summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_discard.c
blob: c4bd145f5ec1bfb1b0fda2bf5a78878c9a2b70e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2010, 2023 Red Hat, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_trans.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_discard.h"
#include "xfs_error.h"
#include "xfs_extent_busy.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_ag.h"
#include "xfs_health.h"
#include "xfs_rtbitmap.h"
#include "xfs_rtgroup.h"

/*
 * Notes on an efficient, low latency fstrim algorithm
 *
 * We need to walk the filesystem free space and issue discards on the free
 * space that meet the search criteria (size and location). We cannot issue
 * discards on extents that might be in use, or are so recently in use they are
 * still marked as busy. To serialise against extent state changes whilst we are
 * gathering extents to trim, we must hold the AGF lock to lock out other
 * allocations and extent free operations that might change extent state.
 *
 * However, we cannot just hold the AGF for the entire AG free space walk whilst
 * we issue discards on each free space that is found. Storage devices can have
 * extremely slow discard implementations (e.g. ceph RBD) and so walking a
 * couple of million free extents and issuing synchronous discards on each
 * extent can take a *long* time. Whilst we are doing this walk, nothing else
 * can access the AGF, and we can stall transactions and hence the log whilst
 * modifications wait for the AGF lock to be released. This can lead hung tasks
 * kicking the hung task timer and rebooting the system. This is bad.
 *
 * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI
 * lock, gathers a range of inode cluster buffers that are allocated, drops the
 * AGI lock and then reads all the inode cluster buffers and processes them. It
 * loops doing this, using a cursor to keep track of where it is up to in the AG
 * for each iteration to restart the INOBT lookup from.
 *
 * We can't do this exactly with free space - once we drop the AGF lock, the
 * state of the free extent is out of our control and we cannot run a discard
 * safely on it in this situation. Unless, of course, we've marked the free
 * extent as busy and undergoing a discard operation whilst we held the AGF
 * locked.
 *
 * This is exactly how online discard works - free extents are marked busy when
 * they are freed, and once the extent free has been committed to the journal,
 * the busy extent record is marked as "undergoing discard" and the discard is
 * then issued on the free extent. Once the discard completes, the busy extent
 * record is removed and the extent is able to be allocated again.
 *
 * In the context of fstrim, if we find a free extent we need to discard, we
 * don't have to discard it immediately. All we need to do it record that free
 * extent as being busy and under discard, and all the allocation routines will
 * now avoid trying to allocate it. Hence if we mark the extent as busy under
 * the AGF lock, we can safely discard it without holding the AGF lock because
 * nothing will attempt to allocate that free space until the discard completes.
 *
 * This also allows us to issue discards asynchronously like we do with online
 * discard, and so for fast devices fstrim will run much faster as we can have
 * multiple discard operations in flight at once, as well as pipeline the free
 * extent search so that it overlaps in flight discard IO.
 */

#define XFS_DISCARD_MAX_EXAMINE	(100)

struct workqueue_struct *xfs_discard_wq;

static void
xfs_discard_endio_work(
	struct work_struct	*work)
{
	struct xfs_busy_extents	*extents =
		container_of(work, struct xfs_busy_extents, endio_work);

	xfs_extent_busy_clear(&extents->extent_list, false);
	kfree(extents->owner);
}

/*
 * Queue up the actual completion to a thread to avoid IRQ-safe locking for
 * pagb_lock.
 */
static void
xfs_discard_endio(
	struct bio		*bio)
{
	struct xfs_busy_extents	*extents = bio->bi_private;

	INIT_WORK(&extents->endio_work, xfs_discard_endio_work);
	queue_work(xfs_discard_wq, &extents->endio_work);
	bio_put(bio);
}

static inline struct block_device *
xfs_group_bdev(
	const struct xfs_group	*xg)
{
	struct xfs_mount	*mp = xg->xg_mount;

	switch (xg->xg_type) {
	case XG_TYPE_AG:
		return mp->m_ddev_targp->bt_bdev;
	case XG_TYPE_RTG:
		return mp->m_rtdev_targp->bt_bdev;
	default:
		ASSERT(0);
		break;
	}
	return NULL;
}

/*
 * Walk the discard list and issue discards on all the busy extents in the
 * list. We plug and chain the bios so that we only need a single completion
 * call to clear all the busy extents once the discards are complete.
 */
int
xfs_discard_extents(
	struct xfs_mount	*mp,
	struct xfs_busy_extents	*extents)
{
	struct xfs_extent_busy	*busyp;
	struct bio		*bio = NULL;
	struct blk_plug		plug;
	int			error = 0;

	blk_start_plug(&plug);
	list_for_each_entry(busyp, &extents->extent_list, list) {
		trace_xfs_discard_extent(busyp->group, busyp->bno,
				busyp->length);

		error = __blkdev_issue_discard(xfs_group_bdev(busyp->group),
				xfs_gbno_to_daddr(busyp->group, busyp->bno),
				XFS_FSB_TO_BB(mp, busyp->length),
				GFP_KERNEL, &bio);
		if (error && error != -EOPNOTSUPP) {
			xfs_info(mp,
	 "discard failed for extent [0x%llx,%u], error %d",
				 (unsigned long long)busyp->bno,
				 busyp->length,
				 error);
			break;
		}
	}

	if (bio) {
		bio->bi_private = extents;
		bio->bi_end_io = xfs_discard_endio;
		submit_bio(bio);
	} else {
		xfs_discard_endio_work(&extents->endio_work);
	}
	blk_finish_plug(&plug);

	return error;
}

struct xfs_trim_cur {
	xfs_agblock_t	start;
	xfs_extlen_t	count;
	xfs_agblock_t	end;
	xfs_extlen_t	minlen;
	bool		by_bno;
};

static int
xfs_trim_gather_extents(
	struct xfs_perag	*pag,
	struct xfs_trim_cur	*tcur,
	struct xfs_busy_extents	*extents)
{
	struct xfs_mount	*mp = pag_mount(pag);
	struct xfs_trans	*tp;
	struct xfs_btree_cur	*cur;
	struct xfs_buf		*agbp;
	int			error;
	int			i;
	int			batch = XFS_DISCARD_MAX_EXAMINE;

	/*
	 * Force out the log.  This means any transactions that might have freed
	 * space before we take the AGF buffer lock are now on disk, and the
	 * volatile disk cache is flushed.
	 */
	xfs_log_force(mp, XFS_LOG_SYNC);

	error = xfs_trans_alloc_empty(mp, &tp);
	if (error)
		return error;

	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
	if (error)
		goto out_trans_cancel;

	if (tcur->by_bno) {
		/* sub-AG discard request always starts at tcur->start */
		cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
		error = xfs_alloc_lookup_le(cur, tcur->start, 0, &i);
		if (!error && !i)
			error = xfs_alloc_lookup_ge(cur, tcur->start, 0, &i);
	} else if (tcur->start == 0) {
		/* first time through a by-len starts with max length */
		cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
		error = xfs_alloc_lookup_ge(cur, 0, tcur->count, &i);
	} else {
		/* nth time through a by-len starts where we left off */
		cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
		error = xfs_alloc_lookup_le(cur, tcur->start, tcur->count, &i);
	}
	if (error)
		goto out_del_cursor;
	if (i == 0) {
		/* nothing of that length left in the AG, we are done */
		tcur->count = 0;
		goto out_del_cursor;
	}

	/*
	 * Loop until we are done with all extents that are large
	 * enough to be worth discarding or we hit batch limits.
	 */
	while (i) {
		xfs_agblock_t	fbno;
		xfs_extlen_t	flen;

		error = xfs_alloc_get_rec(cur, &fbno, &flen, &i);
		if (error)
			break;
		if (XFS_IS_CORRUPT(mp, i != 1)) {
			xfs_btree_mark_sick(cur);
			error = -EFSCORRUPTED;
			break;
		}

		if (--batch <= 0) {
			/*
			 * Update the cursor to point at this extent so we
			 * restart the next batch from this extent.
			 */
			tcur->start = fbno;
			tcur->count = flen;
			break;
		}

		/*
		 * If the extent is entirely outside of the range we are
		 * supposed to skip it.  Do not bother to trim down partially
		 * overlapping ranges for now.
		 */
		if (fbno + flen < tcur->start) {
			trace_xfs_discard_exclude(pag_group(pag), fbno, flen);
			goto next_extent;
		}
		if (fbno > tcur->end) {
			trace_xfs_discard_exclude(pag_group(pag), fbno, flen);
			if (tcur->by_bno) {
				tcur->count = 0;
				break;
			}
			goto next_extent;
		}

		/* Trim the extent returned to the range we want. */
		if (fbno < tcur->start) {
			flen -= tcur->start - fbno;
			fbno = tcur->start;
		}
		if (fbno + flen > tcur->end + 1)
			flen = tcur->end - fbno + 1;

		/* Too small?  Give up. */
		if (flen < tcur->minlen) {
			trace_xfs_discard_toosmall(pag_group(pag), fbno, flen);
			if (tcur->by_bno)
				goto next_extent;
			tcur->count = 0;
			break;
		}

		/*
		 * If any blocks in the range are still busy, skip the
		 * discard and try again the next time.
		 */
		if (xfs_extent_busy_search(pag_group(pag), fbno, flen)) {
			trace_xfs_discard_busy(pag_group(pag), fbno, flen);
			goto next_extent;
		}

		xfs_extent_busy_insert_discard(pag_group(pag), fbno, flen,
				&extents->extent_list);
next_extent:
		if (tcur->by_bno)
			error = xfs_btree_increment(cur, 0, &i);
		else
			error = xfs_btree_decrement(cur, 0, &i);
		if (error)
			break;

		/*
		 * If there's no more records in the tree, we are done. Set the
		 * cursor block count to 0 to indicate to the caller that there
		 * is no more extents to search.
		 */
		if (i == 0)
			tcur->count = 0;
	}

	/*
	 * If there was an error, release all the gathered busy extents because
	 * we aren't going to issue a discard on them any more.
	 */
	if (error)
		xfs_extent_busy_clear(&extents->extent_list, false);
out_del_cursor:
	xfs_btree_del_cursor(cur, error);
out_trans_cancel:
	xfs_trans_cancel(tp);
	return error;
}

static bool
xfs_trim_should_stop(void)
{
	return fatal_signal_pending(current) || freezing(current);
}

/*
 * Iterate the free list gathering extents and discarding them. We need a cursor
 * for the repeated iteration of gather/discard loop, so use the longest extent
 * we found in the last batch as the key to start the next.
 */
static int
xfs_trim_perag_extents(
	struct xfs_perag	*pag,
	xfs_agblock_t		start,
	xfs_agblock_t		end,
	xfs_extlen_t		minlen)
{
	struct xfs_trim_cur	tcur = {
		.start		= start,
		.count		= pag->pagf_longest,
		.end		= end,
		.minlen		= minlen,
	};
	int			error = 0;

	if (start != 0 || end != pag_group(pag)->xg_block_count)
		tcur.by_bno = true;

	do {
		struct xfs_busy_extents	*extents;

		extents = kzalloc(sizeof(*extents), GFP_KERNEL);
		if (!extents) {
			error = -ENOMEM;
			break;
		}

		extents->owner = extents;
		INIT_LIST_HEAD(&extents->extent_list);

		error = xfs_trim_gather_extents(pag, &tcur, extents);
		if (error) {
			kfree(extents);
			break;
		}

		/*
		 * We hand the extent list to the discard function here so the
		 * discarded extents can be removed from the busy extent list.
		 * This allows the discards to run asynchronously with gathering
		 * the next round of extents to discard.
		 *
		 * However, we must ensure that we do not reference the extent
		 * list  after this function call, as it may have been freed by
		 * the time control returns to us.
		 */
		error = xfs_discard_extents(pag_mount(pag), extents);
		if (error)
			break;

		if (xfs_trim_should_stop())
			break;

	} while (tcur.count != 0);

	return error;

}

static int
xfs_trim_datadev_extents(
	struct xfs_mount	*mp,
	xfs_daddr_t		start,
	xfs_daddr_t		end,
	xfs_extlen_t		minlen)
{
	xfs_agnumber_t		start_agno, end_agno;
	xfs_agblock_t		start_agbno, end_agbno;
	struct xfs_perag	*pag = NULL;
	xfs_daddr_t		ddev_end;
	int			last_error = 0, error;

	ddev_end = min_t(xfs_daddr_t, end,
			 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1);

	start_agno = xfs_daddr_to_agno(mp, start);
	start_agbno = xfs_daddr_to_agbno(mp, start);
	end_agno = xfs_daddr_to_agno(mp, ddev_end);
	end_agbno = xfs_daddr_to_agbno(mp, ddev_end);

	while ((pag = xfs_perag_next_range(mp, pag, start_agno, end_agno))) {
		xfs_agblock_t	agend = pag_group(pag)->xg_block_count;

		if (pag_agno(pag) == end_agno)
			agend = end_agbno;
		error = xfs_trim_perag_extents(pag, start_agbno, agend, minlen);
		if (error)
			last_error = error;

		if (xfs_trim_should_stop()) {
			xfs_perag_rele(pag);
			break;
		}
		start_agbno = 0;
	}

	return last_error;
}

#ifdef CONFIG_XFS_RT
struct xfs_trim_rtdev {
	/* list of rt extents to free */
	struct list_head	extent_list;

	/* minimum length that caller allows us to trim */
	xfs_rtblock_t		minlen_fsb;

	/* restart point for the rtbitmap walk */
	xfs_rtxnum_t		restart_rtx;

	/* stopping point for the current rtbitmap walk */
	xfs_rtxnum_t		stop_rtx;
};

struct xfs_rtx_busy {
	struct list_head	list;
	xfs_rtblock_t		bno;
	xfs_rtblock_t		length;
};

static void
xfs_discard_free_rtdev_extents(
	struct xfs_trim_rtdev	*tr)
{
	struct xfs_rtx_busy	*busyp, *n;

	list_for_each_entry_safe(busyp, n, &tr->extent_list, list) {
		list_del_init(&busyp->list);
		kfree(busyp);
	}
}

/*
 * Walk the discard list and issue discards on all the busy extents in the
 * list. We plug and chain the bios so that we only need a single completion
 * call to clear all the busy extents once the discards are complete.
 */
static int
xfs_discard_rtdev_extents(
	struct xfs_mount	*mp,
	struct xfs_trim_rtdev	*tr)
{
	struct block_device	*bdev = mp->m_rtdev_targp->bt_bdev;
	struct xfs_rtx_busy	*busyp;
	struct bio		*bio = NULL;
	struct blk_plug		plug;
	xfs_rtblock_t		start = NULLRTBLOCK, length = 0;
	int			error = 0;

	blk_start_plug(&plug);
	list_for_each_entry(busyp, &tr->extent_list, list) {
		if (start == NULLRTBLOCK)
			start = busyp->bno;
		length += busyp->length;

		trace_xfs_discard_rtextent(mp, busyp->bno, busyp->length);

		error = __blkdev_issue_discard(bdev,
				xfs_rtb_to_daddr(mp, busyp->bno),
				XFS_FSB_TO_BB(mp, busyp->length),
				GFP_NOFS, &bio);
		if (error)
			break;
	}
	xfs_discard_free_rtdev_extents(tr);

	if (bio) {
		error = submit_bio_wait(bio);
		if (error == -EOPNOTSUPP)
			error = 0;
		if (error)
			xfs_info(mp,
	 "discard failed for rtextent [0x%llx,%llu], error %d",
				 (unsigned long long)start,
				 (unsigned long long)length,
				 error);
		bio_put(bio);
	}
	blk_finish_plug(&plug);

	return error;
}

static int
xfs_trim_gather_rtextent(
	struct xfs_rtgroup		*rtg,
	struct xfs_trans		*tp,
	const struct xfs_rtalloc_rec	*rec,
	void				*priv)
{
	struct xfs_trim_rtdev		*tr = priv;
	struct xfs_rtx_busy		*busyp;
	xfs_rtblock_t			rbno, rlen;

	if (rec->ar_startext > tr->stop_rtx) {
		/*
		 * If we've scanned a large number of rtbitmap blocks, update
		 * the cursor to point at this extent so we restart the next
		 * batch from this extent.
		 */
		tr->restart_rtx = rec->ar_startext;
		return -ECANCELED;
	}

	rbno = xfs_rtx_to_rtb(rtg, rec->ar_startext);
	rlen = xfs_rtbxlen_to_blen(rtg_mount(rtg), rec->ar_extcount);

	/* Ignore too small. */
	if (rlen < tr->minlen_fsb) {
		trace_xfs_discard_rttoosmall(rtg_mount(rtg), rbno, rlen);
		return 0;
	}

	busyp = kzalloc(sizeof(struct xfs_rtx_busy), GFP_KERNEL);
	if (!busyp)
		return -ENOMEM;

	busyp->bno = rbno;
	busyp->length = rlen;
	INIT_LIST_HEAD(&busyp->list);
	list_add_tail(&busyp->list, &tr->extent_list);

	tr->restart_rtx = rec->ar_startext + rec->ar_extcount;
	return 0;
}

/* Trim extents on an !rtgroups realtime device */
static int
xfs_trim_rtextents(
	struct xfs_rtgroup	*rtg,
	xfs_rtxnum_t		low,
	xfs_rtxnum_t		high,
	xfs_daddr_t		minlen)
{
	struct xfs_mount	*mp = rtg_mount(rtg);
	struct xfs_trim_rtdev	tr = {
		.minlen_fsb	= XFS_BB_TO_FSB(mp, minlen),
		.extent_list	= LIST_HEAD_INIT(tr.extent_list),
	};
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc_empty(mp, &tp);
	if (error)
		return error;

	/*
	 * Walk the free ranges between low and high.  The query_range function
	 * trims the extents returned.
	 */
	do {
		tr.stop_rtx = low + xfs_rtbitmap_rtx_per_rbmblock(mp);
		xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
		error = xfs_rtalloc_query_range(rtg, tp, low, high,
				xfs_trim_gather_rtextent, &tr);

		if (error == -ECANCELED)
			error = 0;
		if (error) {
			xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
			xfs_discard_free_rtdev_extents(&tr);
			break;
		}

		if (list_empty(&tr.extent_list)) {
			xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
			break;
		}

		error = xfs_discard_rtdev_extents(mp, &tr);
		xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
		if (error)
			break;

		low = tr.restart_rtx;
	} while (!xfs_trim_should_stop() && low <= high);

	xfs_trans_cancel(tp);
	return error;
}

struct xfs_trim_rtgroup {
	/* list of rtgroup extents to free */
	struct xfs_busy_extents	*extents;

	/* minimum length that caller allows us to trim */
	xfs_rtblock_t		minlen_fsb;

	/* restart point for the rtbitmap walk */
	xfs_rtxnum_t		restart_rtx;

	/* number of extents to examine before stopping to issue discard ios */
	int			batch;

	/* number of extents queued for discard */
	int			queued;
};

static int
xfs_trim_gather_rtgroup_extent(
	struct xfs_rtgroup		*rtg,
	struct xfs_trans		*tp,
	const struct xfs_rtalloc_rec	*rec,
	void				*priv)
{
	struct xfs_trim_rtgroup		*tr = priv;
	xfs_rgblock_t			rgbno;
	xfs_extlen_t			len;

	if (--tr->batch <= 0) {
		/*
		 * If we've checked a large number of extents, update the
		 * cursor to point at this extent so we restart the next batch
		 * from this extent.
		 */
		tr->restart_rtx = rec->ar_startext;
		return -ECANCELED;
	}

	rgbno = xfs_rtx_to_rgbno(rtg, rec->ar_startext);
	len = xfs_rtxlen_to_extlen(rtg_mount(rtg), rec->ar_extcount);

	/* Ignore too small. */
	if (len < tr->minlen_fsb) {
		trace_xfs_discard_toosmall(rtg_group(rtg), rgbno, len);
		return 0;
	}

	/*
	 * If any blocks in the range are still busy, skip the discard and try
	 * again the next time.
	 */
	if (xfs_extent_busy_search(rtg_group(rtg), rgbno, len)) {
		trace_xfs_discard_busy(rtg_group(rtg), rgbno, len);
		return 0;
	}

	xfs_extent_busy_insert_discard(rtg_group(rtg), rgbno, len,
			&tr->extents->extent_list);

	tr->queued++;
	tr->restart_rtx = rec->ar_startext + rec->ar_extcount;
	return 0;
}

/* Trim extents in this rtgroup using the busy extent machinery. */
static int
xfs_trim_rtgroup_extents(
	struct xfs_rtgroup	*rtg,
	xfs_rtxnum_t		low,
	xfs_rtxnum_t		high,
	xfs_daddr_t		minlen)
{
	struct xfs_mount	*mp = rtg_mount(rtg);
	struct xfs_trim_rtgroup	tr = {
		.minlen_fsb	= XFS_BB_TO_FSB(mp, minlen),
	};
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc_empty(mp, &tp);
	if (error)
		return error;

	/*
	 * Walk the free ranges between low and high.  The query_range function
	 * trims the extents returned.
	 */
	do {
		tr.extents = kzalloc(sizeof(*tr.extents), GFP_KERNEL);
		if (!tr.extents) {
			error = -ENOMEM;
			break;
		}

		tr.queued = 0;
		tr.batch = XFS_DISCARD_MAX_EXAMINE;
		tr.extents->owner = tr.extents;
		INIT_LIST_HEAD(&tr.extents->extent_list);

		xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
		error = xfs_rtalloc_query_range(rtg, tp, low, high,
				xfs_trim_gather_rtgroup_extent, &tr);
		xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
		if (error == -ECANCELED)
			error = 0;
		if (error) {
			kfree(tr.extents);
			break;
		}

		if (!tr.queued)
			break;

		/*
		 * We hand the extent list to the discard function here so the
		 * discarded extents can be removed from the busy extent list.
		 * This allows the discards to run asynchronously with
		 * gathering the next round of extents to discard.
		 *
		 * However, we must ensure that we do not reference the extent
		 * list  after this function call, as it may have been freed by
		 * the time control returns to us.
		 */
		error = xfs_discard_extents(rtg_mount(rtg), tr.extents);
		if (error)
			break;

		low = tr.restart_rtx;
	} while (!xfs_trim_should_stop() && low <= high);

	xfs_trans_cancel(tp);
	return error;
}

static int
xfs_trim_rtdev_extents(
	struct xfs_mount	*mp,
	xfs_daddr_t		start,
	xfs_daddr_t		end,
	xfs_daddr_t		minlen)
{
	xfs_rtblock_t		start_rtbno, end_rtbno;
	xfs_rtxnum_t		start_rtx, end_rtx;
	xfs_rgnumber_t		start_rgno, end_rgno;
	xfs_daddr_t		daddr_offset;
	int			last_error = 0, error;
	struct xfs_rtgroup	*rtg = NULL;

	/* Shift the start and end downwards to match the rt device. */
	daddr_offset = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
	if (start > daddr_offset)
		start -= daddr_offset;
	else
		start = 0;
	start_rtbno = xfs_daddr_to_rtb(mp, start);
	start_rtx = xfs_rtb_to_rtx(mp, start_rtbno);
	start_rgno = xfs_rtb_to_rgno(mp, start_rtbno);

	if (end <= daddr_offset)
		return 0;
	else
		end -= daddr_offset;
	end_rtbno = xfs_daddr_to_rtb(mp, end);
	end_rtx = xfs_rtb_to_rtx(mp, end_rtbno + mp->m_sb.sb_rextsize - 1);
	end_rgno = xfs_rtb_to_rgno(mp, end_rtbno);

	while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) {
		xfs_rtxnum_t	rtg_end = rtg->rtg_extents;

		if (rtg_rgno(rtg) == end_rgno)
			rtg_end = min(rtg_end, end_rtx);

		if (xfs_has_rtgroups(mp))
			error = xfs_trim_rtgroup_extents(rtg, start_rtx,
					rtg_end, minlen);
		else
			error = xfs_trim_rtextents(rtg, start_rtx, rtg_end,
					minlen);
		if (error)
			last_error = error;

		if (xfs_trim_should_stop()) {
			xfs_rtgroup_rele(rtg);
			break;
		}
		start_rtx = 0;
	}

	return last_error;
}
#else
# define xfs_trim_rtdev_extents(...)	(-EOPNOTSUPP)
#endif /* CONFIG_XFS_RT */

/*
 * trim a range of the filesystem.
 *
 * Note: the parameters passed from userspace are byte ranges into the
 * filesystem which does not match to the format we use for filesystem block
 * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format
 * is a linear address range. Hence we need to use DADDR based conversions and
 * comparisons for determining the correct offset and regions to trim.
 *
 * The realtime device is mapped into the FITRIM "address space" immediately
 * after the data device.
 */
int
xfs_ioc_trim(
	struct xfs_mount		*mp,
	struct fstrim_range __user	*urange)
{
	unsigned int		granularity =
		bdev_discard_granularity(mp->m_ddev_targp->bt_bdev);
	struct block_device	*rt_bdev = NULL;
	struct fstrim_range	range;
	xfs_daddr_t		start, end;
	xfs_extlen_t		minlen;
	xfs_rfsblock_t		max_blocks;
	int			error, last_error = 0;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (mp->m_rtdev_targp &&
	    bdev_max_discard_sectors(mp->m_rtdev_targp->bt_bdev))
		rt_bdev = mp->m_rtdev_targp->bt_bdev;
	if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev) && !rt_bdev)
		return -EOPNOTSUPP;

	if (rt_bdev)
		granularity = max(granularity,
				  bdev_discard_granularity(rt_bdev));

	/*
	 * We haven't recovered the log, so we cannot use our bnobt-guided
	 * storage zapping commands.
	 */
	if (xfs_has_norecovery(mp))
		return -EROFS;

	if (copy_from_user(&range, urange, sizeof(range)))
		return -EFAULT;

	range.minlen = max_t(u64, granularity, range.minlen);
	minlen = XFS_B_TO_FSB(mp, range.minlen);

	/*
	 * Truncating down the len isn't actually quite correct, but using
	 * BBTOB would mean we trivially get overflows for values
	 * of ULLONG_MAX or slightly lower.  And ULLONG_MAX is the default
	 * used by the fstrim application.  In the end it really doesn't
	 * matter as trimming blocks is an advisory interface.
	 */
	max_blocks = mp->m_sb.sb_dblocks + mp->m_sb.sb_rblocks;
	if (range.start >= XFS_FSB_TO_B(mp, max_blocks) ||
	    range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) ||
	    range.len < mp->m_sb.sb_blocksize)
		return -EINVAL;

	start = BTOBB(range.start);
	end = start + BTOBBT(range.len) - 1;

	if (bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev)) {
		error = xfs_trim_datadev_extents(mp, start, end, minlen);
		if (error)
			last_error = error;
	}

	if (rt_bdev && !xfs_trim_should_stop()) {
		error = xfs_trim_rtdev_extents(mp, start, end, minlen);
		if (error)
			last_error = error;
	}

	if (last_error)
		return last_error;

	range.len = min_t(unsigned long long, range.len,
			  XFS_FSB_TO_B(mp, max_blocks) - range.start);
	if (copy_to_user(urange, &range, sizeof(range)))
		return -EFAULT;
	return 0;
}