1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
#define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
#include "btree_cache.h"
#include "btree_locking.h"
#include "btree_update.h"
struct btree_reserve {
struct disk_reservation disk_res;
unsigned nr;
struct btree *b[BTREE_RESERVE_MAX];
};
void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *);
bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *,
struct bkey_format *);
/* Btree node freeing/allocation: */
/*
* Tracks a btree node that has been (or is about to be) freed in memory, but
* has _not_ yet been freed on disk (because the write that makes the new
* node(s) visible and frees the old hasn't completed yet)
*/
struct pending_btree_node_free {
bool index_update_done;
__le64 seq;
enum btree_id btree_id;
unsigned level;
__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
};
/*
* Tracks an in progress split/rewrite of a btree node and the update to the
* parent node:
*
* When we split/rewrite a node, we do all the updates in memory without
* waiting for any writes to complete - we allocate the new node(s) and update
* the parent node, possibly recursively up to the root.
*
* The end result is that we have one or more new nodes being written -
* possibly several, if there were multiple splits - and then a write (updating
* an interior node) which will make all these new nodes visible.
*
* Additionally, as we split/rewrite nodes we free the old nodes - but the old
* nodes can't be freed (their space on disk can't be reclaimed) until the
* update to the interior node that makes the new node visible completes -
* until then, the old nodes are still reachable on disk.
*
*/
struct btree_update {
struct closure cl;
struct bch_fs *c;
struct list_head list;
struct list_head unwritten_list;
/* What kind of update are we doing? */
enum {
BTREE_INTERIOR_NO_UPDATE,
BTREE_INTERIOR_UPDATING_NODE,
BTREE_INTERIOR_UPDATING_ROOT,
BTREE_INTERIOR_UPDATING_AS,
} mode;
unsigned must_rewrite:1;
unsigned nodes_written:1;
enum btree_id btree_id;
struct btree_reserve *reserve;
/*
* BTREE_INTERIOR_UPDATING_NODE:
* The update that made the new nodes visible was a regular update to an
* existing interior node - @b. We can't write out the update to @b
* until the new nodes we created are finished writing, so we block @b
* from writing by putting this btree_interior update on the
* @b->write_blocked list with @write_blocked_list:
*/
struct btree *b;
struct list_head write_blocked_list;
/*
* BTREE_INTERIOR_UPDATING_AS: btree node we updated was freed, so now
* we're now blocking another btree_update
* @parent_as - btree_update that's waiting on our nodes to finish
* writing, before it can make new nodes visible on disk
* @wait - list of child btree_updates that are waiting on this
* btree_update to make all the new nodes visible before they can free
* their old btree nodes
*/
struct btree_update *parent_as;
struct closure_waitlist wait;
/*
* We may be freeing nodes that were dirty, and thus had journal entries
* pinned: we need to transfer the oldest of those pins to the
* btree_update operation, and release it when the new node(s)
* are all persistent and reachable:
*/
struct journal_entry_pin journal;
u64 journal_seq;
/*
* Nodes being freed:
* Protected by c->btree_node_pending_free_lock
*/
struct pending_btree_node_free pending[BTREE_MAX_DEPTH + GC_MERGE_NODES];
unsigned nr_pending;
/* New nodes, that will be made reachable by this update: */
struct btree *new_nodes[BTREE_MAX_DEPTH * 2 + GC_MERGE_NODES];
unsigned nr_new_nodes;
/* Only here to reduce stack usage on recursive splits: */
struct keylist parent_keys;
/*
* Enough room for btree_split's keys without realloc - btree node
* pointers never have crc/compression info, so we only need to acount
* for the pointers for three keys
*/
u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
};
#define for_each_pending_btree_node_free(c, as, p) \
list_for_each_entry(as, &c->btree_interior_update_list, list) \
for (p = as->pending; p < as->pending + as->nr_pending; p++)
void bch2_btree_node_free_inmem(struct bch_fs *, struct btree *,
struct btree_iter *);
void bch2_btree_node_free_never_inserted(struct bch_fs *, struct btree *);
struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
struct btree *,
struct bkey_format);
void bch2_btree_update_done(struct btree_update *);
struct btree_update *
bch2_btree_update_start(struct bch_fs *, enum btree_id, unsigned,
unsigned, struct closure *);
void bch2_btree_interior_update_will_free_node(struct btree_update *,
struct btree *);
void bch2_btree_insert_node(struct btree_update *, struct btree *,
struct btree_iter *, struct keylist *,
unsigned);
int bch2_btree_split_leaf(struct bch_fs *, struct btree_iter *, unsigned);
void __bch2_foreground_maybe_merge(struct bch_fs *, struct btree_iter *,
unsigned, unsigned, enum btree_node_sibling);
static inline void bch2_foreground_maybe_merge_sibling(struct bch_fs *c,
struct btree_iter *iter,
unsigned level, unsigned flags,
enum btree_node_sibling sib)
{
struct btree *b;
if (iter->uptodate >= BTREE_ITER_NEED_TRAVERSE)
return;
if (!bch2_btree_node_relock(iter, level))
return;
b = iter->l[level].b;
if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
return;
__bch2_foreground_maybe_merge(c, iter, level, flags, sib);
}
static inline void bch2_foreground_maybe_merge(struct bch_fs *c,
struct btree_iter *iter,
unsigned level,
unsigned flags)
{
bch2_foreground_maybe_merge_sibling(c, iter, level, flags,
btree_prev_sib);
bch2_foreground_maybe_merge_sibling(c, iter, level, flags,
btree_next_sib);
}
void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
static inline unsigned btree_update_reserve_required(struct bch_fs *c,
struct btree *b)
{
unsigned depth = btree_node_root(c, b)->c.level + 1;
/*
* Number of nodes we might have to allocate in a worst case btree
* split operation - we split all the way up to the root, then allocate
* a new root, unless we're already at max depth:
*/
if (depth < BTREE_MAX_DEPTH)
return (depth - b->c.level) * 2 + 1;
else
return (depth - b->c.level) * 2 - 1;
}
static inline void btree_node_reset_sib_u64s(struct btree *b)
{
b->sib_u64s[0] = b->nr.live_u64s;
b->sib_u64s[1] = b->nr.live_u64s;
}
static inline void *btree_data_end(struct bch_fs *c, struct btree *b)
{
return (void *) b->data + btree_bytes(c);
}
static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c,
struct btree *b)
{
return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s);
}
static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c,
struct btree *b)
{
return btree_data_end(c, b);
}
static inline void *write_block(struct btree *b)
{
return (void *) b->data + (b->written << 9);
}
static inline bool __btree_addr_written(struct btree *b, void *p)
{
return p < write_block(b);
}
static inline bool bset_written(struct btree *b, struct bset *i)
{
return __btree_addr_written(b, i);
}
static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
{
return __btree_addr_written(b, k);
}
static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c,
struct btree *b,
void *end)
{
ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
b->whiteout_u64s;
ssize_t total = c->opts.btree_node_size << 6;
return total - used;
}
static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c,
struct btree *b)
{
ssize_t remaining = __bch_btree_u64s_remaining(c, b,
btree_bkey_last(b, bset_tree_last(b)));
BUG_ON(remaining < 0);
if (bset_written(b, btree_bset_last(b)))
return 0;
return remaining;
}
static inline unsigned btree_write_set_buffer(struct btree *b)
{
/*
* Could buffer up larger amounts of keys for btrees with larger keys,
* pending benchmarking:
*/
return 4 << 10;
}
static inline struct btree_node_entry *want_new_bset(struct bch_fs *c,
struct btree *b)
{
struct bset_tree *t = bset_tree_last(b);
struct btree_node_entry *bne = max(write_block(b),
(void *) btree_bkey_last(b, bset_tree_last(b)));
ssize_t remaining_space =
__bch_btree_u64s_remaining(c, b, &bne->keys.start[0]);
if (unlikely(bset_written(b, bset(b, t)))) {
if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
return bne;
} else {
if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
return bne;
}
return NULL;
}
static inline void push_whiteout(struct bch_fs *c, struct btree *b,
struct bkey_packed *k)
{
unsigned u64s = bkeyp_key_u64s(&b->format, k);
struct bkey_packed *dst;
BUG_ON(u64s > bch_btree_keys_u64s_remaining(c, b));
b->whiteout_u64s += bkeyp_key_u64s(&b->format, k);
dst = unwritten_whiteouts_start(c, b);
memcpy_u64s(dst, k, u64s);
dst->u64s = u64s;
dst->type = KEY_TYPE_deleted;
}
/*
* write lock must be held on @b (else the dirty bset that we were going to
* insert into could be written out from under us)
*/
static inline bool bch2_btree_node_insert_fits(struct bch_fs *c,
struct btree *b, unsigned u64s)
{
if (unlikely(btree_node_fake(b)))
return false;
return u64s <= bch_btree_keys_u64s_remaining(c, b);
}
ssize_t bch2_btree_updates_print(struct bch_fs *, char *);
size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *);
#endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */
|