summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_trans_ail.c
blob: f56d62dced97b1b6a9c12b0edb3a19b5e9a8cd3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
 * Copyright (c) 2008 Dave Chinner
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_trace.h"
#include "xfs_errortag.h"
#include "xfs_error.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"

#ifdef DEBUG
/*
 * Check that the list is sorted as it should be.
 *
 * Called with the ail lock held, but we don't want to assert fail with it
 * held otherwise we'll lock everything up and won't be able to debug the
 * cause. Hence we sample and check the state under the AIL lock and return if
 * everything is fine, otherwise we drop the lock and run the ASSERT checks.
 * Asserts may not be fatal, so pick the lock back up and continue onwards.
 */
STATIC void
xfs_ail_check(
	struct xfs_ail		*ailp,
	struct xfs_log_item	*lip)
	__must_hold(&ailp->ail_lock)
{
	struct xfs_log_item	*prev_lip;
	struct xfs_log_item	*next_lip;
	xfs_lsn_t		prev_lsn = NULLCOMMITLSN;
	xfs_lsn_t		next_lsn = NULLCOMMITLSN;
	xfs_lsn_t		lsn;
	bool			in_ail;


	if (list_empty(&ailp->ail_head))
		return;

	/*
	 * Sample then check the next and previous entries are valid.
	 */
	in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
	prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
	if (&prev_lip->li_ail != &ailp->ail_head)
		prev_lsn = prev_lip->li_lsn;
	next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
	if (&next_lip->li_ail != &ailp->ail_head)
		next_lsn = next_lip->li_lsn;
	lsn = lip->li_lsn;

	if (in_ail &&
	    (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
	    (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
		return;

	spin_unlock(&ailp->ail_lock);
	ASSERT(in_ail);
	ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
	ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
	spin_lock(&ailp->ail_lock);
}
#else /* !DEBUG */
#define	xfs_ail_check(a,l)
#endif /* DEBUG */

/*
 * Return a pointer to the last item in the AIL.  If the AIL is empty, then
 * return NULL.
 */
static struct xfs_log_item *
xfs_ail_max(
	struct xfs_ail  *ailp)
{
	if (list_empty(&ailp->ail_head))
		return NULL;

	return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail);
}

/*
 * Return a pointer to the item which follows the given item in the AIL.  If
 * the given item is the last item in the list, then return NULL.
 */
static struct xfs_log_item *
xfs_ail_next(
	struct xfs_ail		*ailp,
	struct xfs_log_item	*lip)
{
	if (lip->li_ail.next == &ailp->ail_head)
		return NULL;

	return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail);
}

/*
 * This is called by the log manager code to determine the LSN of the tail of
 * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
 * is empty, then this function returns 0.
 *
 * We need the AIL lock in order to get a coherent read of the lsn of the last
 * item in the AIL.
 */
static xfs_lsn_t
__xfs_ail_min_lsn(
	struct xfs_ail		*ailp)
{
	struct xfs_log_item	*lip = xfs_ail_min(ailp);

	if (lip)
		return lip->li_lsn;
	return 0;
}

xfs_lsn_t
xfs_ail_min_lsn(
	struct xfs_ail		*ailp)
{
	xfs_lsn_t		lsn;

	spin_lock(&ailp->ail_lock);
	lsn = __xfs_ail_min_lsn(ailp);
	spin_unlock(&ailp->ail_lock);

	return lsn;
}

/*
 * The cursor keeps track of where our current traversal is up to by tracking
 * the next item in the list for us. However, for this to be safe, removing an
 * object from the AIL needs to invalidate any cursor that points to it. hence
 * the traversal cursor needs to be linked to the struct xfs_ail so that
 * deletion can search all the active cursors for invalidation.
 */
STATIC void
xfs_trans_ail_cursor_init(
	struct xfs_ail		*ailp,
	struct xfs_ail_cursor	*cur)
{
	cur->item = NULL;
	list_add_tail(&cur->list, &ailp->ail_cursors);
}

/*
 * Get the next item in the traversal and advance the cursor.  If the cursor
 * was invalidated (indicated by a lip of 1), restart the traversal.
 */
struct xfs_log_item *
xfs_trans_ail_cursor_next(
	struct xfs_ail		*ailp,
	struct xfs_ail_cursor	*cur)
{
	struct xfs_log_item	*lip = cur->item;

	if ((uintptr_t)lip & 1)
		lip = xfs_ail_min(ailp);
	if (lip)
		cur->item = xfs_ail_next(ailp, lip);
	return lip;
}

/*
 * When the traversal is complete, we need to remove the cursor from the list
 * of traversing cursors.
 */
void
xfs_trans_ail_cursor_done(
	struct xfs_ail_cursor	*cur)
{
	cur->item = NULL;
	list_del_init(&cur->list);
}

/*
 * Invalidate any cursor that is pointing to this item. This is called when an
 * item is removed from the AIL. Any cursor pointing to this object is now
 * invalid and the traversal needs to be terminated so it doesn't reference a
 * freed object. We set the low bit of the cursor item pointer so we can
 * distinguish between an invalidation and the end of the list when getting the
 * next item from the cursor.
 */
STATIC void
xfs_trans_ail_cursor_clear(
	struct xfs_ail		*ailp,
	struct xfs_log_item	*lip)
{
	struct xfs_ail_cursor	*cur;

	list_for_each_entry(cur, &ailp->ail_cursors, list) {
		if (cur->item == lip)
			cur->item = (struct xfs_log_item *)
					((uintptr_t)cur->item | 1);
	}
}

/*
 * Find the first item in the AIL with the given @lsn by searching in ascending
 * LSN order and initialise the cursor to point to the next item for a
 * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
 * first item in the AIL. Returns NULL if the list is empty.
 */
struct xfs_log_item *
xfs_trans_ail_cursor_first(
	struct xfs_ail		*ailp,
	struct xfs_ail_cursor	*cur,
	xfs_lsn_t		lsn)
{
	struct xfs_log_item	*lip;

	xfs_trans_ail_cursor_init(ailp, cur);

	if (lsn == 0) {
		lip = xfs_ail_min(ailp);
		goto out;
	}

	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
			goto out;
	}
	return NULL;

out:
	if (lip)
		cur->item = xfs_ail_next(ailp, lip);
	return lip;
}

static struct xfs_log_item *
__xfs_trans_ail_cursor_last(
	struct xfs_ail		*ailp,
	xfs_lsn_t		lsn)
{
	struct xfs_log_item	*lip;

	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
			return lip;
	}
	return NULL;
}

/*
 * Find the last item in the AIL with the given @lsn by searching in descending
 * LSN order and initialise the cursor to point to that item.  If there is no
 * item with the value of @lsn, then it sets the cursor to the last item with an
 * LSN lower than @lsn.  Returns NULL if the list is empty.
 */
struct xfs_log_item *
xfs_trans_ail_cursor_last(
	struct xfs_ail		*ailp,
	struct xfs_ail_cursor	*cur,
	xfs_lsn_t		lsn)
{
	xfs_trans_ail_cursor_init(ailp, cur);
	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
	return cur->item;
}

/*
 * Splice the log item list into the AIL at the given LSN. We splice to the
 * tail of the given LSN to maintain insert order for push traversals. The
 * cursor is optional, allowing repeated updates to the same LSN to avoid
 * repeated traversals.  This should not be called with an empty list.
 */
static void
xfs_ail_splice(
	struct xfs_ail		*ailp,
	struct xfs_ail_cursor	*cur,
	struct list_head	*list,
	xfs_lsn_t		lsn)
{
	struct xfs_log_item	*lip;

	ASSERT(!list_empty(list));

	/*
	 * Use the cursor to determine the insertion point if one is
	 * provided.  If not, or if the one we got is not valid,
	 * find the place in the AIL where the items belong.
	 */
	lip = cur ? cur->item : NULL;
	if (!lip || (uintptr_t)lip & 1)
		lip = __xfs_trans_ail_cursor_last(ailp, lsn);

	/*
	 * If a cursor is provided, we know we're processing the AIL
	 * in lsn order, and future items to be spliced in will
	 * follow the last one being inserted now.  Update the
	 * cursor to point to that last item, now while we have a
	 * reliable pointer to it.
	 */
	if (cur)
		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);

	/*
	 * Finally perform the splice.  Unless the AIL was empty,
	 * lip points to the item in the AIL _after_ which the new
	 * items should go.  If lip is null the AIL was empty, so
	 * the new items go at the head of the AIL.
	 */
	if (lip)
		list_splice(list, &lip->li_ail);
	else
		list_splice(list, &ailp->ail_head);
}

/*
 * Delete the given item from the AIL.  Return a pointer to the item.
 */
static void
xfs_ail_delete(
	struct xfs_ail		*ailp,
	struct xfs_log_item	*lip)
{
	xfs_ail_check(ailp, lip);
	list_del(&lip->li_ail);
	xfs_trans_ail_cursor_clear(ailp, lip);
}

/*
 * Requeue a failed buffer for writeback.
 *
 * We clear the log item failed state here as well, but we have to be careful
 * about reference counts because the only active reference counts on the buffer
 * may be the failed log items. Hence if we clear the log item failed state
 * before queuing the buffer for IO we can release all active references to
 * the buffer and free it, leading to use after free problems in
 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
 * order we process them in - the buffer is locked, and we own the buffer list
 * so nothing on them is going to change while we are performing this action.
 *
 * Hence we can safely queue the buffer for IO before we clear the failed log
 * item state, therefore  always having an active reference to the buffer and
 * avoiding the transient zero-reference state that leads to use-after-free.
 */
static inline int
xfsaild_resubmit_item(
	struct xfs_log_item	*lip,
	struct list_head	*buffer_list)
{
	struct xfs_buf		*bp = lip->li_buf;

	if (!xfs_buf_trylock(bp))
		return XFS_ITEM_LOCKED;

	if (!xfs_buf_delwri_queue(bp, buffer_list)) {
		xfs_buf_unlock(bp);
		return XFS_ITEM_FLUSHING;
	}

	/* protected by ail_lock */
	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
		if (bp->b_flags & (_XBF_INODES | _XBF_DQUOTS))
			clear_bit(XFS_LI_FAILED, &lip->li_flags);
		else
			xfs_clear_li_failed(lip);
	}

	xfs_buf_unlock(bp);
	return XFS_ITEM_SUCCESS;
}

static inline uint
xfsaild_push_item(
	struct xfs_ail		*ailp,
	struct xfs_log_item	*lip)
{
	/*
	 * If log item pinning is enabled, skip the push and track the item as
	 * pinned. This can help induce head-behind-tail conditions.
	 */
	if (XFS_TEST_ERROR(false, ailp->ail_log->l_mp, XFS_ERRTAG_LOG_ITEM_PIN))
		return XFS_ITEM_PINNED;

	/*
	 * Consider the item pinned if a push callback is not defined so the
	 * caller will force the log. This should only happen for intent items
	 * as they are unpinned once the associated done item is committed to
	 * the on-disk log.
	 */
	if (!lip->li_ops->iop_push)
		return XFS_ITEM_PINNED;
	if (test_bit(XFS_LI_FAILED, &lip->li_flags))
		return xfsaild_resubmit_item(lip, &ailp->ail_buf_list);
	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
}

/*
 * Compute the LSN that we'd need to push the log tail towards in order to have
 * at least 25% of the log space free.  If the log free space already meets this
 * threshold, this function returns the lowest LSN in the AIL to slowly keep
 * writeback ticking over and the tail of the log moving forward.
 */
static xfs_lsn_t
xfs_ail_calc_push_target(
	struct xfs_ail		*ailp)
{
	struct xlog		*log = ailp->ail_log;
	struct xfs_log_item	*lip;
	xfs_lsn_t		target_lsn;
	xfs_lsn_t		max_lsn;
	xfs_lsn_t		min_lsn;
	int32_t			free_bytes;
	uint32_t		target_block;
	uint32_t		target_cycle;

	lockdep_assert_held(&ailp->ail_lock);

	lip = xfs_ail_max(ailp);
	if (!lip)
		return NULLCOMMITLSN;

	max_lsn = lip->li_lsn;
	min_lsn = __xfs_ail_min_lsn(ailp);

	/*
	 * If we are supposed to push all the items in the AIL, we want to push
	 * to the current head. We then clear the push flag so that we don't
	 * keep pushing newly queued items beyond where the push all command was
	 * run. If the push waiter wants to empty the ail, it should queue
	 * itself on the ail_empty wait queue.
	 */
	if (test_and_clear_bit(XFS_AIL_OPSTATE_PUSH_ALL, &ailp->ail_opstate))
		return max_lsn;

	/* If someone wants the AIL empty, keep pushing everything we have. */
	if (waitqueue_active(&ailp->ail_empty))
		return max_lsn;

	/*
	 * Background pushing - attempt to keep 25% of the log free and if we
	 * have that much free retain the existing target.
	 */
	free_bytes = log->l_logsize - xlog_lsn_sub(log, max_lsn, min_lsn);
	if (free_bytes >= log->l_logsize >> 2)
		return ailp->ail_target;

	target_cycle = CYCLE_LSN(min_lsn);
	target_block = BLOCK_LSN(min_lsn) + (log->l_logBBsize >> 2);
	if (target_block >= log->l_logBBsize) {
		target_block -= log->l_logBBsize;
		target_cycle += 1;
	}
	target_lsn = xlog_assign_lsn(target_cycle, target_block);

	/* Cap the target to the highest LSN known to be in the AIL. */
	if (XFS_LSN_CMP(target_lsn, max_lsn) > 0)
		return max_lsn;

	/* If the existing target is higher than the new target, keep it. */
	if (XFS_LSN_CMP(ailp->ail_target, target_lsn) >= 0)
		return ailp->ail_target;
	return target_lsn;
}

static long
xfsaild_push(
	struct xfs_ail		*ailp)
{
	struct xfs_mount	*mp = ailp->ail_log->l_mp;
	struct xfs_ail_cursor	cur;
	struct xfs_log_item	*lip;
	xfs_lsn_t		lsn;
	long			tout;
	int			stuck = 0;
	int			flushing = 0;
	int			count = 0;

	/*
	 * If we encountered pinned items or did not finish writing out all
	 * buffers the last time we ran, force a background CIL push to get the
	 * items unpinned in the near future. We do not wait on the CIL push as
	 * that could stall us for seconds if there is enough background IO
	 * load. Stalling for that long when the tail of the log is pinned and
	 * needs flushing will hard stop the transaction subsystem when log
	 * space runs out.
	 */
	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
	    (!list_empty_careful(&ailp->ail_buf_list) ||
	     xfs_ail_min_lsn(ailp))) {
		ailp->ail_log_flush = 0;

		XFS_STATS_INC(mp, xs_push_ail_flush);
		xlog_cil_flush(ailp->ail_log);
	}

	spin_lock(&ailp->ail_lock);
	WRITE_ONCE(ailp->ail_target, xfs_ail_calc_push_target(ailp));
	if (ailp->ail_target == NULLCOMMITLSN)
		goto out_done;

	/* we're done if the AIL is empty or our push has reached the end */
	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
	if (!lip)
		goto out_done_cursor;

	XFS_STATS_INC(mp, xs_push_ail);

	ASSERT(ailp->ail_target != NULLCOMMITLSN);

	lsn = lip->li_lsn;
	while ((XFS_LSN_CMP(lip->li_lsn, ailp->ail_target) <= 0)) {
		int	lock_result;

		if (test_bit(XFS_LI_FLUSHING, &lip->li_flags))
			goto next_item;

		/*
		 * Note that iop_push may unlock and reacquire the AIL lock.  We
		 * rely on the AIL cursor implementation to be able to deal with
		 * the dropped lock.
		 */
		lock_result = xfsaild_push_item(ailp, lip);
		switch (lock_result) {
		case XFS_ITEM_SUCCESS:
			XFS_STATS_INC(mp, xs_push_ail_success);
			trace_xfs_ail_push(lip);

			ailp->ail_last_pushed_lsn = lsn;
			break;

		case XFS_ITEM_FLUSHING:
			/*
			 * The item or its backing buffer is already being
			 * flushed.  The typical reason for that is that an
			 * inode buffer is locked because we already pushed the
			 * updates to it as part of inode clustering.
			 *
			 * We do not want to stop flushing just because lots
			 * of items are already being flushed, but we need to
			 * re-try the flushing relatively soon if most of the
			 * AIL is being flushed.
			 */
			XFS_STATS_INC(mp, xs_push_ail_flushing);
			trace_xfs_ail_flushing(lip);

			flushing++;
			ailp->ail_last_pushed_lsn = lsn;
			break;

		case XFS_ITEM_PINNED:
			XFS_STATS_INC(mp, xs_push_ail_pinned);
			trace_xfs_ail_pinned(lip);

			stuck++;
			ailp->ail_log_flush++;
			break;
		case XFS_ITEM_LOCKED:
			XFS_STATS_INC(mp, xs_push_ail_locked);
			trace_xfs_ail_locked(lip);

			stuck++;
			break;
		default:
			ASSERT(0);
			break;
		}

		count++;

		/*
		 * Are there too many items we can't do anything with?
		 *
		 * If we are skipping too many items because we can't flush
		 * them or they are already being flushed, we back off and
		 * given them time to complete whatever operation is being
		 * done. i.e. remove pressure from the AIL while we can't make
		 * progress so traversals don't slow down further inserts and
		 * removals to/from the AIL.
		 *
		 * The value of 100 is an arbitrary magic number based on
		 * observation.
		 */
		if (stuck > 100)
			break;

next_item:
		lip = xfs_trans_ail_cursor_next(ailp, &cur);
		if (lip == NULL)
			break;
		if (lip->li_lsn != lsn && count > 1000)
			break;
		lsn = lip->li_lsn;
	}

out_done_cursor:
	xfs_trans_ail_cursor_done(&cur);
out_done:
	spin_unlock(&ailp->ail_lock);

	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
		ailp->ail_log_flush++;

	if (!count || XFS_LSN_CMP(lsn, ailp->ail_target) >= 0) {
		/*
		 * We reached the target or the AIL is empty, so wait a bit
		 * longer for I/O to complete and remove pushed items from the
		 * AIL before we start the next scan from the start of the AIL.
		 */
		tout = 50;
		ailp->ail_last_pushed_lsn = 0;
	} else if (((stuck + flushing) * 100) / count > 90) {
		/*
		 * Either there is a lot of contention on the AIL or we are
		 * stuck due to operations in progress. "Stuck" in this case
		 * is defined as >90% of the items we tried to push were stuck.
		 *
		 * Backoff a bit more to allow some I/O to complete before
		 * restarting from the start of the AIL. This prevents us from
		 * spinning on the same items, and if they are pinned will all
		 * the restart to issue a log force to unpin the stuck items.
		 */
		tout = 20;
		ailp->ail_last_pushed_lsn = 0;
	} else {
		/*
		 * Assume we have more work to do in a short while.
		 */
		tout = 0;
	}

	return tout;
}

static int
xfsaild(
	void		*data)
{
	struct xfs_ail	*ailp = data;
	long		tout = 0;	/* milliseconds */
	unsigned int	noreclaim_flag;

	noreclaim_flag = memalloc_noreclaim_save();
	set_freezable();

	while (1) {
		/*
		 * Long waits of 50ms or more occur when we've run out of items
		 * to push, so we only want uninterruptible state if we're
		 * actually blocked on something.
		 */
		if (tout && tout <= 20)
			set_current_state(TASK_KILLABLE|TASK_FREEZABLE);
		else
			set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);

		/*
		 * Check kthread_should_stop() after we set the task state to
		 * guarantee that we either see the stop bit and exit or the
		 * task state is reset to runnable such that it's not scheduled
		 * out indefinitely and detects the stop bit at next iteration.
		 * A memory barrier is included in above task state set to
		 * serialize again kthread_stop().
		 */
		if (kthread_should_stop()) {
			__set_current_state(TASK_RUNNING);

			/*
			 * The caller forces out the AIL before stopping the
			 * thread in the common case, which means the delwri
			 * queue is drained. In the shutdown case, the queue may
			 * still hold relogged buffers that haven't been
			 * submitted because they were pinned since added to the
			 * queue.
			 *
			 * Log I/O error processing stales the underlying buffer
			 * and clears the delwri state, expecting the buf to be
			 * removed on the next submission attempt. That won't
			 * happen if we're shutting down, so this is the last
			 * opportunity to release such buffers from the queue.
			 */
			ASSERT(list_empty(&ailp->ail_buf_list) ||
			       xlog_is_shutdown(ailp->ail_log));
			xfs_buf_delwri_cancel(&ailp->ail_buf_list);
			break;
		}

		/* Idle if the AIL is empty. */
		spin_lock(&ailp->ail_lock);
		if (!xfs_ail_min(ailp) && list_empty(&ailp->ail_buf_list)) {
			spin_unlock(&ailp->ail_lock);
			schedule();
			tout = 0;
			continue;
		}
		spin_unlock(&ailp->ail_lock);

		if (tout)
			schedule_timeout(msecs_to_jiffies(tout));

		__set_current_state(TASK_RUNNING);

		try_to_freeze();

		tout = xfsaild_push(ailp);
	}

	memalloc_noreclaim_restore(noreclaim_flag);
	return 0;
}

/*
 * Push out all items in the AIL immediately and wait until the AIL is empty.
 */
void
xfs_ail_push_all_sync(
	struct xfs_ail  *ailp)
{
	DEFINE_WAIT(wait);

	spin_lock(&ailp->ail_lock);
	while (xfs_ail_max(ailp) != NULL) {
		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
		wake_up_process(ailp->ail_task);
		spin_unlock(&ailp->ail_lock);
		schedule();
		spin_lock(&ailp->ail_lock);
	}
	spin_unlock(&ailp->ail_lock);

	finish_wait(&ailp->ail_empty, &wait);
}

void
__xfs_ail_assign_tail_lsn(
	struct xfs_ail		*ailp)
{
	struct xlog		*log = ailp->ail_log;
	xfs_lsn_t		tail_lsn;

	assert_spin_locked(&ailp->ail_lock);

	if (xlog_is_shutdown(log))
		return;

	tail_lsn = __xfs_ail_min_lsn(ailp);
	if (!tail_lsn)
		tail_lsn = ailp->ail_head_lsn;

	WRITE_ONCE(log->l_tail_space,
			xlog_lsn_sub(log, ailp->ail_head_lsn, tail_lsn));
	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
	atomic64_set(&log->l_tail_lsn, tail_lsn);
}

/*
 * Callers should pass the original tail lsn so that we can detect if the tail
 * has moved as a result of the operation that was performed. If the caller
 * needs to force a tail space update, it should pass NULLCOMMITLSN to bypass
 * the "did the tail LSN change?" checks. If the caller wants to avoid a tail
 * update (e.g. it knows the tail did not change) it should pass an @old_lsn of
 * 0.
 */
void
xfs_ail_update_finish(
	struct xfs_ail		*ailp,
	xfs_lsn_t		old_lsn) __releases(ailp->ail_lock)
{
	struct xlog		*log = ailp->ail_log;

	/* If the tail lsn hasn't changed, don't do updates or wakeups. */
	if (!old_lsn || old_lsn == __xfs_ail_min_lsn(ailp)) {
		spin_unlock(&ailp->ail_lock);
		return;
	}

	__xfs_ail_assign_tail_lsn(ailp);
	if (list_empty(&ailp->ail_head))
		wake_up_all(&ailp->ail_empty);
	spin_unlock(&ailp->ail_lock);
	xfs_log_space_wake(log->l_mp);
}

/*
 * xfs_trans_ail_update - bulk AIL insertion operation.
 *
 * @xfs_trans_ail_update takes an array of log items that all need to be
 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
 * be added.  Otherwise, it will be repositioned  by removing it and re-adding
 * it to the AIL. If we move the first item in the AIL, update the log tail to
 * match the new minimum LSN in the AIL.
 *
 * This function takes the AIL lock once to execute the update operations on
 * all the items in the array, and as such should not be called with the AIL
 * lock held. As a result, once we have the AIL lock, we need to check each log
 * item LSN to confirm it needs to be moved forward in the AIL.
 *
 * To optimise the insert operation, we delete all the items from the AIL in
 * the first pass, moving them into a temporary list, then splice the temporary
 * list into the correct position in the AIL. This avoids needing to do an
 * insert operation on every item.
 *
 * This function must be called with the AIL lock held.  The lock is dropped
 * before returning.
 */
void
xfs_trans_ail_update_bulk(
	struct xfs_ail		*ailp,
	struct xfs_ail_cursor	*cur,
	struct xfs_log_item	**log_items,
	int			nr_items,
	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
{
	struct xfs_log_item	*mlip;
	xfs_lsn_t		tail_lsn = 0;
	int			i;
	LIST_HEAD(tmp);

	ASSERT(nr_items > 0);		/* Not required, but true. */
	mlip = xfs_ail_min(ailp);

	for (i = 0; i < nr_items; i++) {
		struct xfs_log_item *lip = log_items[i];
		if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
			/* check if we really need to move the item */
			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
				continue;

			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
			if (mlip == lip && !tail_lsn)
				tail_lsn = lip->li_lsn;

			xfs_ail_delete(ailp, lip);
		} else {
			trace_xfs_ail_insert(lip, 0, lsn);
		}
		lip->li_lsn = lsn;
		list_add_tail(&lip->li_ail, &tmp);
	}

	if (!list_empty(&tmp))
		xfs_ail_splice(ailp, cur, &tmp, lsn);

	/*
	 * If this is the first insert, wake up the push daemon so it can
	 * actively scan for items to push. We also need to do a log tail
	 * LSN update to ensure that it is correctly tracked by the log, so
	 * set the tail_lsn to NULLCOMMITLSN so that xfs_ail_update_finish()
	 * will see that the tail lsn has changed and will update the tail
	 * appropriately.
	 */
	if (!mlip) {
		wake_up_process(ailp->ail_task);
		tail_lsn = NULLCOMMITLSN;
	}

	xfs_ail_update_finish(ailp, tail_lsn);
}

/* Insert a log item into the AIL. */
void
xfs_trans_ail_insert(
	struct xfs_ail		*ailp,
	struct xfs_log_item	*lip,
	xfs_lsn_t		lsn)
{
	spin_lock(&ailp->ail_lock);
	xfs_trans_ail_update_bulk(ailp, NULL, &lip, 1, lsn);
}

/*
 * Delete one log item from the AIL.
 *
 * If this item was at the tail of the AIL, return the LSN of the log item so
 * that we can use it to check if the LSN of the tail of the log has moved
 * when finishing up the AIL delete process in xfs_ail_update_finish().
 */
xfs_lsn_t
xfs_ail_delete_one(
	struct xfs_ail		*ailp,
	struct xfs_log_item	*lip)
{
	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
	xfs_lsn_t		lsn = lip->li_lsn;

	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
	xfs_ail_delete(ailp, lip);
	clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
	lip->li_lsn = 0;

	if (mlip == lip)
		return lsn;
	return 0;
}

void
xfs_trans_ail_delete(
	struct xfs_log_item	*lip,
	int			shutdown_type)
{
	struct xfs_ail		*ailp = lip->li_ailp;
	struct xlog		*log = ailp->ail_log;
	xfs_lsn_t		tail_lsn;

	spin_lock(&ailp->ail_lock);
	if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
		spin_unlock(&ailp->ail_lock);
		if (shutdown_type && !xlog_is_shutdown(log)) {
			xfs_alert_tag(log->l_mp, XFS_PTAG_AILDELETE,
	"%s: attempting to delete a log item that is not in the AIL",
					__func__);
			xlog_force_shutdown(log, shutdown_type);
		}
		return;
	}

	/* xfs_ail_update_finish() drops the AIL lock */
	xfs_clear_li_failed(lip);
	tail_lsn = xfs_ail_delete_one(ailp, lip);
	xfs_ail_update_finish(ailp, tail_lsn);
}

int
xfs_trans_ail_init(
	xfs_mount_t	*mp)
{
	struct xfs_ail	*ailp;

	ailp = kzalloc(sizeof(struct xfs_ail),
			GFP_KERNEL | __GFP_RETRY_MAYFAIL);
	if (!ailp)
		return -ENOMEM;

	ailp->ail_log = mp->m_log;
	INIT_LIST_HEAD(&ailp->ail_head);
	INIT_LIST_HEAD(&ailp->ail_cursors);
	spin_lock_init(&ailp->ail_lock);
	INIT_LIST_HEAD(&ailp->ail_buf_list);
	init_waitqueue_head(&ailp->ail_empty);

	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
				mp->m_super->s_id);
	if (IS_ERR(ailp->ail_task))
		goto out_free_ailp;

	mp->m_ail = ailp;
	return 0;

out_free_ailp:
	kfree(ailp);
	return -ENOMEM;
}

void
xfs_trans_ail_destroy(
	xfs_mount_t	*mp)
{
	struct xfs_ail	*ailp = mp->m_ail;

	kthread_stop(ailp->ail_task);
	kfree(ailp);
}