
dma_sync_single_range_for_cpu(pp->p.dev,
page_pool_get_dma_addr(page),
rx_buf->page_offset + pp->p.offset, len,
page_pool_get_dma_dir(pp));
}
int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget);
void idpf_vport_init_num_qs(struct idpf_vport *vport,
struct virtchnl2_create_vport *vport_msg);
void idpf_vport_calc_num_q_desc(struct idpf_vport *vport);
int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index,
struct virtchnl2_create_vport *vport_msg,
struct idpf_vport_max_q *max_q);
void idpf_vport_calc_num_q_groups(struct idpf_vport *vport);
int idpf_vport_queues_alloc(struct idpf_vport *vport);
void idpf_vport_queues_rel(struct idpf_vport *vport);
void idpf_vport_intr_rel(struct idpf_vport *vport);
int idpf_vport_intr_alloc(struct idpf_vport *vport);
void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector);
void idpf_vport_intr_deinit(struct idpf_vport *vport);
int idpf_vport_intr_init(struct idpf_vport *vport);
enum pkt_hash_types idpf_ptype_to_htype(const struct idpf_rx_ptype_decoded *decoded);
int idpf_config_rss(struct idpf_vport *vport);
int idpf_init_rss(struct idpf_vport *vport);
void idpf_deinit_rss(struct idpf_vport *vport);
int idpf_rx_bufs_init_all(struct idpf_vport *vport);
void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
unsigned int size);
struct sk_buff *idpf_rx_construct_skb(struct idpf_queue *rxq,
struct idpf_rx_buf *rx_buf,
unsigned int size);
bool idpf_init_rx_buf_hw_alloc(struct idpf_queue *rxq, struct idpf_rx_buf *buf);
void idpf_rx_buf_hw_update(struct idpf_queue *rxq, u32 val);
void idpf_tx_buf_hw_update(struct idpf_queue *tx_q, u32 val,
bool xmit_more);
unsigned int idpf_size_to_txd_count(unsigned int size);
netdev_tx_t idpf_tx_drop_skb(struct idpf_queue *tx_q, struct sk_buff *skb);
void idpf_tx_dma_map_error(struct idpf_queue *txq, struct sk_buff *skb,
struct idpf_tx_buf *first, u16 ring_idx);
unsigned int idpf_tx_desc_count_required(struct idpf_queue *txq,
struct sk_buff *skb);
bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs,
unsigned int count);
int idpf_tx_maybe_stop_common(struct idpf_queue *tx_q, unsigned int size);
void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue);
netdev_tx_t idpf_tx_splitq_start(struct sk_buff *skb,
struct net_device *netdev);
netdev_tx_t idpf_tx_singleq_start(struct sk_buff *skb,
struct net_device *netdev);
bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_queue *rxq,
u16 cleaned_count);
int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off);
#endif /* !_IDPF_TXRX_H_ */
|