summaryrefslogtreecommitdiffstats
path: root/kernel/workqueue.c
blob: 80882ae432617365a393f8d2aa2a29f10930441a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
// SPDX-License-Identifier: GPL-2.0-only
/*
 * kernel/workqueue.c - generic async execution with shared worker pool
 *
 * Copyright (C) 2002		Ingo Molnar
 *
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
 *
 * Made to use alloc_percpu by Christoph Lameter.
 *
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
 *
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
 *
 * Please read Documentation/core-api/workqueue.rst for details.
 */

#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <linux/hardirq.h>
#include <linux/mempolicy.h>
#include <linux/freezer.h>
#include <linux/debug_locks.h>
#include <linux/lockdep.h>
#include <linux/idr.h>
#include <linux/jhash.h>
#include <linux/hashtable.h>
#include <linux/rculist.h>
#include <linux/nodemask.h>
#include <linux/moduleparam.h>
#include <linux/uaccess.h>
#include <linux/sched/isolation.h>
#include <linux/sched/debug.h>
#include <linux/nmi.h>
#include <linux/kvm_para.h>
#include <linux/delay.h>
#include <linux/irq_work.h>

#include "workqueue_internal.h"

enum worker_pool_flags {
	/*
	 * worker_pool flags
	 *
	 * A bound pool is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The pool behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED should be flipped only while holding
	 * wq_pool_attach_mutex to avoid changing binding state while
	 * worker_attach_to_pool() is in progress.
	 *
	 * As there can only be one concurrent BH execution context per CPU, a
	 * BH pool is per-CPU and always DISASSOCIATED.
	 */
	POOL_BH			= 1 << 0,	/* is a BH pool */
	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
};

enum worker_flags {
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */

	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
};

enum work_cancel_flags {
	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
};

enum wq_internal_consts {
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */

	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */

	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give MIN_NICE.
	 */
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,

	WQ_NAME_LEN		= 32,
};

/*
 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
 * msecs_to_jiffies() can't be an initializer.
 */
#define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
#define BH_WORKER_RESTARTS	10

/*
 * Structure fields follow one of the following exclusion rules.
 *
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
 *
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
 * L: pool->lock protected.  Access with pool->lock held.
 *
 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
 *     reads.
 *
 * K: Only modified by worker while holding pool->lock. Can be safely read by
 *    self, while holding pool->lock or from IRQ context if %current is the
 *    kworker.
 *
 * S: Only modified by worker self.
 *
 * A: wq_pool_attach_mutex protected.
 *
 * PL: wq_pool_mutex protected.
 *
 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 *
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      RCU for reads.
 *
 * WQ: wq->mutex protected.
 *
 * WR: wq->mutex protected for writes.  RCU protected for reads.
 *
 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
 *     with READ_ONCE() without locking.
 *
 * MD: wq_mayday_lock protected.
 *
 * WD: Used internally by the watchdog.
 */

/* struct worker is defined in workqueue_internal.h */

struct worker_pool {
	raw_spinlock_t		lock;		/* the pool lock */
	int			cpu;		/* I: the associated cpu */
	int			node;		/* I: the associated node ID */
	int			id;		/* I: pool ID */
	unsigned int		flags;		/* L: flags */

	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
	bool			cpu_stall;	/* WD: stalled cpu bound pool */

	/*
	 * The counter is incremented in a process context on the associated CPU
	 * w/ preemption disabled, and decremented or reset in the same context
	 * but w/ pool->lock held. The readers grab pool->lock and are
	 * guaranteed to see if the counter reached zero.
	 */
	int			nr_running;

	struct list_head	worklist;	/* L: list of pending works */

	int			nr_workers;	/* L: total number of workers */
	int			nr_idle;	/* L: currently idle workers */

	struct list_head	idle_list;	/* L: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct work_struct      idle_cull_work; /* L: worker idle cleanup */

	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */

	/* a workers is either on busy_hash or idle_list, or the manager */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

	struct worker		*manager;	/* L: purely informational */
	struct list_head	workers;	/* A: attached workers */
	struct list_head        dying_workers;  /* A: workers about to die */
	struct completion	*detach_completion; /* all workers detached */

	struct ida		worker_ida;	/* worker IDs for task name */

	struct workqueue_attrs	*attrs;		/* I: worker attributes */
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */

	/*
	 * Destruction of pool is RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
};

/*
 * Per-pool_workqueue statistics. These can be monitored using
 * tools/workqueue/wq_monitor.py.
 */
enum pool_workqueue_stats {
	PWQ_STAT_STARTED,	/* work items started execution */
	PWQ_STAT_COMPLETED,	/* work items completed execution */
	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */

	PWQ_NR_STATS,
};

/*
 * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
 */
struct pool_workqueue {
	struct worker_pool	*pool;		/* I: the associated pool */
	struct workqueue_struct *wq;		/* I: the owning workqueue */
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			refcnt;		/* L: reference count */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
	bool			plugged;	/* L: execution suspended */

	/*
	 * nr_active management and WORK_STRUCT_INACTIVE:
	 *
	 * When pwq->nr_active >= max_active, new work item is queued to
	 * pwq->inactive_works instead of pool->worklist and marked with
	 * WORK_STRUCT_INACTIVE.
	 *
	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
	 * nr_active and all work items in pwq->inactive_works are marked with
	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
	 * in pwq->inactive_works. Some of them are ready to run in
	 * pool->worklist or worker->scheduled. Those work itmes are only struct
	 * wq_barrier which is used for flush_work() and should not participate
	 * in nr_active. For non-barrier work item, it is marked with
	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
	 */
	int			nr_active;	/* L: nr of active works */
	struct list_head	inactive_works;	/* L: inactive works */
	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
	struct list_head	mayday_node;	/* MD: node on wq->maydays */

	u64			stats[PWQ_NR_STATS];

	/*
	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
	 * and pwq_release_workfn() for details. pool_workqueue itself is also
	 * RCU protected so that the first pwq can be determined without
	 * grabbing wq->mutex.
	 */
	struct kthread_work	release_work;
	struct rcu_head		rcu;
} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);

/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
	struct completion	done;		/* flush completion */
};

struct wq_device;

/*
 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
 * As sharing a single nr_active across multiple sockets can be very expensive,
 * the counting and enforcement is per NUMA node.
 *
 * The following struct is used to enforce per-node max_active. When a pwq wants
 * to start executing a work item, it should increment ->nr using
 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
 * round-robin order.
 */
struct wq_node_nr_active {
	int			max;		/* per-node max_active */
	atomic_t		nr;		/* per-node nr_active */
	raw_spinlock_t		lock;		/* nests inside pool locks */
	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
};

/*
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
 */
struct workqueue_struct {
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
	struct list_head	list;		/* PR: list of all workqueues */

	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */

	struct list_head	maydays;	/* MD: pwqs requesting rescue */
	struct worker		*rescuer;	/* MD: rescue worker */

	int			nr_drainers;	/* WQ: drain in progress */

	/* See alloc_workqueue() function comment for info on min/max_active */
	int			max_active;	/* WO: max active works */
	int			min_active;	/* WO: min active works */
	int			saved_max_active; /* WQ: saved max_active */
	int			saved_min_active; /* WQ: saved min_active */

	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */

#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
#ifdef CONFIG_LOCKDEP
	char			*lock_name;
	struct lock_class_key	key;
	struct lockdep_map	lockdep_map;
#endif
	char			name[WQ_NAME_LEN]; /* I: workqueue name */

	/*
	 * Destruction of workqueue_struct is RCU protected to allow walking
	 * the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
};

/*
 * Each pod type describes how CPUs should be grouped for unbound workqueues.
 * See the comment above workqueue_attrs->affn_scope.
 */
struct wq_pod_type {
	int			nr_pods;	/* number of pods */
	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
	int			*pod_node;	/* pod -> node */
	int			*cpu_pod;	/* cpu -> pod */
};

static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
	[WQ_AFFN_DFL]		= "default",
	[WQ_AFFN_CPU]		= "cpu",
	[WQ_AFFN_SMT]		= "smt",
	[WQ_AFFN_CACHE]		= "cache",
	[WQ_AFFN_NUMA]		= "numa",
	[WQ_AFFN_SYSTEM]	= "system",
};

/*
 * Per-cpu work items which run for longer than the following threshold are
 * automatically considered CPU intensive and excluded from concurrency
 * management to prevent them from noticeably delaying other per-cpu work items.
 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
 * The actual value is initialized in wq_cpu_intensive_thresh_init().
 */
static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
static unsigned int wq_cpu_intensive_warning_thresh = 4;
module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
#endif

/* see the comment above the definition of WQ_POWER_EFFICIENT */
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

static bool wq_online;			/* can kworkers be created yet? */
static bool wq_topo_initialized __read_mostly = false;

static struct kmem_cache *pwq_cache;

static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;

/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_pod_attrs_buf;

static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
/* wait for manager to go away */
static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);

static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */

/* PL&A: allowable cpus for unbound wqs and work items */
static cpumask_var_t wq_unbound_cpumask;

/* PL: user requested unbound cpumask via sysfs */
static cpumask_var_t wq_requested_unbound_cpumask;

/* PL: isolated cpumask to be excluded from unbound cpumask */
static cpumask_var_t wq_isolated_cpumask;

/* for further constrain wq_unbound_cpumask by cmdline parameter*/
static struct cpumask wq_cmdline_cpumask __initdata;

/* CPU where unbound work was last round robin scheduled from this CPU */
static DEFINE_PER_CPU(int, wq_rr_cpu_last);

/*
 * Local execution of unbound work items is no longer guaranteed.  The
 * following always forces round-robin CPU selection on unbound work items
 * to uncover usages which depend on it.
 */
#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
static bool wq_debug_force_rr_cpu = true;
#else
static bool wq_debug_force_rr_cpu = false;
#endif
module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);

/* to raise softirq for the BH worker pools on other CPUs */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
				     bh_pool_irq_works);

/* the BH worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     bh_worker_pools);

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */

/* PL: hash of all unbound pools keyed by pool->attrs */
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

/* I: attributes used when instantiating standard unbound pools on demand */
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

/*
 * Used to synchronize multiple cancel_sync attempts on the same work item. See
 * work_grab_pending() and __cancel_work_sync().
 */
static DECLARE_WAIT_QUEUE_HEAD(wq_cancel_waitq);

/*
 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
 * process context while holding a pool lock. Bounce to a dedicated kthread
 * worker to avoid A-A deadlocks.
 */
static struct kthread_worker *pwq_release_worker __ro_after_init;

struct workqueue_struct *system_wq __ro_after_init;
EXPORT_SYMBOL(system_wq);
struct workqueue_struct *system_highpri_wq __ro_after_init;
EXPORT_SYMBOL_GPL(system_highpri_wq);
struct workqueue_struct *system_long_wq __ro_after_init;
EXPORT_SYMBOL_GPL(system_long_wq);
struct workqueue_struct *system_unbound_wq __ro_after_init;
EXPORT_SYMBOL_GPL(system_unbound_wq);
struct workqueue_struct *system_freezable_wq __ro_after_init;
EXPORT_SYMBOL_GPL(system_freezable_wq);
struct workqueue_struct *system_power_efficient_wq __ro_after_init;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
struct workqueue_struct *system_bh_wq;
EXPORT_SYMBOL_GPL(system_bh_wq);
struct workqueue_struct *system_bh_highpri_wq;
EXPORT_SYMBOL_GPL(system_bh_highpri_wq);

static int worker_thread(void *__worker);
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
static void show_pwq(struct pool_workqueue *pwq);
static void show_one_worker_pool(struct worker_pool *pool);

#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

#define assert_rcu_or_pool_mutex()					\
	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "RCU or wq_pool_mutex should be held")

#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
			 !lockdep_is_held(&wq->mutex) &&		\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "RCU, wq->mutex or wq_pool_mutex should be held")

#define for_each_bh_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
	     (pool)++)

#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
	     (pool)++)

/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
 * @pi: integer used for iteration
 *
 * This must be called either with wq_pool_mutex held or RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
		else

/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with wq_pool_attach_mutex.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
		else

/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
 *
 * This must be called either with wq->mutex held or RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pwq(pwq, wq)						\
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
				 lockdep_is_held(&(wq->mutex)))

#ifdef CONFIG_DEBUG_OBJECTS_WORK

static const struct debug_obj_descr work_debug_descr;

static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

static bool work_is_static_object(void *addr)
{
	struct work_struct *work = addr;

	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
}

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static bool work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return true;
	default:
		return false;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static bool work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return true;
	default:
		return false;
	}
}

static const struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
	.debug_hint	= work_debug_hint,
	.is_static_object = work_is_static_object,
	.fixup_init	= work_fixup_init,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

/**
 * worker_pool_assign_id - allocate ID and assign it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	lockdep_assert_held(&wq_pool_mutex);

	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
	if (ret >= 0) {
		pool->id = ret;
		return 0;
	}
	return ret;
}

static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
{
       if (cpu >= 0)
               return per_cpu_ptr(wq->cpu_pwq, cpu);
       else
               return &wq->dfl_pwq;
}

/* @cpu < 0 for dfl_pwq */
static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
{
	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
				     lockdep_is_held(&wq_pool_mutex) ||
				     lockdep_is_held(&wq->mutex));
}

/**
 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
 * @wq: workqueue of interest
 *
 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
 * default pwq is always mapped to the pool with the current effective cpumask.
 */
static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
{
	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
}

static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(unsigned long work_data)
{
	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}

/*
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and pool ID.
 *
 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
 * can be used to set the pwq, pool or clear work->data. These functions should
 * only be called while the work is owned - ie. while the PENDING bit is set.
 *
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 * corresponding to a work.  Pool is available once the work has been
 * queued anywhere after initialization until it is sync canceled.  pwq is
 * available only while the work item is queued.
 *
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
 */
static inline void set_work_data(struct work_struct *work, unsigned long data)
{
	WARN_ON_ONCE(!work_pending(work));
	atomic_long_set(&work->data, data | work_static(work));
}

static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
			 unsigned long flags)
{
	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
		      WORK_STRUCT_PWQ | flags);
}

static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id, unsigned long flags)
{
	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
		      WORK_STRUCT_PENDING | flags);
}

static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id, unsigned long flags)
{
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
		      flags);
	/*
	 * The following mb guarantees that previous clear of a PENDING bit
	 * will not be reordered with any speculative LOADS or STORES from
	 * work->current_func, which is executed afterwards.  This possible
	 * reordering can lead to a missed execution on attempt to queue
	 * the same @work.  E.g. consider this case:
	 *
	 *   CPU#0                         CPU#1
	 *   ----------------------------  --------------------------------
	 *
	 * 1  STORE event_indicated
	 * 2  queue_work_on() {
	 * 3    test_and_set_bit(PENDING)
	 * 4 }                             set_..._and_clear_pending() {
	 * 5                                 set_work_data() # clear bit
	 * 6                                 smp_mb()
	 * 7                               work->current_func() {
	 * 8				      LOAD event_indicated
	 *				   }
	 *
	 * Without an explicit full barrier speculative LOAD on line 8 can
	 * be executed before CPU#0 does STORE on line 1.  If that happens,
	 * CPU#0 observes the PENDING bit is still set and new execution of
	 * a @work is not queued in a hope, that CPU#1 will eventually
	 * finish the queued @work.  Meanwhile CPU#1 does not see
	 * event_indicated is set, because speculative LOAD was executed
	 * before actual STORE.
	 */
	smp_mb();
}

static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
{
	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
}

static struct pool_workqueue *get_work_pwq(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	if (data & WORK_STRUCT_PWQ)
		return work_struct_pwq(data);
	else
		return NULL;
}

/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);
	int pool_id;

	assert_rcu_or_pool_mutex();

	if (data & WORK_STRUCT_PWQ)
		return work_struct_pwq(data)->pool;

	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
		return NULL;

	return idr_find(&worker_pool_idr, pool_id);
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return: The worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	if (data & WORK_STRUCT_PWQ)
		return work_struct_pwq(data)->pool->id;

	return data >> WORK_OFFQ_POOL_SHIFT;
}

static void mark_work_canceling(struct work_struct *work)
{
	unsigned long pool_id = get_work_pool_id(work);

	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_STRUCT_PENDING | WORK_OFFQ_CANCELING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
}

/*
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with pool->lock held.
 */

/*
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound pools as long as the
 * worklist isn't empty.
 */
static bool need_more_worker(struct worker_pool *pool)
{
	return !list_empty(&pool->worklist) && !pool->nr_running;
}

/* Can I start working?  Called from busy but !running workers. */
static bool may_start_working(struct worker_pool *pool)
{
	return pool->nr_idle;
}

/* Do I need to keep working?  Called from currently running workers. */
static bool keep_working(struct worker_pool *pool)
{
	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
}

/* Do we need a new worker?  Called from manager. */
static bool need_to_create_worker(struct worker_pool *pool)
{
	return need_more_worker(pool) && !may_start_working(pool);
}

/* Do we have too many workers and should some go away? */
static bool too_many_workers(struct worker_pool *pool)
{
	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
 * @worker: self
 * @flags: flags to set
 *
 * Set @flags in @worker->flags and adjust nr_running accordingly.
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
{
	struct worker_pool *pool = worker->pool;

	lockdep_assert_held(&pool->lock);

	/* If transitioning into NOT_RUNNING, adjust nr_running. */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		pool->nr_running--;
	}

	worker->flags |= flags;
}

/**
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 * @worker: self
 * @flags: flags to clear
 *
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
	struct worker_pool *pool = worker->pool;
	unsigned int oflags = worker->flags;

	lockdep_assert_held(&pool->lock);

	worker->flags &= ~flags;

	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
			pool->nr_running++;
}

/* Return the first idle worker.  Called with pool->lock held. */
static struct worker *first_idle_worker(struct worker_pool *pool)
{
	if (unlikely(list_empty(&pool->idle_list)))
		return NULL;

	return list_first_entry(&pool->idle_list, struct worker, entry);
}

/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * raw_spin_lock_irq(pool->lock).
 */
static void worker_enter_idle(struct worker *worker)
{
	struct worker_pool *pool = worker->pool;

	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;

	/* can't use worker_set_flags(), also called from create_worker() */
	worker->flags |= WORKER_IDLE;
	pool->nr_idle++;
	worker->last_active = jiffies;

	/* idle_list is LIFO */
	list_add(&worker->entry, &pool->idle_list);

	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);

	/* Sanity check nr_running. */
	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * raw_spin_lock_irq(pool->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
	struct worker_pool *pool = worker->pool;

	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
	worker_clr_flags(worker, WORKER_IDLE);
	pool->nr_idle--;
	list_del_init(&worker->entry);
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @pool: pool of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
 *
 * CONTEXT:
 * raw_spin_lock_irq(pool->lock).
 *
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
 * otherwise.
 */
static struct worker *find_worker_executing_work(struct worker_pool *pool,
						 struct work_struct *work)
{
	struct worker *worker;

	hash_for_each_possible(pool->busy_hash, worker, hentry,
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
			return worker;

	return NULL;
}

/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out parameter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head. Work series to be
 * scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
 * @nextp.
 *
 * CONTEXT:
 * raw_spin_lock_irq(pool->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

/**
 * assign_work - assign a work item and its linked work items to a worker
 * @work: work to assign
 * @worker: worker to assign to
 * @nextp: out parameter for nested worklist walking
 *
 * Assign @work and its linked work items to @worker. If @work is already being
 * executed by another worker in the same pool, it'll be punted there.
 *
 * If @nextp is not NULL, it's updated to point to the next work of the last
 * scheduled work. This allows assign_work() to be nested inside
 * list_for_each_entry_safe().
 *
 * Returns %true if @work was successfully assigned to @worker. %false if @work
 * was punted to another worker already executing it.
 */
static bool assign_work(struct work_struct *work, struct worker *worker,
			struct work_struct **nextp)
{
	struct worker_pool *pool = worker->pool;
	struct worker *collision;

	lockdep_assert_held(&pool->lock);

	/*
	 * A single work shouldn't be executed concurrently by multiple workers.
	 * __queue_work() ensures that @work doesn't jump to a different pool
	 * while still running in the previous pool. Here, we should ensure that
	 * @work is not executed concurrently by multiple workers from the same
	 * pool. Check whether anyone is already processing the work. If so,
	 * defer the work to the currently executing one.
	 */
	collision = find_worker_executing_work(pool, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, nextp);
		return false;
	}

	move_linked_works(work, &worker->scheduled, nextp);
	return true;
}

static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
{
	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;

	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
}

static void kick_bh_pool(struct worker_pool *pool)
{
#ifdef CONFIG_SMP
	/* see drain_dead_softirq_workfn() for BH_DRAINING */
	if (unlikely(pool->cpu != smp_processor_id() &&
		     !(pool->flags & POOL_BH_DRAINING))) {
		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
		return;
	}
#endif
	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
		raise_softirq_irqoff(HI_SOFTIRQ);
	else
		raise_softirq_irqoff(TASKLET_SOFTIRQ);
}

/**
 * kick_pool - wake up an idle worker if necessary
 * @pool: pool to kick
 *
 * @pool may have pending work items. Wake up worker if necessary. Returns
 * whether a worker was woken up.
 */
static bool kick_pool(struct worker_pool *pool)
{
	struct worker *worker = first_idle_worker(pool);
	struct task_struct *p;

	lockdep_assert_held(&pool->lock);

	if (!need_more_worker(pool) || !worker)
		return false;

	if (pool->flags & POOL_BH) {
		kick_bh_pool(pool);
		return true;
	}

	p = worker->task;

#ifdef CONFIG_SMP
	/*
	 * Idle @worker is about to execute @work and waking up provides an
	 * opportunity to migrate @worker at a lower cost by setting the task's
	 * wake_cpu field. Let's see if we want to move @worker to improve
	 * execution locality.
	 *
	 * We're waking the worker that went idle the latest and there's some
	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
	 * so, setting the wake_cpu won't do anything. As this is a best-effort
	 * optimization and the race window is narrow, let's leave as-is for
	 * now. If this becomes pronounced, we can skip over workers which are
	 * still on cpu when picking an idle worker.
	 *
	 * If @pool has non-strict affinity, @worker might have ended up outside
	 * its affinity scope. Repatriate.
	 */
	if (!pool->attrs->affn_strict &&
	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
		struct work_struct *work = list_first_entry(&pool->worklist,
						struct work_struct, entry);
		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
							  cpu_online_mask);
		if (wake_cpu < nr_cpu_ids) {
			p->wake_cpu = wake_cpu;
			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
		}
	}
#endif
	wake_up_process(p);
	return true;
}

#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT

/*
 * Concurrency-managed per-cpu work items that hog CPU for longer than
 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
 * which prevents them from stalling other concurrency-managed work items. If a
 * work function keeps triggering this mechanism, it's likely that the work item
 * should be using an unbound workqueue instead.
 *
 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
 * and report them so that they can be examined and converted to use unbound
 * workqueues as appropriate. To avoid flooding the console, each violating work
 * function is tracked and reported with exponential backoff.
 */
#define WCI_MAX_ENTS 128

struct wci_ent {
	work_func_t		func;
	atomic64_t		cnt;
	struct hlist_node	hash_node;
};

static struct wci_ent wci_ents[WCI_MAX_ENTS];
static int wci_nr_ents;
static DEFINE_RAW_SPINLOCK(wci_lock);
static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));

static struct wci_ent *wci_find_ent(work_func_t func)
{
	struct wci_ent *ent;

	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
				   (unsigned long)func) {
		if (ent->func == func)
			return ent;
	}
	return NULL;
}

static void wq_cpu_intensive_report(work_func_t func)
{
	struct wci_ent *ent;

restart:
	ent = wci_find_ent(func);
	if (ent) {
		u64 cnt;

		/*
		 * Start reporting from the warning_thresh and back off
		 * exponentially.
		 */
		cnt = atomic64_inc_return_relaxed(&ent->cnt);
		if (wq_cpu_intensive_warning_thresh &&
		    cnt >= wq_cpu_intensive_warning_thresh &&
		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
					ent->func, wq_cpu_intensive_thresh_us,
					atomic64_read(&ent->cnt));
		return;
	}

	/*
	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
	 * is exhausted, something went really wrong and we probably made enough
	 * noise already.
	 */
	if (wci_nr_ents >= WCI_MAX_ENTS)
		return;

	raw_spin_lock(&wci_lock);

	if (wci_nr_ents >= WCI_MAX_ENTS) {
		raw_spin_unlock(&wci_lock);
		return;
	}

	if (wci_find_ent(func)) {
		raw_spin_unlock(&wci_lock);
		goto restart;
	}

	ent = &wci_ents[wci_nr_ents++];
	ent->func = func;
	atomic64_set(&ent->cnt, 0);
	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);

	raw_spin_unlock(&wci_lock);

	goto restart;
}

#else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
static void wq_cpu_intensive_report(work_func_t func) {}
#endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */

/**
 * wq_worker_running - a worker is running again
 * @task: task waking up
 *
 * This function is called when a worker returns from schedule()
 */
void wq_worker_running(struct task_struct *task)
{
	struct worker *worker = kthread_data(task);

	if (!READ_ONCE(worker->sleeping))
		return;

	/*
	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
	 * and the nr_running increment below, we may ruin the nr_running reset
	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
	 * pool. Protect against such race.
	 */
	preempt_disable();
	if (!(worker->flags & WORKER_NOT_RUNNING))
		worker->pool->nr_running++;
	preempt_enable();

	/*
	 * CPU intensive auto-detection cares about how long a work item hogged
	 * CPU without sleeping. Reset the starting timestamp on wakeup.
	 */
	worker->current_at = worker->task->se.sum_exec_runtime;

	WRITE_ONCE(worker->sleeping, 0);
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 *
 * This function is called from schedule() when a busy worker is
 * going to sleep.
 */
void wq_worker_sleeping(struct task_struct *task)
{
	struct worker *worker = kthread_data(task);
	struct worker_pool *pool;

	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
	if (worker->flags & WORKER_NOT_RUNNING)
		return;

	pool = worker->pool;

	/* Return if preempted before wq_worker_running() was reached */
	if (READ_ONCE(worker->sleeping))
		return;

	WRITE_ONCE(worker->sleeping, 1);
	raw_spin_lock_irq(&pool->lock);

	/*
	 * Recheck in case unbind_workers() preempted us. We don't
	 * want to decrement nr_running after the worker is unbound
	 * and nr_running has been reset.
	 */
	if (worker->flags & WORKER_NOT_RUNNING) {
		raw_spin_unlock_irq(&pool->lock);
		return;
	}

	pool->nr_running--;
	if (kick_pool(pool))
		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;

	raw_spin_unlock_irq(&pool->lock);
}

/**
 * wq_worker_tick - a scheduler tick occurred while a kworker is running
 * @task: task currently running
 *
 * Called from sched_tick(). We're in the IRQ context and the current
 * worker's fields which follow the 'K' locking rule can be accessed safely.
 */
void wq_worker_tick(struct task_struct *task)
{
	struct worker *worker = kthread_data(task);
	struct pool_workqueue *pwq = worker->current_pwq;
	struct worker_pool *pool = worker->pool;

	if (!pwq)
		return;

	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;

	if (!wq_cpu_intensive_thresh_us)
		return;

	/*
	 * If the current worker is concurrency managed and hogged the CPU for
	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
	 *
	 * Set @worker->sleeping means that @worker is in the process of
	 * switching out voluntarily and won't be contributing to
	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
	 * double decrements. The task is releasing the CPU anyway. Let's skip.
	 * We probably want to make this prettier in the future.
	 */
	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
	    worker->task->se.sum_exec_runtime - worker->current_at <
	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
		return;

	raw_spin_lock(&pool->lock);

	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
	wq_cpu_intensive_report(worker->current_func);
	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;

	if (kick_pool(pool))
		pwq->stats[PWQ_STAT_CM_WAKEUP]++;

	raw_spin_unlock(&pool->lock);
}

/**
 * wq_worker_last_func - retrieve worker's last work function
 * @task: Task to retrieve last work function of.
 *
 * Determine the last function a worker executed. This is called from
 * the scheduler to get a worker's last known identity.
 *
 * CONTEXT:
 * raw_spin_lock_irq(rq->lock)
 *
 * This function is called during schedule() when a kworker is going
 * to sleep. It's used by psi to identify aggregation workers during
 * dequeuing, to allow periodic aggregation to shut-off when that
 * worker is the last task in the system or cgroup to go to sleep.
 *
 * As this function doesn't involve any workqueue-related locking, it
 * only returns stable values when called from inside the scheduler's
 * queuing and dequeuing paths, when @task, which must be a kworker,
 * is guaranteed to not be processing any works.
 *
 * Return:
 * The last work function %current executed as a worker, NULL if it
 * hasn't executed any work yet.
 */
work_func_t wq_worker_last_func(struct task_struct *task)
{
	struct worker *worker = kthread_data(task);

	return worker->last_func;
}

/**
 * wq_node_nr_active - Determine wq_node_nr_active to use
 * @wq: workqueue of interest
 * @node: NUMA node, can be %NUMA_NO_NODE
 *
 * Determine wq_node_nr_active to use for @wq on @node. Returns:
 *
 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
 *
 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
 *
 * - Otherwise, node_nr_active[@node].
 */
static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
						   int node)
{
	if (!(wq->flags & WQ_UNBOUND))
		return NULL;

	if (node == NUMA_NO_NODE)
		node = nr_node_ids;

	return wq->node_nr_active[node];
}

/**
 * wq_update_node_max_active - Update per-node max_actives to use
 * @wq: workqueue to update
 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
 *
 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
 * distributed among nodes according to the proportions of numbers of online
 * cpus. The result is always between @wq->min_active and max_active.
 */
static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
{
	struct cpumask *effective = unbound_effective_cpumask(wq);
	int min_active = READ_ONCE(wq->min_active);
	int max_active = READ_ONCE(wq->max_active);
	int total_cpus, node;

	lockdep_assert_held(&wq->mutex);

	if (!wq_topo_initialized)
		return;

	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
		off_cpu = -1;

	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
	if (off_cpu >= 0)
		total_cpus--;

	/* If all CPUs of the wq get offline, use the default values */
	if (unlikely(!total_cpus)) {
		for_each_node(node)
			wq_node_nr_active(wq, node)->max = min_active;

		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
		return;
	}

	for_each_node(node) {
		int node_cpus;

		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
			node_cpus--;

		wq_node_nr_active(wq, node)->max =
			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
			      min_active, max_active);
	}

	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
}

/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to a dedicated
	 * kthread_worker to avoid A-A deadlocks.
	 */
	kthread_queue_work(pwq_release_worker, &pwq->release_work);
}

/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are RCU protected, the
		 * following lock operations are safe.
		 */
		raw_spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		raw_spin_unlock_irq(&pwq->pool->lock);
	}
}

static bool pwq_is_empty(struct pool_workqueue *pwq)
{
	return !pwq->nr_active && list_empty(&pwq->inactive_works);
}

static void __pwq_activate_work(struct pool_workqueue *pwq,
				struct work_struct *work)
{
	unsigned long *wdb = work_data_bits(work);

	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
	trace_workqueue_activate_work(work);
	if (list_empty(&pwq->pool->worklist))
		pwq->pool->watchdog_ts = jiffies;
	move_linked_works(work, &pwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
}

/**
 * pwq_activate_work - Activate a work item if inactive
 * @pwq: pool_workqueue @work belongs to
 * @work: work item to activate
 *
 * Returns %true if activated. %false if already active.
 */
static bool pwq_activate_work(struct pool_workqueue *pwq,
			      struct work_struct *work)
{
	struct worker_pool *pool = pwq->pool;
	struct wq_node_nr_active *nna;

	lockdep_assert_held(&pool->lock);

	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
		return false;

	nna = wq_node_nr_active(pwq->wq, pool->node);
	if (nna)
		atomic_inc(&nna->nr);

	pwq->nr_active++;
	__pwq_activate_work(pwq, work);
	return true;
}

static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
{
	int max = READ_ONCE(nna->max);

	while (true) {
		int old, tmp;

		old = atomic_read(&nna->nr);
		if (old >= max)
			return false;
		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
		if (tmp == old)
			return true;
	}
}

/**
 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
 * @pwq: pool_workqueue of interest
 * @fill: max_active may have increased, try to increase concurrency level
 *
 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
 * successfully obtained. %false otherwise.
 */
static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
{
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
	bool obtained = false;

	lockdep_assert_held(&pool->lock);

	if (!nna) {
		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
		goto out;
	}

	if (unlikely(pwq->plugged))
		return false;

	/*
	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
	 * concurrency level. Don't jump the line.
	 *
	 * We need to ignore the pending test after max_active has increased as
	 * pwq_dec_nr_active() can only maintain the concurrency level but not
	 * increase it. This is indicated by @fill.
	 */
	if (!list_empty(&pwq->pending_node) && likely(!fill))
		goto out;

	obtained = tryinc_node_nr_active(nna);
	if (obtained)
		goto out;

	/*
	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
	 * and try again. The smp_mb() is paired with the implied memory barrier
	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
	 * we see the decremented $nna->nr or they see non-empty
	 * $nna->pending_pwqs.
	 */
	raw_spin_lock(&nna->lock);

	if (list_empty(&pwq->pending_node))
		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
	else if (likely(!fill))
		goto out_unlock;

	smp_mb();

	obtained = tryinc_node_nr_active(nna);

	/*
	 * If @fill, @pwq might have already been pending. Being spuriously
	 * pending in cold paths doesn't affect anything. Let's leave it be.
	 */
	if (obtained && likely(!fill))
		list_del_init(&pwq->pending_node);

out_unlock:
	raw_spin_unlock(&nna->lock);
out:
	if (obtained)
		pwq->nr_active++;
	return obtained;
}

/**
 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
 * @pwq: pool_workqueue of interest
 * @fill: max_active may have increased, try to increase concurrency level
 *
 * Activate the first inactive work item of @pwq if available and allowed by
 * max_active limit.
 *
 * Returns %true if an inactive work item has been activated. %false if no
 * inactive work item is found or max_active limit is reached.
 */
static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
{
	struct work_struct *work =
		list_first_entry_or_null(&pwq->inactive_works,
					 struct work_struct, entry);

	if (work && pwq_tryinc_nr_active(pwq, fill)) {
		__pwq_activate_work(pwq, work);
		return true;
	} else {
		return false;
	}
}

/**
 * unplug_oldest_pwq - unplug the oldest pool_workqueue
 * @wq: workqueue_struct where its oldest pwq is to be unplugged
 *
 * This function should only be called for ordered workqueues where only the
 * oldest pwq is unplugged, the others are plugged to suspend execution to
 * ensure proper work item ordering::
 *
 *    dfl_pwq --------------+     [P] - plugged
 *                          |
 *                          v
 *    pwqs -> A -> B [P] -> C [P] (newest)
 *            |    |        |
 *            1    3        5
 *            |    |        |
 *            2    4        6
 *
 * When the oldest pwq is drained and removed, this function should be called
 * to unplug the next oldest one to start its work item execution. Note that
 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
 * the list is the oldest.
 */
static void unplug_oldest_pwq(struct workqueue_struct *wq)
{
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq->mutex);

	/* Caller should make sure that pwqs isn't empty before calling */
	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
	raw_spin_lock_irq(&pwq->pool->lock);
	if (pwq->plugged) {
		pwq->plugged = false;
		if (pwq_activate_first_inactive(pwq, true))
			kick_pool(pwq->pool);
	}
	raw_spin_unlock_irq(&pwq->pool->lock);
}

/**
 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
 * @nna: wq_node_nr_active to activate a pending pwq for
 * @caller_pool: worker_pool the caller is locking
 *
 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
 * @caller_pool may be unlocked and relocked to lock other worker_pools.
 */
static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
				      struct worker_pool *caller_pool)
{
	struct worker_pool *locked_pool = caller_pool;
	struct pool_workqueue *pwq;
	struct work_struct *work;

	lockdep_assert_held(&caller_pool->lock);

	raw_spin_lock(&nna->lock);
retry:
	pwq = list_first_entry_or_null(&nna->pending_pwqs,
				       struct pool_workqueue, pending_node);
	if (!pwq)
		goto out_unlock;

	/*
	 * If @pwq is for a different pool than @locked_pool, we need to lock
	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
	 * / lock dance. For that, we also need to release @nna->lock as it's
	 * nested inside pool locks.
	 */
	if (pwq->pool != locked_pool) {
		raw_spin_unlock(&locked_pool->lock);
		locked_pool = pwq->pool;
		if (!raw_spin_trylock(&locked_pool->lock)) {
			raw_spin_unlock(&nna->lock);
			raw_spin_lock(&locked_pool->lock);
			raw_spin_lock(&nna->lock);
			goto retry;
		}
	}

	/*
	 * $pwq may not have any inactive work items due to e.g. cancellations.
	 * Drop it from pending_pwqs and see if there's another one.
	 */
	work = list_first_entry_or_null(&pwq->inactive_works,
					struct work_struct, entry);
	if (!work) {
		list_del_init(&pwq->pending_node);
		goto retry;
	}

	/*
	 * Acquire an nr_active count and activate the inactive work item. If
	 * $pwq still has inactive work items, rotate it to the end of the
	 * pending_pwqs so that we round-robin through them. This means that
	 * inactive work items are not activated in queueing order which is fine
	 * given that there has never been any ordering across different pwqs.
	 */
	if (likely(tryinc_node_nr_active(nna))) {
		pwq->nr_active++;
		__pwq_activate_work(pwq, work);

		if (list_empty(&pwq->inactive_works))
			list_del_init(&pwq->pending_node);
		else
			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);

		/* if activating a foreign pool, make sure it's running */
		if (pwq->pool != caller_pool)
			kick_pool(pwq->pool);
	}

out_unlock:
	raw_spin_unlock(&nna->lock);
	if (locked_pool != caller_pool) {
		raw_spin_unlock(&locked_pool->lock);
		raw_spin_lock(&caller_pool->lock);
	}
}

/**
 * pwq_dec_nr_active - Retire an active count
 * @pwq: pool_workqueue of interest
 *
 * Decrement @pwq's nr_active and try to activate the first inactive work item.
 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
 */
static void pwq_dec_nr_active(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);

	lockdep_assert_held(&pool->lock);

	/*
	 * @pwq->nr_active should be decremented for both percpu and unbound
	 * workqueues.
	 */
	pwq->nr_active--;

	/*
	 * For a percpu workqueue, it's simple. Just need to kick the first
	 * inactive work item on @pwq itself.
	 */
	if (!nna) {
		pwq_activate_first_inactive(pwq, false);
		return;
	}

	/*
	 * If @pwq is for an unbound workqueue, it's more complicated because
	 * multiple pwqs and pools may be sharing the nr_active count. When a
	 * pwq needs to wait for an nr_active count, it puts itself on
	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
	 * guarantee that either we see non-empty pending_pwqs or they see
	 * decremented $nna->nr.
	 *
	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
	 * max_active gets updated. However, it is guaranteed to be equal to or
	 * larger than @pwq->wq->min_active which is above zero unless freezing.
	 * This maintains the forward progress guarantee.
	 */
	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
		return;

	if (!list_empty(&nna->pending_pwqs))
		node_activate_pending_pwq(nna, pool);
}

/**
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
 * @work_data: work_data of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
 *
 * NOTE:
 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
 * and thus should be called after all other state updates for the in-flight
 * work item is complete.
 *
 * CONTEXT:
 * raw_spin_lock_irq(pool->lock).
 */
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
{
	int color = get_work_color(work_data);

	if (!(work_data & WORK_STRUCT_INACTIVE))
		pwq_dec_nr_active(pwq);

	pwq->nr_in_flight[color]--;

	/* is flush in progress and are we at the flushing tip? */
	if (likely(pwq->flush_color != color))
		goto out_put;

	/* are there still in-flight works? */
	if (pwq->nr_in_flight[color])
		goto out_put;

	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;

	/*
	 * If this was the last pwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
out_put:
	put_pwq(pwq);
}

/**
 * try_to_grab_pending - steal work item from worklist and disable irq
 * @work: work item to steal
 * @cflags: %WORK_CANCEL_ flags
 * @irq_flags: place to store irq state
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.
 *
 * Return:
 *
 *  ========	================================================================
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
 *  ========	================================================================
 *
 * Note:
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@irq_flags).
 *
 * This function is safe to call from any context including IRQ handler.
 */
static int try_to_grab_pending(struct work_struct *work, u32 cflags,
			       unsigned long *irq_flags)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	local_irq_save(*irq_flags);

	/* try to steal the timer if it exists */
	if (cflags & WORK_CANCEL_DELAYED) {
		struct delayed_work *dwork = to_delayed_work(work);

		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	rcu_read_lock();
	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	pool = get_work_pool(work);
	if (!pool)
		goto fail;

	raw_spin_lock(&pool->lock);
	/*
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
	 * item is currently queued on that pool.
	 */
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
		unsigned long work_data;

		debug_work_deactivate(work);

		/*
		 * A cancelable inactive work item must be in the
		 * pwq->inactive_works since a queued barrier can't be
		 * canceled (see the comments in insert_wq_barrier()).
		 *
		 * An inactive work item cannot be grabbed directly because
		 * it might have linked barrier work items which, if left
		 * on the inactive_works list, will confuse pwq->nr_active
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		pwq_activate_work(pwq, work);

		list_del_init(&work->entry);

		/*
		 * work->data points to pwq iff queued. Let's point to pool. As
		 * this destroys work->data needed by the next step, stash it.
		 */
		work_data = *work_data_bits(work);
		set_work_pool_and_keep_pending(work, pool->id, 0);

		/* must be the last step, see the function comment */
		pwq_dec_nr_in_flight(pwq, work_data);

		raw_spin_unlock(&pool->lock);
		rcu_read_unlock();
		return 1;
	}
	raw_spin_unlock(&pool->lock);
fail:
	rcu_read_unlock();
	local_irq_restore(*irq_flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
	return -EAGAIN;
}

struct cwt_wait {
	wait_queue_entry_t	wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

/**
 * work_grab_pending - steal work item from worklist and disable irq
 * @work: work item to steal
 * @cflags: %WORK_CANCEL_ flags
 * @irq_flags: place to store IRQ state
 *
 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
 * or on worklist.
 *
 * Must be called in process context. IRQ is disabled on return with IRQ state
 * stored in *@irq_flags. The caller is responsible for re-enabling it using
 * local_irq_restore().
 *
 * Returns %true if @work was pending. %false if idle.
 */
static bool work_grab_pending(struct work_struct *work, u32 cflags,
			      unsigned long *irq_flags)
{
	struct cwt_wait cwait;
	int ret;

	might_sleep();
repeat:
	ret = try_to_grab_pending(work, cflags, irq_flags);
	if (likely(ret >= 0))
		return ret;
	if (ret != -ENOENT)
		goto repeat;

	/*
	 * Someone is already canceling. Wait for it to finish. flush_work()
	 * doesn't work for PREEMPT_NONE because we may get woken up between
	 * @work's completion and the other canceling task resuming and clearing
	 * CANCELING - flush_work() will return false immediately as @work is no
	 * longer busy, try_to_grab_pending() will return -ENOENT as @work is
	 * still being canceled and the other canceling task won't be able to
	 * clear CANCELING as we're hogging the CPU.
	 *
	 * Let's wait for completion using a waitqueue. As this may lead to the
	 * thundering herd problem, use a custom wake function which matches
	 * @work along with exclusive wait and wakeup.
	 */
	init_wait(&cwait.wait);
	cwait.wait.func = cwt_wakefn;
	cwait.work = work;

	prepare_to_wait_exclusive(&wq_cancel_waitq, &cwait.wait,
				  TASK_UNINTERRUPTIBLE);
	if (work_is_canceling(work))
		schedule();
	finish_wait(&wq_cancel_waitq, &cwait.wait);

	goto repeat;
}

/**
 * insert_work - insert a work into a pool
 * @pwq: pwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
 * work_struct flags.
 *
 * CONTEXT:
 * raw_spin_lock_irq(pool->lock).
 */
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
{
	debug_work_activate(work);

	/* record the work call stack in order to print it in KASAN reports */
	kasan_record_aux_stack_noalloc(work);

	/* we own @work, set data and link */
	set_work_pwq(work, pwq, extra_flags);
	list_add_tail(&work->entry, head);
	get_pwq(pwq);
}

/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker executing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
	return worker && worker->current_pwq->wq == wq;
}

/*
 * When queueing an unbound work item to a wq, prefer local CPU if allowed
 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
 * avoid perturbing sensitive tasks.
 */
static int wq_select_unbound_cpu(int cpu)
{
	int new_cpu;

	if (likely(!wq_debug_force_rr_cpu)) {
		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
			return cpu;
	} else {
		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
	}

	new_cpu = __this_cpu_read(wq_rr_cpu_last);
	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
	if (unlikely(new_cpu >= nr_cpu_ids)) {
		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
		if (unlikely(new_cpu >= nr_cpu_ids))
			return cpu;
	}
	__this_cpu_write(wq_rr_cpu_last, new_cpu);

	return new_cpu;
}

static void __queue_work(int cpu, struct workqueue_struct *wq,
			 struct work_struct *work)
{
	struct pool_workqueue *pwq;
	struct worker_pool *last_pool, *pool;
	unsigned int work_flags;
	unsigned int req_cpu = cpu;

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	lockdep_assert_irqs_disabled();

	/*
	 * For a draining wq, only works from the same workqueue are
	 * allowed. The __WQ_DESTROYING helps to spot the issue that
	 * queues a new work item to a wq after destroy_workqueue(wq).
	 */
	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
		     WARN_ON_ONCE(!is_chained_work(wq))))
		return;
	rcu_read_lock();
retry:
	/* pwq which will be used unless @work is executing elsewhere */
	if (req_cpu == WORK_CPU_UNBOUND) {
		if (wq->flags & WQ_UNBOUND)
			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
		else
			cpu = raw_smp_processor_id();
	}

	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
	pool = pwq->pool;

	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pool) {
		struct worker *worker;

		raw_spin_lock(&last_pool->lock);

		worker = find_worker_executing_work(last_pool, work);

		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
			pool = pwq->pool;
			WARN_ON_ONCE(pool != last_pool);
		} else {
			/* meh... not running there, queue here */
			raw_spin_unlock(&last_pool->lock);
			raw_spin_lock(&pool->lock);
		}
	} else {
		raw_spin_lock(&pool->lock);
	}

	/*
	 * pwq is determined and locked. For unbound pools, we could have raced
	 * with pwq release and it could already be dead. If its refcnt is zero,
	 * repeat pwq selection. Note that unbound pwqs never die without
	 * another pwq replacing it in cpu_pwq or while work items are executing
	 * on it, so the retrying is guaranteed to make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			raw_spin_unlock(&pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);

	if (WARN_ON(!list_empty(&work->entry)))
		goto out;

	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);

	/*
	 * Limit the number of concurrently active work items to max_active.
	 * @work must also queue behind existing inactive work items to maintain
	 * ordering when max_active changes. See wq_adjust_max_active().
	 */
	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
		if (list_empty(&pool->worklist))
			pool->watchdog_ts = jiffies;

		trace_workqueue_activate_work(work);
		insert_work(pwq, work, &pool->worklist, work_flags);
		kick_pool(pool);
	} else {
		work_flags |= WORK_STRUCT_INACTIVE;
		insert_work(pwq, work, &pwq->inactive_works, work_flags);
	}

out:
	raw_spin_unlock(&pool->lock);
	rcu_read_unlock();
}

/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.  Callers that fail to ensure that the specified
 * CPU cannot go away will execute on a randomly chosen CPU.
 * But note well that callers specifying a CPU that never has been
 * online will get a splat.
 *
 * Return: %false if @work was already on a queue, %true otherwise.
 */
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
{
	bool ret = false;
	unsigned long irq_flags;

	local_irq_save(irq_flags);

	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
		__queue_work(cpu, wq, work);
		ret = true;
	}

	local_irq_restore(irq_flags);
	return ret;
}
EXPORT_SYMBOL(queue_work_on);

/**
 * select_numa_node_cpu - Select a CPU based on NUMA node
 * @node: NUMA node ID that we want to select a CPU from
 *
 * This function will attempt to find a "random" cpu available on a given
 * node. If there are no CPUs available on the given node it will return
 * WORK_CPU_UNBOUND indicating that we should just schedule to any
 * available CPU if we need to schedule this work.
 */
static int select_numa_node_cpu(int node)
{
	int cpu;

	/* Delay binding to CPU if node is not valid or online */
	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
		return WORK_CPU_UNBOUND;

	/* Use local node/cpu if we are already there */
	cpu = raw_smp_processor_id();
	if (node == cpu_to_node(cpu))
		return cpu;

	/* Use "random" otherwise know as "first" online CPU of node */
	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);

	/* If CPU is valid return that, otherwise just defer */
	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
}

/**
 * queue_work_node - queue work on a "random" cpu for a given NUMA node
 * @node: NUMA node that we are targeting the work for
 * @wq: workqueue to use
 * @work: work to queue
 *
 * We queue the work to a "random" CPU within a given NUMA node. The basic
 * idea here is to provide a way to somehow associate work with a given
 * NUMA node.
 *
 * This function will only make a best effort attempt at getting this onto
 * the right NUMA node. If no node is requested or the requested node is
 * offline then we just fall back to standard queue_work behavior.
 *
 * Currently the "random" CPU ends up being the first available CPU in the
 * intersection of cpu_online_mask and the cpumask of the node, unless we
 * are running on the node. In that case we just use the current CPU.
 *
 * Return: %false if @work was already on a queue, %true otherwise.
 */
bool queue_work_node(int node, struct workqueue_struct *wq,
		     struct work_struct *work)
{
	unsigned long irq_flags;
	bool ret = false;

	/*
	 * This current implementation is specific to unbound workqueues.
	 * Specifically we only return the first available CPU for a given
	 * node instead of cycling through individual CPUs within the node.
	 *
	 * If this is used with a per-cpu workqueue then the logic in
	 * workqueue_select_cpu_near would need to be updated to allow for
	 * some round robin type logic.
	 */
	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));

	local_irq_save(irq_flags);

	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
		int cpu = select_numa_node_cpu(node);

		__queue_work(cpu, wq, work);
		ret = true;
	}

	local_irq_restore(irq_flags);
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work_node);

void delayed_work_timer_fn(struct timer_list *t)
{
	struct delayed_work *dwork = from_timer(dwork, t, timer);

	/* should have been called from irqsafe timer with irq already off */
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
}
EXPORT_SYMBOL(delayed_work_timer_fn);

static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
{
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(!wq);
	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));

	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

	dwork->wq = wq;
	dwork->cpu = cpu;
	timer->expires = jiffies + delay;

	if (housekeeping_enabled(HK_TYPE_TIMER)) {
		/* If the current cpu is a housekeeping cpu, use it. */
		cpu = smp_processor_id();
		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
		add_timer_on(timer, cpu);
	} else {
		if (likely(cpu == WORK_CPU_UNBOUND))
			add_timer_global(timer);
		else
			add_timer_on(timer, cpu);
	}
}

/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * Return: %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
 */
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
{
	struct work_struct *work = &dwork->work;
	bool ret = false;
	unsigned long irq_flags;

	/* read the comment in __queue_work() */
	local_irq_save(irq_flags);

	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		ret = true;
	}

	local_irq_restore(irq_flags);
	return ret;
}
EXPORT_SYMBOL(queue_delayed_work_on);

/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Return: %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
 * This function is safe to call from any context including IRQ handler.
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long irq_flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, WORK_CANCEL_DELAYED,
					  &irq_flags);
	} while (unlikely(ret == -EAGAIN));

	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(irq_flags);
	}

	/* -ENOENT from try_to_grab_pending() becomes %true */
	return ret;
}
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

static void rcu_work_rcufn(struct rcu_head *rcu)
{
	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);

	/* read the comment in __queue_work() */
	local_irq_disable();
	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
	local_irq_enable();
}

/**
 * queue_rcu_work - queue work after a RCU grace period
 * @wq: workqueue to use
 * @rwork: work to queue
 *
 * Return: %false if @rwork was already pending, %true otherwise.  Note
 * that a full RCU grace period is guaranteed only after a %true return.
 * While @rwork is guaranteed to be executed after a %false return, the
 * execution may happen before a full RCU grace period has passed.
 */
bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
{
	struct work_struct *work = &rwork->work;

	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
		rwork->wq = wq;
		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
		return true;
	}

	return false;
}
EXPORT_SYMBOL(queue_rcu_work);

static struct worker *alloc_worker(int node)
{
	struct worker *worker;

	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
		INIT_LIST_HEAD(&worker->scheduled);
		INIT_LIST_HEAD(&worker->node);
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
	}
	return worker;
}

static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
{
	if (pool->cpu < 0 && pool->attrs->affn_strict)
		return pool->attrs->__pod_cpumask;
	else
		return pool->attrs->cpumask;
}

/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				  struct worker_pool *pool)
{
	mutex_lock(&wq_pool_attach_mutex);

	/*
	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
	 * across this function. See the comments above the flag definition for
	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
	 */
	if (pool->flags & POOL_DISASSOCIATED) {
		worker->flags |= WORKER_UNBOUND;
	} else {
		WARN_ON_ONCE(pool->flags & POOL_BH);
		kthread_set_per_cpu(worker->task, pool->cpu);
	}

	if (worker->rescue_wq)
		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));

	list_add_tail(&worker->node, &pool->workers);
	worker->pool = pool;

	mutex_unlock(&wq_pool_attach_mutex);
}

/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 *
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
 */
static void worker_detach_from_pool(struct worker *worker)
{
	struct worker_pool *pool = worker->pool;
	struct completion *detach_completion = NULL;

	/* there is one permanent BH worker per CPU which should never detach */
	WARN_ON_ONCE(pool->flags & POOL_BH);

	mutex_lock(&wq_pool_attach_mutex);

	kthread_set_per_cpu(worker->task, -1);
	list_del(&worker->node);
	worker->pool = NULL;

	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
		detach_completion = pool->detach_completion;
	mutex_unlock(&wq_pool_attach_mutex);

	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

	if (detach_completion)
		complete(detach_completion);
}

/**
 * create_worker - create a new workqueue worker
 * @pool: pool the new worker will belong to
 *
 * Create and start a new worker which is attached to @pool.
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * Return:
 * Pointer to the newly created worker.
 */
static struct worker *create_worker(struct worker_pool *pool)
{
	struct worker *worker;
	int id;
	char id_buf[23];

	/* ID is needed to determine kthread name */
	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
	if (id < 0) {
		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
			    ERR_PTR(id));
		return NULL;
	}

	worker = alloc_worker(pool->node);
	if (!worker) {
		pr_err_once("workqueue: Failed to allocate a worker\n");
		goto fail;
	}

	worker->id = id;

	if (!(pool->flags & POOL_BH)) {
		if (pool->cpu >= 0)
			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
				 pool->attrs->nice < 0  ? "H" : "");
		else
			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

		worker->task = kthread_create_on_node(worker_thread, worker,
					pool->node, "kworker/%s", id_buf);
		if (IS_ERR(worker->task)) {
			if (PTR_ERR(worker->task) == -EINTR) {
				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
				       id_buf);
			} else {
				pr_err_once("workqueue: Failed to create a worker thread: %pe",
					    worker->task);
			}
			goto fail;
		}

		set_user_nice(worker->task, pool->attrs->nice);
		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
	}

	/* successful, attach the worker to the pool */
	worker_attach_to_pool(worker, pool);

	/* start the newly created worker */
	raw_spin_lock_irq(&pool->lock);

	worker->pool->nr_workers++;
	worker_enter_idle(worker);

	/*
	 * @worker is waiting on a completion in kthread() and will trigger hung
	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
	 * wake it up explicitly.
	 */
	if (worker->task)
		wake_up_process(worker->task);

	raw_spin_unlock_irq(&pool->lock);

	return worker;

fail:
	ida_free(&pool->worker_ida, id);
	kfree(worker);
	return NULL;
}

static void unbind_worker(struct worker *worker)
{
	lockdep_assert_held(&wq_pool_attach_mutex);

	kthread_set_per_cpu(worker->task, -1);
	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
	else
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
}

static void wake_dying_workers(struct list_head *cull_list)
{
	struct worker *worker, *tmp;

	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
		list_del_init(&worker->entry);
		unbind_worker(worker);
		/*
		 * If the worker was somehow already running, then it had to be
		 * in pool->idle_list when set_worker_dying() happened or we
		 * wouldn't have gotten here.
		 *
		 * Thus, the worker must either have observed the WORKER_DIE
		 * flag, or have set its state to TASK_IDLE. Either way, the
		 * below will be observed by the worker and is safe to do
		 * outside of pool->lock.
		 */
		wake_up_process(worker->task);
	}
}

/**
 * set_worker_dying - Tag a worker for destruction
 * @worker: worker to be destroyed
 * @list: transfer worker away from its pool->idle_list and into list
 *
 * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
 * should be idle.
 *
 * CONTEXT:
 * raw_spin_lock_irq(pool->lock).
 */
static void set_worker_dying(struct worker *worker, struct list_head *list)
{
	struct worker_pool *pool = worker->pool;

	lockdep_assert_held(&pool->lock);
	lockdep_assert_held(&wq_pool_attach_mutex);

	/* sanity check frenzy */
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
		return;

	pool->nr_workers--;
	pool->nr_idle--;

	worker->flags |= WORKER_DIE;

	list_move(&worker->entry, list);
	list_move(&worker->node, &pool->dying_workers);
}

/**
 * idle_worker_timeout - check if some idle workers can now be deleted.
 * @t: The pool's idle_timer that just expired
 *
 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
 * worker_leave_idle(), as a worker flicking between idle and active while its
 * pool is at the too_many_workers() tipping point would cause too much timer
 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
 * it expire and re-evaluate things from there.
 */
static void idle_worker_timeout(struct timer_list *t)
{
	struct worker_pool *pool = from_timer(pool, t, idle_timer);
	bool do_cull = false;

	if (work_pending(&pool->idle_cull_work))
		return;

	raw_spin_lock_irq(&pool->lock);

	if (too_many_workers(pool)) {
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
		do_cull = !time_before(jiffies, expires);

		if (!do_cull)
			mod_timer(&pool->idle_timer, expires);
	}
	raw_spin_unlock_irq(&pool->lock);

	if (do_cull)
		queue_work(system_unbound_wq, &pool->idle_cull_work);
}

/**
 * idle_cull_fn - cull workers that have been idle for too long.
 * @work: the pool's work for handling these idle workers
 *
 * This goes through a pool's idle workers and gets rid of those that have been
 * idle for at least IDLE_WORKER_TIMEOUT seconds.
 *
 * We don't want to disturb isolated CPUs because of a pcpu kworker being
 * culled, so this also resets worker affinity. This requires a sleepable
 * context, hence the split between timer callback and work item.
 */
static void idle_cull_fn(struct work_struct *work)
{
	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
	LIST_HEAD(cull_list);

	/*
	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
	 * path. This is required as a previously-preempted worker could run after
	 * set_worker_dying() has happened but before wake_dying_workers() did.
	 */
	mutex_lock(&wq_pool_attach_mutex);
	raw_spin_lock_irq(&pool->lock);

	while (too_many_workers(pool)) {
		struct worker *worker;
		unsigned long expires;

		worker = list_entry(pool->idle_list.prev, struct worker, entry);
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires)) {
			mod_timer(&pool->idle_timer, expires);
			break;
		}

		set_worker_dying(worker, &cull_list);
	}

	raw_spin_unlock_irq(&pool->lock);
	wake_dying_workers(&cull_list);
	mutex_unlock(&wq_pool_attach_mutex);
}

static void send_mayday(struct work_struct *work)
{
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq_mayday_lock);

	if (!wq->rescuer)
		return;

	/* mayday mayday mayday */
	if (list_empty(&pwq->mayday_node)) {
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
		list_add_tail(&pwq->mayday_node, &wq->maydays);
		wake_up_process(wq->rescuer->task);
		pwq->stats[PWQ_STAT_MAYDAY]++;
	}
}

static void pool_mayday_timeout(struct timer_list *t)
{
	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
	struct work_struct *work;

	raw_spin_lock_irq(&pool->lock);
	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */

	if (need_to_create_worker(pool)) {
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
		list_for_each_entry(work, &pool->worklist, entry)
			send_mayday(work);
	}

	raw_spin_unlock(&wq_mayday_lock);
	raw_spin_unlock_irq(&pool->lock);

	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
}

/**
 * maybe_create_worker - create a new worker if necessary
 * @pool: pool to create a new worker for
 *
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
 * sent to all rescuers with works scheduled on @pool to resolve
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
 *
 * LOCKING:
 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
static void maybe_create_worker(struct worker_pool *pool)
__releases(&pool->lock)
__acquires(&pool->lock)
{
restart:
	raw_spin_unlock_irq(&pool->lock);

	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);

	while (true) {
		if (create_worker(pool) || !need_to_create_worker(pool))
			break;

		schedule_timeout_interruptible(CREATE_COOLDOWN);

		if (!need_to_create_worker(pool))
			break;
	}

	del_timer_sync(&pool->mayday_timer);
	raw_spin_lock_irq(&pool->lock);
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
	if (need_to_create_worker(pool))
		goto restart;
}

/**
 * manage_workers - manage worker pool
 * @worker: self
 *
 * Assume the manager role and manage the worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * pool.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
 *
 * CONTEXT:
 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * Return:
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
 */
static bool manage_workers(struct worker *worker)
{
	struct worker_pool *pool = worker->pool;

	if (pool->flags & POOL_MANAGER_ACTIVE)
		return false;

	pool->flags |= POOL_MANAGER_ACTIVE;
	pool->manager = worker;

	maybe_create_worker(pool);

	pool->manager = NULL;
	pool->flags &= ~POOL_MANAGER_ACTIVE;
	rcuwait_wake_up(&manager_wait);
	return true;
}

/**
 * process_one_work - process single work
 * @worker: self
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
 */
static void process_one_work(struct worker *worker, struct work_struct *work)
__releases(&pool->lock)
__acquires(&pool->lock)
{
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct worker_pool *pool = worker->pool;
	unsigned long work_data;
	int lockdep_start_depth, rcu_start_depth;
	bool bh_draining = pool->flags & POOL_BH_DRAINING;
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
#endif
	/* ensure we're on the correct CPU */
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
		     raw_smp_processor_id() != pool->cpu);

	/* claim and dequeue */
	debug_work_deactivate(work);
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
	worker->current_work = work;
	worker->current_func = work->func;
	worker->current_pwq = pwq;
	if (worker->task)
		worker->current_at = worker->task->se.sum_exec_runtime;
	work_data = *work_data_bits(work);
	worker->current_color = get_work_color(work_data);

	/*
	 * Record wq name for cmdline and debug reporting, may get
	 * overridden through set_worker_desc().
	 */
	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);

	list_del_init(&work->entry);

	/*
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
	 */
	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);

	/*
	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
	 * since nr_running would always be >= 1 at this point. This is used to
	 * chain execution of the pending work items for WORKER_NOT_RUNNING
	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
	 */
	kick_pool(pool);

	/*
	 * Record the last pool and clear PENDING which should be the last
	 * update to @work.  Also, do this inside @pool->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
	 */
	set_work_pool_and_clear_pending(work, pool->id, 0);

	pwq->stats[PWQ_STAT_STARTED]++;
	raw_spin_unlock_irq(&pool->lock);

	rcu_start_depth = rcu_preempt_depth();
	lockdep_start_depth = lockdep_depth(current);
	/* see drain_dead_softirq_workfn() */
	if (!bh_draining)
		lock_map_acquire(&pwq->wq->lockdep_map);
	lock_map_acquire(&lockdep_map);
	/*
	 * Strictly speaking we should mark the invariant state without holding
	 * any locks, that is, before these two lock_map_acquire()'s.
	 *
	 * However, that would result in:
	 *
	 *   A(W1)
	 *   WFC(C)
	 *		A(W1)
	 *		C(C)
	 *
	 * Which would create W1->C->W1 dependencies, even though there is no
	 * actual deadlock possible. There are two solutions, using a
	 * read-recursive acquire on the work(queue) 'locks', but this will then
	 * hit the lockdep limitation on recursive locks, or simply discard
	 * these locks.
	 *
	 * AFAICT there is no possible deadlock scenario between the
	 * flush_work() and complete() primitives (except for single-threaded
	 * workqueues), so hiding them isn't a problem.
	 */
	lockdep_invariant_state(true);
	trace_workqueue_execute_start(work);
	worker->current_func(work);
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work, worker->current_func);
	pwq->stats[PWQ_STAT_COMPLETED]++;
	lock_map_release(&lockdep_map);
	if (!bh_draining)
		lock_map_release(&pwq->wq->lockdep_map);

	if (unlikely((worker->task && in_atomic()) ||
		     lockdep_depth(current) != lockdep_start_depth ||
		     rcu_preempt_depth() != rcu_start_depth)) {
		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
		       current->comm, task_pid_nr(current), preempt_count(),
		       lockdep_start_depth, lockdep_depth(current),
		       rcu_start_depth, rcu_preempt_depth(),
		       worker->current_func);
		debug_show_held_locks(current);
		dump_stack();
	}

	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPTION
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
	 */
	if (worker->task)
		cond_resched();

	raw_spin_lock_irq(&pool->lock);

	/*
	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
	 * wq_cpu_intensive_thresh_us. Clear it.
	 */
	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

	/* tag the worker for identification in schedule() */
	worker->last_func = worker->current_func;

	/* we're done with it, release */
	hash_del(&worker->hentry);
	worker->current_work = NULL;
	worker->current_func = NULL;
	worker->current_pwq = NULL;
	worker->current_color = INT_MAX;

	/* must be the last step, see the function comment */
	pwq_dec_nr_in_flight(pwq, work_data);
}

/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
{
	struct work_struct *work;
	bool first = true;

	while ((work = list_first_entry_or_null(&worker->scheduled,
						struct work_struct, entry))) {
		if (first) {
			worker->pool->watchdog_ts = jiffies;
			first = false;
		}
		process_one_work(worker, work);
	}
}

static void set_pf_worker(bool val)
{
	mutex_lock(&wq_pool_attach_mutex);
	if (val)
		current->flags |= PF_WQ_WORKER;
	else
		current->flags &= ~PF_WQ_WORKER;
	mutex_unlock(&wq_pool_attach_mutex);
}

/**
 * worker_thread - the worker thread function
 * @__worker: self
 *
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
 *
 * Return: 0
 */
static int worker_thread(void *__worker)
{
	struct worker *worker = __worker;
	struct worker_pool *pool = worker->pool;

	/* tell the scheduler that this is a workqueue worker */
	set_pf_worker(true);
woke_up:
	raw_spin_lock_irq(&pool->lock);

	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
		raw_spin_unlock_irq(&pool->lock);
		set_pf_worker(false);

		set_task_comm(worker->task, "kworker/dying");
		ida_free(&pool->worker_ida, worker->id);
		worker_detach_from_pool(worker);
		WARN_ON_ONCE(!list_empty(&worker->entry));
		kfree(worker);
		return 0;
	}

	worker_leave_idle(worker);
recheck:
	/* no more worker necessary? */
	if (!need_more_worker(pool))
		goto sleep;

	/* do we need to manage? */
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
		goto recheck;

	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	WARN_ON_ONCE(!list_empty(&worker->scheduled));

	/*
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
	 */
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);

	do {
		struct work_struct *work =
			list_first_entry(&pool->worklist,
					 struct work_struct, entry);

		if (assign_work(work, worker, NULL))
			process_scheduled_works(worker);
	} while (keep_working(pool));

	worker_set_flags(worker, WORKER_PREP);
sleep:
	/*
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_IDLE);
	raw_spin_unlock_irq(&pool->lock);
	schedule();
	goto woke_up;
}

/**
 * rescuer_thread - the rescuer thread function
 * @__rescuer: self
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_MEM_RECLAIM set.
 *
 * Regular work processing on a pool may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 *
 * Return: 0
 */
static int rescuer_thread(void *__rescuer)
{
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
	bool should_stop;

	set_user_nice(current, RESCUER_NICE_LEVEL);

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	set_pf_worker(true);
repeat:
	set_current_state(TASK_IDLE);

	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();

	/* see whether any pwq is asking for help */
	raw_spin_lock_irq(&wq_mayday_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
		struct worker_pool *pool = pwq->pool;
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
		list_del_init(&pwq->mayday_node);

		raw_spin_unlock_irq(&wq_mayday_lock);

		worker_attach_to_pool(rescuer, pool);

		raw_spin_lock_irq(&pool->lock);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
			if (get_work_pwq(work) == pwq &&
			    assign_work(work, rescuer, &n))
				pwq->stats[PWQ_STAT_RESCUED]++;
		}

		if (!list_empty(&rescuer->scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_inactive() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (pwq->nr_active && need_to_create_worker(pool)) {
				raw_spin_lock(&wq_mayday_lock);
				/*
				 * Queue iff we aren't racing destruction
				 * and somebody else hasn't queued it already.
				 */
				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
					get_pwq(pwq);
					list_add_tail(&pwq->mayday_node, &wq->maydays);
				}
				raw_spin_unlock(&wq_mayday_lock);
			}
		}

		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're still attached to it.
		 */
		put_pwq(pwq);

		/*
		 * Leave this pool. Notify regular workers; otherwise, we end up
		 * with 0 concurrency and stalling the execution.
		 */
		kick_pool(pool);

		raw_spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer);

		raw_spin_lock_irq(&wq_mayday_lock);
	}

	raw_spin_unlock_irq(&wq_mayday_lock);

	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		set_pf_worker(false);
		return 0;
	}

	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
	schedule();
	goto repeat;
}

static void bh_worker(struct worker *worker)
{
	struct worker_pool *pool = worker->pool;
	int nr_restarts = BH_WORKER_RESTARTS;
	unsigned long end = jiffies + BH_WORKER_JIFFIES;

	raw_spin_lock_irq(&pool->lock);
	worker_leave_idle(worker);

	/*
	 * This function follows the structure of worker_thread(). See there for
	 * explanations on each step.
	 */
	if (!need_more_worker(pool))
		goto done;

	WARN_ON_ONCE(!list_empty(&worker->scheduled));
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);

	do {
		struct work_struct *work =
			list_first_entry(&pool->worklist,
					 struct work_struct, entry);

		if (assign_work(work, worker, NULL))
			process_scheduled_works(worker);
	} while (keep_working(pool) &&
		 --nr_restarts && time_before(jiffies, end));

	worker_set_flags(worker, WORKER_PREP);
done:
	worker_enter_idle(worker);
	kick_pool(pool);
	raw_spin_unlock_irq(&pool->lock);
}

/*
 * TODO: Convert all tasklet users to workqueue and use softirq directly.
 *
 * This is currently called from tasklet[_hi]action() and thus is also called
 * whenever there are tasklets to run. Let's do an early exit if there's nothing
 * queued. Once conversion from tasklet is complete, the need_more_worker() test
 * can be dropped.
 *
 * After full conversion, we'll add worker->softirq_action, directly use the
 * softirq action and obtain the worker pointer from the softirq_action pointer.
 */
void workqueue_softirq_action(bool highpri)
{
	struct worker_pool *pool =
		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
	if (need_more_worker(pool))
		bh_worker(list_first_entry(&pool->workers, struct worker, node));
}

struct wq_drain_dead_softirq_work {
	struct work_struct	work;
	struct worker_pool	*pool;
	struct completion	done;
};

static void drain_dead_softirq_workfn(struct work_struct *work)
{
	struct wq_drain_dead_softirq_work *dead_work =
		container_of(work, struct wq_drain_dead_softirq_work, work);
	struct worker_pool *pool = dead_work->pool;
	bool repeat;

	/*
	 * @pool's CPU is dead and we want to execute its still pending work
	 * items from this BH work item which is running on a different CPU. As
	 * its CPU is dead, @pool can't be kicked and, as work execution path
	 * will be nested, a lockdep annotation needs to be suppressed. Mark
	 * @pool with %POOL_BH_DRAINING for the special treatments.
	 */
	raw_spin_lock_irq(&pool->lock);
	pool->flags |= POOL_BH_DRAINING;
	raw_spin_unlock_irq(&pool->lock);

	bh_worker(list_first_entry(&pool->workers, struct worker, node));

	raw_spin_lock_irq(&pool->lock);
	pool->flags &= ~POOL_BH_DRAINING;
	repeat = need_more_worker(pool);
	raw_spin_unlock_irq(&pool->lock);

	/*
	 * bh_worker() might hit consecutive execution limit and bail. If there
	 * still are pending work items, reschedule self and return so that we
	 * don't hog this CPU's BH.
	 */
	if (repeat) {
		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
			queue_work(system_bh_highpri_wq, work);
		else
			queue_work(system_bh_wq, work);
	} else {
		complete(&dead_work->done);
	}
}

/*
 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
 * possible to allocate dead_work per CPU and avoid flushing. However, then we
 * have to worry about draining overlapping with CPU coming back online or
 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
 * on). Let's keep it simple and drain them synchronously. These are BH work
 * items which shouldn't be requeued on the same pool. Shouldn't take long.
 */
void workqueue_softirq_dead(unsigned int cpu)
{
	int i;

	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
		struct wq_drain_dead_softirq_work dead_work;

		if (!need_more_worker(pool))
			continue;

		INIT_WORK(&dead_work.work, drain_dead_softirq_workfn);
		dead_work.pool = pool;
		init_completion(&dead_work.done);

		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
			queue_work(system_bh_highpri_wq, &dead_work.work);
		else
			queue_work(system_bh_wq, &dead_work.work);

		wait_for_completion(&dead_work.done);
	}
}

/**
 * check_flush_dependency - check for flush dependency sanity
 * @target_wq: workqueue being flushed
 * @target_work: work item being flushed (NULL for workqueue flushes)
 *
 * %current is trying to flush the whole @target_wq or @target_work on it.
 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
 * reclaiming memory or running on a workqueue which doesn't have
 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
 * a deadlock.
 */
static void check_flush_dependency(struct workqueue_struct *target_wq,
				   struct work_struct *target_work)
{
	work_func_t target_func = target_work ? target_work->func : NULL;
	struct worker *worker;

	if (target_wq->flags & WQ_MEM_RECLAIM)
		return;

	worker = current_wq_worker();

	WARN_ONCE(current->flags & PF_MEMALLOC,
		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
		  current->pid, current->comm, target_wq->name, target_func);
	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
		  worker->current_pwq->wq->name, worker->current_func,
		  target_wq->name, target_func);
}

struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
	struct task_struct	*task;	/* purely informational */
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

/**
 * insert_wq_barrier - insert a barrier work
 * @pwq: pwq to insert barrier into
 * @barr: wq_barrier to insert
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
 *
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine pwq from @target.
 *
 * CONTEXT:
 * raw_spin_lock_irq(pool->lock).
 */
static void insert_wq_barrier(struct pool_workqueue *pwq,
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
{
	static __maybe_unused struct lock_class_key bh_key, thr_key;
	unsigned int work_flags = 0;
	unsigned int work_color;
	struct list_head *head;

	/*
	 * debugobject calls are safe here even with pool->lock locked
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 *
	 * BH and threaded workqueues need separate lockdep keys to avoid
	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
	 * usage".
	 */
	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));

	init_completion_map(&barr->done, &target->lockdep_map);

	barr->task = current;

	/* The barrier work item does not participate in nr_active. */
	work_flags |= WORK_STRUCT_INACTIVE;

	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker) {
		head = worker->scheduled.next;
		work_color = worker->current_color;
	} else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		work_flags |= *bits & WORK_STRUCT_LINKED;
		work_color = get_work_color(*bits);
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

	pwq->nr_in_flight[work_color]++;
	work_flags |= work_color_to_flags(work_color);

	insert_work(pwq, &barr->work, head, work_flags);
}

/**
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare pwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all pwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->mutex).
 *
 * Return:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
{
	bool wait = false;
	struct pool_workqueue *pwq;

	if (flush_color >= 0) {
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
		atomic_set(&wq->nr_pwqs_to_flush, 1);
	}

	for_each_pwq(pwq, wq) {
		struct worker_pool *pool = pwq->pool;

		raw_spin_lock_irq(&pool->lock);

		if (flush_color >= 0) {
			WARN_ON_ONCE(pwq->flush_color != -1);

			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
				wait = true;
			}
		}

		if (work_color >= 0) {
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
			pwq->work_color = work_color;
		}

		raw_spin_unlock_irq(&pool->lock);
	}

	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
		complete(&wq->first_flusher->done);

	return wait;
}

static void touch_wq_lockdep_map(struct workqueue_struct *wq)
{
#ifdef CONFIG_LOCKDEP
	if (wq->flags & WQ_BH)
		local_bh_disable();

	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);

	if (wq->flags & WQ_BH)
		local_bh_enable();
#endif
}

static void touch_work_lockdep_map(struct work_struct *work,
				   struct workqueue_struct *wq)
{
#ifdef CONFIG_LOCKDEP
	if (wq->flags & WQ_BH)
		local_bh_disable();

	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

	if (wq->flags & WQ_BH)
		local_bh_enable();
#endif
}

/**
 * __flush_workqueue - ensure that any scheduled work has run to completion.
 * @wq: workqueue to flush
 *
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
 */
void __flush_workqueue(struct workqueue_struct *wq)
{
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
	};
	int next_color;

	if (WARN_ON(!wq_online))
		return;

	touch_wq_lockdep_map(wq);

	mutex_lock(&wq->mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	check_flush_dependency(wq, NULL);

	mutex_unlock(&wq->mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (READ_ONCE(wq->first_flusher) != &this_flusher)
		return;

	mutex_lock(&wq->mutex);

	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

	WRITE_ONCE(wq->first_flusher, NULL);

	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm pwqs.
		 */
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->mutex);
}
EXPORT_SYMBOL(__flush_workqueue);

/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is determined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	struct pool_workqueue *pwq;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	mutex_lock(&wq->mutex);
	if (!wq->nr_drainers++)
		wq->flags |= __WQ_DRAINING;
	mutex_unlock(&wq->mutex);
reflush:
	__flush_workqueue(wq);

	mutex_lock(&wq->mutex);

	for_each_pwq(pwq, wq) {
		bool drained;

		raw_spin_lock_irq(&pwq->pool->lock);
		drained = pwq_is_empty(pwq);
		raw_spin_unlock_irq(&pwq->pool->lock);

		if (drained)
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
				wq->name, __func__, flush_cnt);

		mutex_unlock(&wq->mutex);
		goto reflush;
	}

	if (!--wq->nr_drainers)
		wq->flags &= ~__WQ_DRAINING;
	mutex_unlock(&wq->mutex);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
			     bool from_cancel)
{
	struct worker *worker = NULL;
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
	struct workqueue_struct *wq;

	might_sleep();

	rcu_read_lock();
	pool = get_work_pool(work);
	if (!pool) {
		rcu_read_unlock();
		return false;
	}

	raw_spin_lock_irq(&pool->lock);
	/* see the comment in try_to_grab_pending() with the same code */
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
			goto already_gone;
	} else {
		worker = find_worker_executing_work(pool, work);
		if (!worker)
			goto already_gone;
		pwq = worker->current_pwq;
	}

	wq = pwq->wq;
	check_flush_dependency(wq, work);

	insert_wq_barrier(pwq, barr, work, worker);
	raw_spin_unlock_irq(&pool->lock);

	touch_work_lockdep_map(work, wq);

	/*
	 * Force a lock recursion deadlock when using flush_work() inside a
	 * single-threaded or rescuer equipped workqueue.
	 *
	 * For single threaded workqueues the deadlock happens when the work
	 * is after the work issuing the flush_work(). For rescuer equipped
	 * workqueues the deadlock happens when the rescuer stalls, blocking
	 * forward progress.
	 */
	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
		touch_wq_lockdep_map(wq);

	rcu_read_unlock();
	return true;
already_gone:
	raw_spin_unlock_irq(&pool->lock);
	rcu_read_unlock();
	return false;
}

static bool __flush_work(struct work_struct *work, bool from_cancel)
{
	struct wq_barrier barr;

	if (WARN_ON(!wq_online))
		return false;

	if (WARN_ON(!work->func))
		return false;

	if (start_flush_work(work, &barr, from_cancel)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
}

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
 *
 * Return:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	return __flush_work(work, false);
}
EXPORT_SYMBOL_GPL(flush_work);

/**
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
 *
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
 *
 * Return:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_delayed_work(struct delayed_work *dwork)
{
	local_irq_disable();
	if (del_timer_sync(&dwork->timer))
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
	local_irq_enable();
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

/**
 * flush_rcu_work - wait for a rwork to finish executing the last queueing
 * @rwork: the rcu work to flush
 *
 * Return:
 * %true if flush_rcu_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_rcu_work(struct rcu_work *rwork)
{
	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
		rcu_barrier();
		flush_work(&rwork->work);
		return true;
	} else {
		return flush_work(&rwork->work);
	}
}
EXPORT_SYMBOL(flush_rcu_work);

static bool __cancel_work(struct work_struct *work, u32 cflags)
{
	unsigned long irq_flags;
	int ret;

	do {
		ret = try_to_grab_pending(work, cflags, &irq_flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_pool_and_clear_pending(work, get_work_pool_id(work), 0);
	local_irq_restore(irq_flags);
	return ret;
}

static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
{
	unsigned long irq_flags;
	bool ret;

	/* claim @work and tell other tasks trying to grab @work to back off */
	ret = work_grab_pending(work, cflags, &irq_flags);
	mark_work_canceling(work);
	local_irq_restore(irq_flags);

	/*
	 * Skip __flush_work() during early boot when we know that @work isn't
	 * executing. This allows canceling during early boot.
	 */
	if (wq_online)
		__flush_work(work, true);

	/*
	 * smp_mb() at the end of set_work_pool_and_clear_pending() is paired
	 * with prepare_to_wait() above so that either waitqueue_active() is
	 * visible here or !work_is_canceling() is visible there.
	 */
	set_work_pool_and_clear_pending(work, WORK_OFFQ_POOL_NONE, 0);

	if (waitqueue_active(&wq_cancel_waitq))
		__wake_up(&wq_cancel_waitq, TASK_NORMAL, 1, work);

	return ret;
}

/*
 * See cancel_delayed_work()
 */
bool cancel_work(struct work_struct *work)
{
	return __cancel_work(work, 0);
}
EXPORT_SYMBOL(cancel_work);

/**
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
 *
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
 *
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
 *
 * The caller must ensure that the workqueue on which @work was last
 * queued can't be destroyed before this function returns.
 *
 * Return:
 * %true if @work was pending, %false otherwise.
 */
bool cancel_work_sync(struct work_struct *work)
{
	return __cancel_work_sync(work, 0);
}
EXPORT_SYMBOL_GPL(cancel_work_sync);

/**
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
 *
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
 *
 * This function is safe to call from any context including IRQ handler.
 */
bool cancel_delayed_work(struct delayed_work *dwork)
{
	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
}
EXPORT_SYMBOL(cancel_delayed_work);

/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * Return:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
{
	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
}
EXPORT_SYMBOL(cancel_delayed_work_sync);

/**
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
 * @func: the function to call
 *
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
 * schedule_on_each_cpu() is very slow.
 *
 * Return:
 * 0 on success, -errno on failure.
 */
int schedule_on_each_cpu(work_func_t func)
{
	int cpu;
	struct work_struct __percpu *works;

	works = alloc_percpu(struct work_struct);
	if (!works)
		return -ENOMEM;

	cpus_read_lock();

	for_each_online_cpu(cpu) {
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
		schedule_work_on(cpu, work);
	}

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

	cpus_read_unlock();
	free_percpu(works);
	return 0;
}

/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Return:	0 - function was executed
 *		1 - function was scheduled for execution
 */
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
{
	if (!in_interrupt()) {
		fn(&ew->work);
		return 0;
	}

	INIT_WORK(&ew->work, fn);
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		free_cpumask_var(attrs->__pod_cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(void)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
		goto fail;
	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	attrs->affn_scope = WQ_AFFN_DFL;
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
	to->affn_strict = from->affn_strict;

	/*
	 * Unlike hash and equality test, copying shouldn't ignore wq-only
	 * fields as copying is used for both pool and wq attrs. Instead,
	 * get_unbound_pool() explicitly clears the fields.
	 */
	to->affn_scope = from->affn_scope;
	to->ordered = from->ordered;
}

/*
 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
 * comments in 'struct workqueue_attrs' definition.
 */
static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
{
	attrs->affn_scope = WQ_AFFN_NR_TYPES;
	attrs->ordered = false;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	hash = jhash_1word(attrs->affn_strict, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
		return false;
	if (a->affn_strict != b->affn_strict)
		return false;
	return true;
}

/* Update @attrs with actually available CPUs */
static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
				      const cpumask_t *unbound_cpumask)
{
	/*
	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
	 * @unbound_cpumask.
	 */
	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
	if (unlikely(cpumask_empty(attrs->cpumask)))
		cpumask_copy(attrs->cpumask, unbound_cpumask);
}

/* find wq_pod_type to use for @attrs */
static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs *attrs)
{
	enum wq_affn_scope scope;
	struct wq_pod_type *pt;

	/* to synchronize access to wq_affn_dfl */
	lockdep_assert_held(&wq_pool_mutex);

	if (attrs->affn_scope == WQ_AFFN_DFL)
		scope = wq_affn_dfl;
	else
		scope = attrs->affn_scope;

	pt = &wq_pod_types[scope];

	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
	    likely(pt->nr_pods))
		return pt;

	/*
	 * Before workqueue_init_topology(), only SYSTEM is available which is
	 * initialized in workqueue_init_early().
	 */
	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
	BUG_ON(!pt->nr_pods);
	return pt;
}

/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
{
	raw_spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
	pool->watchdog_ts = jiffies;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);

	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);

	INIT_LIST_HEAD(&pool->workers);
	INIT_LIST_HEAD(&pool->dying_workers);

	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs();
	if (!pool->attrs)
		return -ENOMEM;

	wqattrs_clear_for_pool(pool->attrs);

	return 0;
}

#ifdef CONFIG_LOCKDEP
static void wq_init_lockdep(struct workqueue_struct *wq)
{
	char *lock_name;

	lockdep_register_key(&wq->key);
	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
	if (!lock_name)
		lock_name = wq->name;

	wq->lock_name = lock_name;
	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
}

static void wq_unregister_lockdep(struct workqueue_struct *wq)
{
	lockdep_unregister_key(&wq->key);
}

static void wq_free_lockdep(struct workqueue_struct *wq)
{
	if (wq->lock_name != wq->name)
		kfree(wq->lock_name);
}
#else
static void wq_init_lockdep(struct workqueue_struct *wq)
{
}

static void wq_unregister_lockdep(struct workqueue_struct *wq)
{
}

static void wq_free_lockdep(struct workqueue_struct *wq)
{
}
#endif

static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
{
	int node;

	for_each_node(node) {
		kfree(nna_ar[node]);
		nna_ar[node] = NULL;
	}

	kfree(nna_ar[nr_node_ids]);
	nna_ar[nr_node_ids] = NULL;
}

static void init_node_nr_active(struct wq_node_nr_active *nna)
{
	nna->max = WQ_DFL_MIN_ACTIVE;
	atomic_set(&nna->nr, 0);
	raw_spin_lock_init(&nna->lock);
	INIT_LIST_HEAD(&nna->pending_pwqs);
}

/*
 * Each node's nr_active counter will be accessed mostly from its own node and
 * should be allocated in the node.
 */
static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
{
	struct wq_node_nr_active *nna;
	int node;

	for_each_node(node) {
		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
		if (!nna)
			goto err_free;
		init_node_nr_active(nna);
		nna_ar[node] = nna;
	}

	/* [nr_node_ids] is used as the fallback */
	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
	if (!nna)
		goto err_free;
	init_node_nr_active(nna);
	nna_ar[nr_node_ids] = nna;

	return 0;

err_free:
	free_node_nr_active(nna_ar);
	return -ENOMEM;
}

static void rcu_free_wq(struct rcu_head *rcu)
{
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);

	if (wq->flags & WQ_UNBOUND)
		free_node_nr_active(wq->node_nr_active);

	wq_free_lockdep(wq);
	free_percpu(wq->cpu_pwq);
	free_workqueue_attrs(wq->unbound_attrs);
	kfree(wq);
}

static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
	LIST_HEAD(cull_list);

	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

	/*
	 * Become the manager and destroy all workers.  This prevents
	 * @pool's workers from blocking on attach_mutex.  We're the last
	 * manager and @pool gets freed with the flag set.
	 *
	 * Having a concurrent manager is quite unlikely to happen as we can
	 * only get here with
	 *   pwq->refcnt == pool->refcnt == 0
	 * which implies no work queued to the pool, which implies no worker can
	 * become the manager. However a worker could have taken the role of
	 * manager before the refcnts dropped to 0, since maybe_create_worker()
	 * drops pool->lock
	 */
	while (true) {
		rcuwait_wait_event(&manager_wait,
				   !(pool->flags & POOL_MANAGER_ACTIVE),
				   TASK_UNINTERRUPTIBLE);

		mutex_lock(&wq_pool_attach_mutex);
		raw_spin_lock_irq(&pool->lock);
		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
			pool->flags |= POOL_MANAGER_ACTIVE;
			break;
		}
		raw_spin_unlock_irq(&pool->lock);
		mutex_unlock(&wq_pool_attach_mutex);
	}

	while ((worker = first_idle_worker(pool)))
		set_worker_dying(worker, &cull_list);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	raw_spin_unlock_irq(&pool->lock);

	wake_dying_workers(&cull_list);

	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&wq_pool_attach_mutex);

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	cancel_work_sync(&pool->idle_cull_work);
	del_timer_sync(&pool->mayday_timer);

	/* RCU protected to allow dereferences from get_work_pool() */
	call_rcu(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
 *
 * Should be called with wq_pool_mutex held.
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int pod, node = NUMA_NO_NODE;

	lockdep_assert_held(&wq_pool_mutex);

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}

	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
	for (pod = 0; pod < pt->nr_pods; pod++) {
		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
			node = pt->pod_node[pod];
			break;
		}
	}

	/* nope, create a new one */
	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	pool->node = node;
	copy_workqueue_attrs(pool->attrs, attrs);
	wqattrs_clear_for_pool(pool->attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
	if (wq_online && !create_worker(pool))
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);

	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
 * refcnt and needs to be destroyed.
 */
static void pwq_release_workfn(struct kthread_work *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last = false;

	/*
	 * When @pwq is not linked, it doesn't hold any reference to the
	 * @wq, and @wq is invalid to access.
	 */
	if (!list_empty(&pwq->pwqs_node)) {
		mutex_lock(&wq->mutex);
		list_del_rcu(&pwq->pwqs_node);
		is_last = list_empty(&wq->pwqs);

		/*
		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
		 */
		if (!is_last && (wq->flags & __WQ_ORDERED))
			unplug_oldest_pwq(wq);

		mutex_unlock(&wq->mutex);
	}

	if (wq->flags & WQ_UNBOUND) {
		mutex_lock(&wq_pool_mutex);
		put_unbound_pool(pool);
		mutex_unlock(&wq_pool_mutex);
	}

	if (!list_empty(&pwq->pending_node)) {
		struct wq_node_nr_active *nna =
			wq_node_nr_active(pwq->wq, pwq->pool->node);

		raw_spin_lock_irq(&nna->lock);
		list_del_init(&pwq->pending_node);
		raw_spin_unlock_irq(&nna->lock);
	}

	call_rcu(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
	 */
	if (is_last) {
		wq_unregister_lockdep(wq);
		call_rcu(&wq->rcu, rcu_free_wq);
	}
}

/* initialize newly allocated @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
{
	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);

	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->inactive_works);
	INIT_LIST_HEAD(&pwq->pending_node);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	kthread_init_work(&pwq->release_work, pwq_release_workfn);
}

/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);

	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

	/* set the matching work_color */
	pwq->work_color = wq->work_color;

	/* link in @pwq */
	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
}

/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}

	init_pwq(pwq, wq, pool);
	return pwq;
}

/**
 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
 * @attrs: the wq_attrs of the default pwq of the target workqueue
 * @cpu: the target CPU
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 *
 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
 * The result is stored in @attrs->__pod_cpumask.
 *
 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
 * intersection of the possible CPUs of @pod and @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
 */
static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
				int cpu_going_down)
{
	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
	int pod = pt->cpu_pod[cpu];

	/* does @pod have any online CPUs @attrs wants? */
	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);

	if (cpumask_empty(attrs->__pod_cpumask)) {
		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
		return;
	}

	/* yeap, return possible CPUs in @pod that @attrs wants */
	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);

	if (cpumask_empty(attrs->__pod_cpumask))
		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
				"possible intersect\n");
}

/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
					int cpu, struct pool_workqueue *pwq)
{
	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq_pool_mutex);
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(*slot);
	rcu_assign_pointer(*slot, pwq);
	return old_pwq;
}

/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
	struct list_head	list;		/* queued for batching commit */
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int cpu;

		for_each_possible_cpu(cpu)
			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs,
		      const cpumask_var_t unbound_cpumask)
{
	struct apply_wqattrs_ctx *ctx;
	struct workqueue_attrs *new_attrs;
	int cpu;

	lockdep_assert_held(&wq_pool_mutex);

	if (WARN_ON(attrs->affn_scope < 0 ||
		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
		return ERR_PTR(-EINVAL);

	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);

	new_attrs = alloc_workqueue_attrs();
	if (!ctx || !new_attrs)
		goto out_free;

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	copy_workqueue_attrs(new_attrs, attrs);
	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;

	for_each_possible_cpu(cpu) {
		if (new_attrs->ordered) {
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
		} else {
			wq_calc_pod_cpumask(new_attrs, cpu, -1);
			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
			if (!ctx->pwq_tbl[cpu])
				goto out_free;
		}
	}

	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
	ctx->attrs = new_attrs;

	/*
	 * For initialized ordered workqueues, there should only be one pwq
	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
	 * of newly queued work items until execution of older work items in
	 * the old pwq's have completed.
	 */
	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
		ctx->dfl_pwq->plugged = true;

	ctx->wq = wq;
	return ctx;

out_free:
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return ERR_PTR(-ENOMEM);
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int cpu;

	/* all pwqs have been created successfully, let's install'em */
	mutex_lock(&ctx->wq->mutex);

	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);

	/* save the previous pwqs and install the new ones */
	for_each_possible_cpu(cpu)
		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
							ctx->pwq_tbl[cpu]);
	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);

	/* update node_nr_active->max */
	wq_update_node_max_active(ctx->wq, -1);

	/* rescuer needs to respect wq cpumask changes */
	if (ctx->wq->rescuer)
		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
				     unbound_effective_cpumask(ctx->wq));

	mutex_unlock(&ctx->wq->mutex);
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct apply_wqattrs_ctx *ctx;

	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/* the ctx has been prepared successfully, let's commit it */
	apply_wqattrs_commit(ctx);
	apply_wqattrs_cleanup(ctx);

	return 0;
}

/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
 * work items are affine to the pod it was issued on. Older pwqs are released as
 * in-flight work items finish. Note that a work item which repeatedly requeues
 * itself back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	lockdep_assert_cpus_held();

	mutex_lock(&wq_pool_mutex);
	ret = apply_workqueue_attrs_locked(wq, attrs);
	mutex_unlock(&wq_pool_mutex);

	return ret;
}

/**
 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU to update pool association for
 * @hotplug_cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
 * @wq accordingly.
 *
 *
 * If pod affinity can't be adjusted due to memory allocation failure, it falls
 * back to @wq->dfl_pwq which may not be optimal but is always correct.
 *
 * Note that when the last allowed CPU of a pod goes offline for a workqueue
 * with a cpumask spanning multiple pods, the workers which were already
 * executing the work items for the workqueue will lose their CPU affinity and
 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
 * responsibility to flush the work item from CPU_DOWN_PREPARE.
 */
static void wq_update_pod(struct workqueue_struct *wq, int cpu,
			  int hotplug_cpu, bool online)
{
	int off_cpu = online ? -1 : hotplug_cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;

	lockdep_assert_held(&wq_pool_mutex);

	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_pod_attrs_buf;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);

	/* nothing to do if the target cpumask matches the current pwq */
	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
		return;

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
			wq->name);
		goto use_dfl_pwq;
	}

	/* Install the new pwq. */
	mutex_lock(&wq->mutex);
	old_pwq = install_unbound_pwq(wq, cpu, pwq);
	goto out_unlock;

use_dfl_pwq:
	mutex_lock(&wq->mutex);
	pwq = unbound_pwq(wq, -1);
	raw_spin_lock_irq(&pwq->pool->lock);
	get_pwq(pwq);
	raw_spin_unlock_irq(&pwq->pool->lock);
	old_pwq = install_unbound_pwq(wq, cpu, pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

static int alloc_and_link_pwqs(struct workqueue_struct *wq)
{
	bool highpri = wq->flags & WQ_HIGHPRI;
	int cpu, ret;

	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
	if (!wq->cpu_pwq)
		goto enomem;

	if (!(wq->flags & WQ_UNBOUND)) {
		for_each_possible_cpu(cpu) {
			struct pool_workqueue **pwq_p;
			struct worker_pool __percpu *pools;
			struct worker_pool *pool;

			if (wq->flags & WQ_BH)
				pools = bh_worker_pools;
			else
				pools = cpu_worker_pools;

			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);

			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
						       pool->node);
			if (!*pwq_p)
				goto enomem;

			init_pwq(*pwq_p, wq, pool);

			mutex_lock(&wq->mutex);
			link_pwq(*pwq_p);
			mutex_unlock(&wq->mutex);
		}
		return 0;
	}

	cpus_read_lock();
	if (wq->flags & __WQ_ORDERED) {
		struct pool_workqueue *dfl_pwq;

		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
	} else {
		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
	}
	cpus_read_unlock();

	/* for unbound pwq, flush the pwq_release_worker ensures that the
	 * pwq_release_workfn() completes before calling kfree(wq).
	 */
	if (ret)
		kthread_flush_worker(pwq_release_worker);

	return ret;

enomem:
	if (wq->cpu_pwq) {
		for_each_possible_cpu(cpu) {
			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);

			if (pwq)
				kmem_cache_free(pwq_cache, pwq);
		}
		free_percpu(wq->cpu_pwq);
		wq->cpu_pwq = NULL;
	}
	return -ENOMEM;
}

static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
{
	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, WQ_MAX_ACTIVE);

	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
}

/*
 * Workqueues which may be used during memory reclaim should have a rescuer
 * to guarantee forward progress.
 */
static int init_rescuer(struct workqueue_struct *wq)
{
	struct worker *rescuer;
	int ret;

	if (!(wq->flags & WQ_MEM_RECLAIM))
		return 0;

	rescuer = alloc_worker(NUMA_NO_NODE);
	if (!rescuer) {
		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
		       wq->name);
		return -ENOMEM;
	}

	rescuer->rescue_wq = wq;
	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
	if (IS_ERR(rescuer->task)) {
		ret = PTR_ERR(rescuer->task);
		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
		       wq->name, ERR_PTR(ret));
		kfree(rescuer);
		return ret;
	}

	wq->rescuer = rescuer;
	if (wq->flags & WQ_UNBOUND)
		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
	else
		kthread_bind_mask(rescuer->task, cpu_possible_mask);
	wake_up_process(rescuer->task);

	return 0;
}

/**
 * wq_adjust_max_active - update a wq's max_active to the current setting
 * @wq: target workqueue
 *
 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
 * activate inactive work items accordingly. If @wq is freezing, clear
 * @wq->max_active to zero.
 */
static void wq_adjust_max_active(struct workqueue_struct *wq)
{
	bool activated;
	int new_max, new_min;

	lockdep_assert_held(&wq->mutex);

	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
		new_max = 0;
		new_min = 0;
	} else {
		new_max = wq->saved_max_active;
		new_min = wq->saved_min_active;
	}

	if (wq->max_active == new_max && wq->min_active == new_min)
		return;

	/*
	 * Update @wq->max/min_active and then kick inactive work items if more
	 * active work items are allowed. This doesn't break work item ordering
	 * because new work items are always queued behind existing inactive
	 * work items if there are any.
	 */
	WRITE_ONCE(wq->max_active, new_max);
	WRITE_ONCE(wq->min_active, new_min);

	if (wq->flags & WQ_UNBOUND)
		wq_update_node_max_active(wq, -1);

	if (new_max == 0)
		return;

	/*
	 * Round-robin through pwq's activating the first inactive work item
	 * until max_active is filled.
	 */
	do {
		struct pool_workqueue *pwq;

		activated = false;
		for_each_pwq(pwq, wq) {
			unsigned long irq_flags;

			/* can be called during early boot w/ irq disabled */
			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
			if (pwq_activate_first_inactive(pwq, true)) {
				activated = true;
				kick_pool(pwq->pool);
			}
			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
		}
	} while (activated);
}

__printf(1, 4)
struct workqueue_struct *alloc_workqueue(const char *fmt,
					 unsigned int flags,
					 int max_active, ...)
{
	va_list args;
	struct workqueue_struct *wq;
	size_t wq_size;
	int name_len;

	if (flags & WQ_BH) {
		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
			return NULL;
		if (WARN_ON_ONCE(max_active))
			return NULL;
	}

	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

	/* allocate wq and format name */
	if (flags & WQ_UNBOUND)
		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
	else
		wq_size = sizeof(*wq);

	wq = kzalloc(wq_size, GFP_KERNEL);
	if (!wq)
		return NULL;

	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs();
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

	va_start(args, max_active);
	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
	va_end(args);

	if (name_len >= WQ_NAME_LEN)
		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
			     wq->name);

	if (flags & WQ_BH) {
		/*
		 * BH workqueues always share a single execution context per CPU
		 * and don't impose any max_active limit.
		 */
		max_active = INT_MAX;
	} else {
		max_active = max_active ?: WQ_DFL_ACTIVE;
		max_active = wq_clamp_max_active(max_active, flags, wq->name);
	}

	/* init wq */
	wq->flags = flags;
	wq->max_active = max_active;
	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
	wq->saved_max_active = wq->max_active;
	wq->saved_min_active = wq->min_active;
	mutex_init(&wq->mutex);
	atomic_set(&wq->nr_pwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->pwqs);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
	INIT_LIST_HEAD(&wq->maydays);

	wq_init_lockdep(wq);
	INIT_LIST_HEAD(&wq->list);

	if (flags & WQ_UNBOUND) {
		if (alloc_node_nr_active(wq->node_nr_active) < 0)
			goto err_unreg_lockdep;
	}

	if (alloc_and_link_pwqs(wq) < 0)
		goto err_free_node_nr_active;

	if (wq_online && init_rescuer(wq) < 0)
		goto err_destroy;

	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

	/*
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
	 */
	mutex_lock(&wq_pool_mutex);

	mutex_lock(&wq->mutex);
	wq_adjust_max_active(wq);
	mutex_unlock(&wq->mutex);

	list_add_tail_rcu(&wq->list, &workqueues);

	mutex_unlock(&wq_pool_mutex);

	return wq;

err_free_node_nr_active:
	if (wq->flags & WQ_UNBOUND)
		free_node_nr_active(wq->node_nr_active);
err_unreg_lockdep:
	wq_unregister_lockdep(wq);
	wq_free_lockdep(wq);
err_free_wq:
	free_workqueue_attrs(wq->unbound_attrs);
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
	return NULL;
}
EXPORT_SYMBOL_GPL(alloc_workqueue);

static bool pwq_busy(struct pool_workqueue *pwq)
{
	int i;

	for (i = 0; i < WORK_NR_COLORS; i++)
		if (pwq->nr_in_flight[i])
			return true;

	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
		return true;
	if (!pwq_is_empty(pwq))
		return true;

	return false;
}

/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
	struct pool_workqueue *pwq;
	int cpu;

	/*
	 * Remove it from sysfs first so that sanity check failure doesn't
	 * lead to sysfs name conflicts.
	 */
	workqueue_sysfs_unregister(wq);

	/* mark the workqueue destruction is in progress */
	mutex_lock(&wq->mutex);
	wq->flags |= __WQ_DESTROYING;
	mutex_unlock(&wq->mutex);

	/* drain it before proceeding with destruction */
	drain_workqueue(wq);

	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
	if (wq->rescuer) {
		struct worker *rescuer = wq->rescuer;

		/* this prevents new queueing */
		raw_spin_lock_irq(&wq_mayday_lock);
		wq->rescuer = NULL;
		raw_spin_unlock_irq(&wq_mayday_lock);

		/* rescuer will empty maydays list before exiting */
		kthread_stop(rescuer->task);
		kfree(rescuer);
	}

	/*
	 * Sanity checks - grab all the locks so that we wait for all
	 * in-flight operations which may do put_pwq().
	 */
	mutex_lock(&wq_pool_mutex);
	mutex_lock(&wq->mutex);
	for_each_pwq(pwq, wq) {
		raw_spin_lock_irq(&pwq->pool->lock);
		if (WARN_ON(pwq_busy(pwq))) {
			pr_warn("%s: %s has the following busy pwq\n",
				__func__, wq->name);
			show_pwq(pwq);
			raw_spin_unlock_irq(&pwq->pool->lock);
			mutex_unlock(&wq->mutex);
			mutex_unlock(&wq_pool_mutex);
			show_one_workqueue(wq);
			return;
		}
		raw_spin_unlock_irq(&pwq->pool->lock);
	}
	mutex_unlock(&wq->mutex);

	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
	list_del_rcu(&wq->list);
	mutex_unlock(&wq_pool_mutex);

	/*
	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
	 * to put the base refs. @wq will be auto-destroyed from the last
	 * pwq_put. RCU read lock prevents @wq from going away from under us.
	 */
	rcu_read_lock();

	for_each_possible_cpu(cpu) {
		put_pwq_unlocked(unbound_pwq(wq, cpu));
		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
	}

	put_pwq_unlocked(unbound_pwq(wq, -1));
	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);

	rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
 * comment.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	/* max_active doesn't mean anything for BH workqueues */
	if (WARN_ON(wq->flags & WQ_BH))
		return;
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);

	mutex_lock(&wq->mutex);

	wq->saved_max_active = max_active;
	if (wq->flags & WQ_UNBOUND)
		wq->saved_min_active = min(wq->saved_min_active, max_active);

	wq_adjust_max_active(wq);

	mutex_unlock(&wq->mutex);
}
EXPORT_SYMBOL_GPL(workqueue_set_max_active);

/**
 * workqueue_set_min_active - adjust min_active of an unbound workqueue
 * @wq: target unbound workqueue
 * @min_active: new min_active value
 *
 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
 * unbound workqueue is not guaranteed to be able to process max_active
 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
 * able to process min_active number of interdependent work items which is
 * %WQ_DFL_MIN_ACTIVE by default.
 *
 * Use this function to adjust the min_active value between 0 and the current
 * max_active.
 */
void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
{
	/* min_active is only meaningful for non-ordered unbound workqueues */
	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
		    WQ_UNBOUND))
		return;

	mutex_lock(&wq->mutex);
	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
	wq_adjust_max_active(wq);
	mutex_unlock(&wq->mutex);
}

/**
 * current_work - retrieve %current task's work struct
 *
 * Determine if %current task is a workqueue worker and what it's working on.
 * Useful to find out the context that the %current task is running in.
 *
 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
 */
struct work_struct *current_work(void)
{
	struct worker *worker = current_wq_worker();

	return worker ? worker->current_work : NULL;
}
EXPORT_SYMBOL(current_work);

/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

	return worker && worker->rescue_wq;
}

/**
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
 *
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 *
 * With the exception of ordered workqueues, all workqueues have per-cpu
 * pool_workqueues, each with its own congested state. A workqueue being
 * congested on one CPU doesn't mean that the workqueue is contested on any
 * other CPUs.
 *
 * Return:
 * %true if congested, %false otherwise.
 */
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
{
	struct pool_workqueue *pwq;
	bool ret;

	rcu_read_lock();
	preempt_disable();

	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
	ret = !list_empty(&pwq->inactive_works);

	preempt_enable();
	rcu_read_unlock();

	return ret;
}
EXPORT_SYMBOL_GPL(workqueue_congested);

/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * Return:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
{
	struct worker_pool *pool;
	unsigned long irq_flags;
	unsigned int ret = 0;

	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;

	rcu_read_lock();
	pool = get_work_pool(work);
	if (pool) {
		raw_spin_lock_irqsave(&pool->lock, irq_flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
	}
	rcu_read_unlock();

	return ret;
}
EXPORT_SYMBOL_GPL(work_busy);

/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
	}
}
EXPORT_SYMBOL_GPL(set_worker_desc);

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = kthread_probe_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn, name and desc.
	 * Keep the original last '\0' in case the original is garbage.
	 */
	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
		if (strcmp(name, desc))
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x", pool->flags);
	if (pool->flags & POOL_BH)
		pr_cont(" bh%s",
			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
	else
		pr_cont(" nice=%d", pool->attrs->nice);
}

static void pr_cont_worker_id(struct worker *worker)
{
	struct worker_pool *pool = worker->pool;

	if (pool->flags & WQ_BH)
		pr_cont("bh%s",
			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
	else
		pr_cont("%d%s", task_pid_nr(worker->task),
			worker->rescue_wq ? "(RESCUER)" : "");
}

struct pr_cont_work_struct {
	bool comma;
	work_func_t func;
	long ctr;
};

static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
{
	if (!pcwsp->ctr)
		goto out_record;
	if (func == pcwsp->func) {
		pcwsp->ctr++;
		return;
	}
	if (pcwsp->ctr == 1)
		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
	else
		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
	pcwsp->ctr = 0;
out_record:
	if ((long)func == -1L)
		return;
	pcwsp->comma = comma;
	pcwsp->func = func;
	pcwsp->ctr = 1;
}

static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		if (!comma)
			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
		pr_cont_work_flush(comma, work->func, pcwsp);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct pr_cont_work_struct pcws = { .ctr = 0, };
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d refcnt=%d%s\n",
		pwq->nr_active, pwq->refcnt,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont(" %s", comma ? "," : "");
			pr_cont_worker_id(worker);
			pr_cont(":%ps", worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work, &pcws);
			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work, &pcws);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
		pr_cont("\n");
	}

	if (!list_empty(&pwq->inactive_works)) {
		bool comma = false;

		pr_info("    inactive:");
		list_for_each_entry(work, &pwq->inactive_works, entry) {
			pr_cont_work(comma, work, &pcws);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
		pr_cont("\n");
	}
}

/**
 * show_one_workqueue - dump state of specified workqueue
 * @wq: workqueue whose state will be printed
 */
void show_one_workqueue(struct workqueue_struct *wq)
{
	struct pool_workqueue *pwq;
	bool idle = true;
	unsigned long irq_flags;

	for_each_pwq(pwq, wq) {
		if (!pwq_is_empty(pwq)) {
			idle = false;
			break;
		}
	}
	if (idle) /* Nothing to print for idle workqueue */
		return;

	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

	for_each_pwq(pwq, wq) {
		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
		if (!pwq_is_empty(pwq)) {
			/*
			 * Defer printing to avoid deadlocks in console
			 * drivers that queue work while holding locks
			 * also taken in their write paths.
			 */
			printk_deferred_enter();
			show_pwq(pwq);
			printk_deferred_exit();
		}
		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
		/*
		 * We could be printing a lot from atomic context, e.g.
		 * sysrq-t -> show_all_workqueues(). Avoid triggering
		 * hard lockup.
		 */
		touch_nmi_watchdog();
	}

}

/**
 * show_one_worker_pool - dump state of specified worker pool
 * @pool: worker pool whose state will be printed
 */
static void show_one_worker_pool(struct worker_pool *pool)
{
	struct worker *worker;
	bool first = true;
	unsigned long irq_flags;
	unsigned long hung = 0;

	raw_spin_lock_irqsave(&pool->lock, irq_flags);
	if (pool->nr_workers == pool->nr_idle)
		goto next_pool;

	/* How long the first pending work is waiting for a worker. */
	if (!list_empty(&pool->worklist))
		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;

	/*
	 * Defer printing to avoid deadlocks in console drivers that
	 * queue work while holding locks also taken in their write
	 * paths.
	 */
	printk_deferred_enter();
	pr_info("pool %d:", pool->id);
	pr_cont_pool_info(pool);
	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
	if (pool->manager)
		pr_cont(" manager: %d",
			task_pid_nr(pool->manager->task));
	list_for_each_entry(worker, &pool->idle_list, entry) {
		pr_cont(" %s", first ? "idle: " : "");
		pr_cont_worker_id(worker);
		first = false;
	}
	pr_cont("\n");
	printk_deferred_exit();
next_pool:
	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
	/*
	 * We could be printing a lot from atomic context, e.g.
	 * sysrq-t -> show_all_workqueues(). Avoid triggering
	 * hard lockup.
	 */
	touch_nmi_watchdog();

}

/**
 * show_all_workqueues - dump workqueue state
 *
 * Called from a sysrq handler and prints out all busy workqueues and pools.
 */
void show_all_workqueues(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	int pi;

	rcu_read_lock();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list)
		show_one_workqueue(wq);

	for_each_pool(pool, pi)
		show_one_worker_pool(pool);

	rcu_read_unlock();
}

/**
 * show_freezable_workqueues - dump freezable workqueue state
 *
 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
 * still busy.
 */
void show_freezable_workqueues(void)
{
	struct workqueue_struct *wq;

	rcu_read_lock();

	pr_info("Showing freezable workqueues that are still busy:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		show_one_workqueue(wq);
	}

	rcu_read_unlock();
}

/* used to show worker information through /proc/PID/{comm,stat,status} */
void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
{
	int off;

	/* always show the actual comm */
	off = strscpy(buf, task->comm, size);
	if (off < 0)
		return;

	/* stabilize PF_WQ_WORKER and worker pool association */
	mutex_lock(&wq_pool_attach_mutex);

	if (task->flags & PF_WQ_WORKER) {
		struct worker *worker = kthread_data(task);
		struct worker_pool *pool = worker->pool;

		if (pool) {
			raw_spin_lock_irq(&pool->lock);
			/*
			 * ->desc tracks information (wq name or
			 * set_worker_desc()) for the latest execution.  If
			 * current, prepend '+', otherwise '-'.
			 */
			if (worker->desc[0] != '\0') {
				if (worker->current_work)
					scnprintf(buf + off, size - off, "+%s",
						  worker->desc);
				else
					scnprintf(buf + off, size - off, "-%s",
						  worker->desc);
			}
			raw_spin_unlock_irq(&pool->lock);
		}
	}

	mutex_unlock(&wq_pool_attach_mutex);
}

#ifdef CONFIG_SMP

/*
 * CPU hotplug.
 *
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, pwq and
 * pool which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * worker pools serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
 * This is solved by allowing the pools to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
 */

static void unbind_workers(int cpu)
{
	struct worker_pool *pool;
	struct worker *worker;

	for_each_cpu_worker_pool(pool, cpu) {
		mutex_lock(&wq_pool_attach_mutex);
		raw_spin_lock_irq(&pool->lock);

		/*
		 * We've blocked all attach/detach operations. Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * must be on the cpu.  After this, they may become diasporas.
		 * And the preemption disabled section in their sched callbacks
		 * are guaranteed to see WORKER_UNBOUND since the code here
		 * is on the same cpu.
		 */
		for_each_pool_worker(worker, pool)
			worker->flags |= WORKER_UNBOUND;

		pool->flags |= POOL_DISASSOCIATED;

		/*
		 * The handling of nr_running in sched callbacks are disabled
		 * now.  Zap nr_running.  After this, nr_running stays zero and
		 * need_more_worker() and keep_working() are always true as
		 * long as the worklist is not empty.  This pool now behaves as
		 * an unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
		pool->nr_running = 0;

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		kick_pool(pool);

		raw_spin_unlock_irq(&pool->lock);

		for_each_pool_worker(worker, pool)
			unbind_worker(worker);

		mutex_unlock(&wq_pool_attach_mutex);
	}
}

/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
 */
static void rebind_workers(struct worker_pool *pool)
{
	struct worker *worker;

	lockdep_assert_held(&wq_pool_attach_mutex);

	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinity
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, pool) {
		kthread_set_per_cpu(worker->task, pool->cpu);
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool_allowed_cpus(pool)) < 0);
	}

	raw_spin_lock_irq(&pool->lock);

	pool->flags &= ~POOL_DISASSOCIATED;

	for_each_pool_worker(worker, pool) {
		unsigned int worker_flags = worker->flags;

		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * WRITE_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_running().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		WRITE_ONCE(worker->flags, worker_flags);
	}

	raw_spin_unlock_irq(&pool->lock);
}

/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

	lockdep_assert_held(&wq_pool_attach_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
}

int workqueue_prepare_cpu(unsigned int cpu)
{
	struct worker_pool *pool;

	for_each_cpu_worker_pool(pool, cpu) {
		if (pool->nr_workers)
			continue;
		if (!create_worker(pool))
			return -ENOMEM;
	}
	return 0;
}

int workqueue_online_cpu(unsigned int cpu)
{
	struct worker_pool *pool;
	struct workqueue_struct *wq;
	int pi;

	mutex_lock(&wq_pool_mutex);

	for_each_pool(pool, pi) {
		/* BH pools aren't affected by hotplug */
		if (pool->flags & POOL_BH)
			continue;

		mutex_lock(&wq_pool_attach_mutex);
		if (pool->cpu == cpu)
			rebind_workers(pool);
		else if (pool->cpu < 0)
			restore_unbound_workers_cpumask(pool, cpu);
		mutex_unlock(&wq_pool_attach_mutex);
	}

	/* update pod affinity of unbound workqueues */
	list_for_each_entry(wq, &workqueues, list) {
		struct workqueue_attrs *attrs = wq->unbound_attrs;

		if (attrs) {
			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
			int tcpu;

			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
				wq_update_pod(wq, tcpu, cpu, true);

			mutex_lock(&wq->mutex);
			wq_update_node_max_active(wq, -1);
			mutex_unlock(&wq->mutex);
		}
	}

	mutex_unlock(&wq_pool_mutex);
	return 0;
}

int workqueue_offline_cpu(unsigned int cpu)
{
	struct workqueue_struct *wq;

	/* unbinding per-cpu workers should happen on the local CPU */
	if (WARN_ON(cpu != smp_processor_id()))
		return -1;

	unbind_workers(cpu);

	/* update pod affinity of unbound workqueues */
	mutex_lock(&wq_pool_mutex);
	list_for_each_entry(wq, &workqueues, list) {
		struct workqueue_attrs *attrs = wq->unbound_attrs;

		if (attrs) {
			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
			int tcpu;

			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
				wq_update_pod(wq, tcpu, cpu, false);

			mutex_lock(&wq->mutex);
			wq_update_node_max_active(wq, cpu);
			mutex_unlock(&wq->mutex);
		}
	}
	mutex_unlock(&wq_pool_mutex);

	return 0;
}

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu_key - run a function in thread context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 * @key: The lock class key for lock debugging purposes
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu_key(int cpu, long (*fn)(void *),
		     void *arg, struct lock_class_key *key)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu_key);

/**
 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
 * @cpu: the cpu to run on
 * @fn:  the function to run
 * @arg: the function argument
 * @key: The lock class key for lock debugging purposes
 *
 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
 * any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
			  void *arg, struct lock_class_key *key)
{
	long ret = -ENODEV;

	cpus_read_lock();
	if (cpu_online(cpu))
		ret = work_on_cpu_key(cpu, fn, arg, key);
	cpus_read_unlock();
	return ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their inactive_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		wq_adjust_max_active(wq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock();
				goto out_unlock;
			}
		}
		rcu_read_unlock();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		wq_adjust_max_active(wq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
		if (IS_ERR(ctx)) {
			ret = PTR_ERR(ctx);
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	if (!ret) {
		mutex_lock(&wq_pool_attach_mutex);
		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
		mutex_unlock(&wq_pool_attach_mutex);
	}
	return ret;
}

/**
 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
 *
 * This function can be called from cpuset code to provide a set of isolated
 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
 * either cpus_read_lock or cpus_write_lock.
 */
int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
{
	cpumask_var_t cpumask;
	int ret = 0;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	lockdep_assert_cpus_held();
	mutex_lock(&wq_pool_mutex);

	/* Save the current isolated cpumask & export it via sysfs */
	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);

	/*
	 * If the operation fails, it will fall back to
	 * wq_requested_unbound_cpumask which is initially set to
	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
	 * by any subsequent write to workqueue/cpumask sysfs file.
	 */
	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
		ret = workqueue_apply_unbound_cpumask(cpumask);

	mutex_unlock(&wq_pool_mutex);
	free_cpumask_var(cpumask);
	return ret;
}

static int parse_affn_scope(const char *val)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
			return i;
	}
	return -EINVAL;
}

static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
{
	struct workqueue_struct *wq;
	int affn, cpu;

	affn = parse_affn_scope(val);
	if (affn < 0)
		return affn;
	if (affn == WQ_AFFN_DFL)
		return -EINVAL;

	cpus_read_lock();
	mutex_lock(&wq_pool_mutex);

	wq_affn_dfl = affn;

	list_for_each_entry(wq, &workqueues, list) {
		for_each_online_cpu(cpu) {
			wq_update_pod(wq, cpu, cpu, true);
		}
	}

	mutex_unlock(&wq_pool_mutex);
	cpus_read_unlock();

	return 0;
}

static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
{
	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
}

static const struct kernel_param_ops wq_affn_dfl_ops = {
	.set	= wq_affn_dfl_set,
	.get	= wq_affn_dfl_get,
};

module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);

#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active		RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  nice		RW int	: nice value of the workers
 *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
 *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
 *  affinity_strict	RW bool : worker CPU affinity is strict
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	cpus_read_lock();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	cpus_read_unlock();
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	lockdep_assert_held(&wq_pool_mutex);

	attrs = alloc_workqueue_attrs();
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret = -ENOMEM;

	apply_wqattrs_lock();

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		goto out_unlock;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
		ret = apply_workqueue_attrs_locked(wq, attrs);
	else
		ret = -EINVAL;

out_unlock:
	apply_wqattrs_unlock();
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret = -ENOMEM;

	apply_wqattrs_lock();

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		goto out_unlock;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs_locked(wq, attrs);

out_unlock:
	apply_wqattrs_unlock();
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_affn_scope_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
				    wq_affn_names[WQ_AFFN_DFL],
				    wq_affn_names[wq_affn_dfl]);
	else
		written = scnprintf(buf, PAGE_SIZE, "%s\n",
				    wq_affn_names[wq->unbound_attrs->affn_scope]);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_affn_scope_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int affn, ret = -ENOMEM;

	affn = parse_affn_scope(buf);
	if (affn < 0)
		return affn;

	apply_wqattrs_lock();
	attrs = wq_sysfs_prep_attrs(wq);
	if (attrs) {
		attrs->affn_scope = affn;
		ret = apply_workqueue_attrs_locked(wq, attrs);
	}
	apply_wqattrs_unlock();
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_affinity_strict_show(struct device *dev,
				       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n",
			 wq->unbound_attrs->affn_strict);
}

static ssize_t wq_affinity_strict_store(struct device *dev,
					struct device_attribute *attr,
					const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret = -ENOMEM;

	if (sscanf(buf, "%d", &v) != 1)
		return -EINVAL;

	apply_wqattrs_lock();
	attrs = wq_sysfs_prep_attrs(wq);
	if (attrs) {
		attrs->affn_strict = (bool)v;
		ret = apply_workqueue_attrs_locked(wq, attrs);
	}
	apply_wqattrs_unlock();
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
	__ATTR_NULL,
};

static const struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
};

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Return:	0	- Success
 *		-EINVAL	- Invalid @cpumask
 *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;

	/*
	 * Not excluding isolated cpus on purpose.
	 * If the user wishes to include them, we allow that.
	 */
	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
		apply_wqattrs_lock();
		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
			ret = 0;
			goto out_unlock;
		}

		ret = workqueue_apply_unbound_cpumask(cpumask);

out_unlock:
		apply_wqattrs_unlock();
	}

	return ret;
}

static ssize_t __wq_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf, cpumask_var_t mask)
{
	int written;

	mutex_lock(&wq_pool_mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
	mutex_unlock(&wq_pool_mutex);

	return written;
}

static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
}

static ssize_t wq_requested_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
}

static ssize_t wq_isolated_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
}

static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

static struct device_attribute wq_sysfs_cpumask_attrs[] = {
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store),
	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
	__ATTR_NULL,
};

static int __init wq_sysfs_init(void)
{
	struct device *dev_root;
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	dev_root = bus_get_dev_root(&wq_subsys);
	if (dev_root) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
			err = device_create_file(dev_root, attr);
			if (err)
				break;
		}
		put_device(dev_root);
	}
	return err;
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
	 * ordered workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.release = wq_device_release;
	dev_set_name(&wq_dev->dev, "%s", wq->name);

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		put_device(&wq_dev->dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

/*
 * Workqueue watchdog.
 *
 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
 * flush dependency, a concurrency managed work item which stays RUNNING
 * indefinitely.  Workqueue stalls can be very difficult to debug as the
 * usual warning mechanisms don't trigger and internal workqueue state is
 * largely opaque.
 *
 * Workqueue watchdog monitors all worker pools periodically and dumps
 * state if some pools failed to make forward progress for a while where
 * forward progress is defined as the first item on ->worklist changing.
 *
 * This mechanism is controlled through the kernel parameter
 * "workqueue.watchdog_thresh" which can be updated at runtime through the
 * corresponding sysfs parameter file.
 */
#ifdef CONFIG_WQ_WATCHDOG

static unsigned long wq_watchdog_thresh = 30;
static struct timer_list wq_watchdog_timer;

static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;

/*
 * Show workers that might prevent the processing of pending work items.
 * The only candidates are CPU-bound workers in the running state.
 * Pending work items should be handled by another idle worker
 * in all other situations.
 */
static void show_cpu_pool_hog(struct worker_pool *pool)
{
	struct worker *worker;
	unsigned long irq_flags;
	int bkt;

	raw_spin_lock_irqsave(&pool->lock, irq_flags);

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (task_is_running(worker->task)) {
			/*
			 * Defer printing to avoid deadlocks in console
			 * drivers that queue work while holding locks
			 * also taken in their write paths.
			 */
			printk_deferred_enter();

			pr_info("pool %d:\n", pool->id);
			sched_show_task(worker->task);

			printk_deferred_exit();
		}
	}

	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
}

static void show_cpu_pools_hogs(void)
{
	struct worker_pool *pool;
	int pi;

	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");

	rcu_read_lock();

	for_each_pool(pool, pi) {
		if (pool->cpu_stall)
			show_cpu_pool_hog(pool);

	}

	rcu_read_unlock();
}

static void wq_watchdog_reset_touched(void)
{
	int cpu;

	wq_watchdog_touched = jiffies;
	for_each_possible_cpu(cpu)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
}

static void wq_watchdog_timer_fn(struct timer_list *unused)
{
	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
	bool lockup_detected = false;
	bool cpu_pool_stall = false;
	unsigned long now = jiffies;
	struct worker_pool *pool;
	int pi;

	if (!thresh)
		return;

	rcu_read_lock();

	for_each_pool(pool, pi) {
		unsigned long pool_ts, touched, ts;

		pool->cpu_stall = false;
		if (list_empty(&pool->worklist))
			continue;

		/*
		 * If a virtual machine is stopped by the host it can look to
		 * the watchdog like a stall.
		 */
		kvm_check_and_clear_guest_paused();

		/* get the latest of pool and touched timestamps */
		if (pool->cpu >= 0)
			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
		else
			touched = READ_ONCE(wq_watchdog_touched);
		pool_ts = READ_ONCE(pool->watchdog_ts);

		if (time_after(pool_ts, touched))
			ts = pool_ts;
		else
			ts = touched;

		/* did we stall? */
		if (time_after(now, ts + thresh)) {
			lockup_detected = true;
			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
				pool->cpu_stall = true;
				cpu_pool_stall = true;
			}
			pr_emerg("BUG: workqueue lockup - pool");
			pr_cont_pool_info(pool);
			pr_cont(" stuck for %us!\n",
				jiffies_to_msecs(now - pool_ts) / 1000);
		}


	}

	rcu_read_unlock();

	if (lockup_detected)
		show_all_workqueues();

	if (cpu_pool_stall)
		show_cpu_pools_hogs();

	wq_watchdog_reset_touched();
	mod_timer(&wq_watchdog_timer, jiffies + thresh);
}

notrace void wq_watchdog_touch(int cpu)
{
	if (cpu >= 0)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;

	wq_watchdog_touched = jiffies;
}

static void wq_watchdog_set_thresh(unsigned long thresh)
{
	wq_watchdog_thresh = 0;
	del_timer_sync(&wq_watchdog_timer);

	if (thresh) {
		wq_watchdog_thresh = thresh;
		wq_watchdog_reset_touched();
		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
	}
}

static int wq_watchdog_param_set_thresh(const char *val,
					const struct kernel_param *kp)
{
	unsigned long thresh;
	int ret;

	ret = kstrtoul(val, 0, &thresh);
	if (ret)
		return ret;

	if (system_wq)
		wq_watchdog_set_thresh(thresh);
	else
		wq_watchdog_thresh = thresh;

	return 0;
}

static const struct kernel_param_ops wq_watchdog_thresh_ops = {
	.set	= wq_watchdog_param_set_thresh,
	.get	= param_get_ulong,
};

module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
		0644);

static void wq_watchdog_init(void)
{
	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
	wq_watchdog_set_thresh(wq_watchdog_thresh);
}

#else	/* CONFIG_WQ_WATCHDOG */

static inline void wq_watchdog_init(void) { }

#endif	/* CONFIG_WQ_WATCHDOG */

static void bh_pool_kick_normal(struct irq_work *irq_work)
{
	raise_softirq_irqoff(TASKLET_SOFTIRQ);
}

static void bh_pool_kick_highpri(struct irq_work *irq_work)
{
	raise_softirq_irqoff(HI_SOFTIRQ);
}

static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
{
	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
		return;
	}

	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
}

static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
{
	BUG_ON(init_worker_pool(pool));
	pool->cpu = cpu;
	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
	pool->attrs->nice = nice;
	pool->attrs->affn_strict = true;
	pool->node = cpu_to_node(cpu);

	/* alloc pool ID */
	mutex_lock(&wq_pool_mutex);
	BUG_ON(worker_pool_assign_id(pool));
	mutex_unlock(&wq_pool_mutex);
}

/**
 * workqueue_init_early - early init for workqueue subsystem
 *
 * This is the first step of three-staged workqueue subsystem initialization and
 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
 * up. It sets up all the data structures and system workqueues and allows early
 * boot code to create workqueues and queue/cancel work items. Actual work item
 * execution starts only after kthreads can be created and scheduled right
 * before early initcalls.
 */
void __init workqueue_init_early(void)
{
	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
						       bh_pool_kick_highpri };
	int i, cpu;

	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));

	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
	if (!cpumask_empty(&wq_cmdline_cpumask))
		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);

	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
	BUG_ON(!wq_update_pod_attrs_buf);

	/*
	 * If nohz_full is enabled, set power efficient workqueue as unbound.
	 * This allows workqueue items to be moved to HK CPUs.
	 */
	if (housekeeping_enabled(HK_TYPE_TICK))
		wq_power_efficient = true;

	/* initialize WQ_AFFN_SYSTEM pods */
	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);

	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));

	pt->nr_pods = 1;
	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
	pt->pod_node[0] = NUMA_NO_NODE;
	pt->cpu_pod[0] = 0;

	/* initialize BH and CPU pools */
	for_each_possible_cpu(cpu) {
		struct worker_pool *pool;

		i = 0;
		for_each_bh_worker_pool(pool, cpu) {
			init_cpu_worker_pool(pool, cpu, std_nice[i]);
			pool->flags |= POOL_BH;
			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
			i++;
		}

		i = 0;
		for_each_cpu_worker_pool(pool, cpu)
			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
	}

	/* create default unbound and ordered wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs()));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs()));
		attrs->nice = std_nice[i];
		attrs->ordered = true;
		ordered_wq_attrs[i] = attrs;
	}

	system_wq = alloc_workqueue("events", 0, 0);
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
	system_long_wq = alloc_workqueue("events_long", 0, 0);
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_MAX_ACTIVE);
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
					       WQ_BH | WQ_HIGHPRI, 0);
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq ||
	       !system_bh_wq || !system_bh_highpri_wq);
}

static void __init wq_cpu_intensive_thresh_init(void)
{
	unsigned long thresh;
	unsigned long bogo;

	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
	BUG_ON(IS_ERR(pwq_release_worker));

	/* if the user set it to a specific value, keep it */
	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
		return;

	/*
	 * The default of 10ms is derived from the fact that most modern (as of
	 * 2023) processors can do a lot in 10ms and that it's just below what
	 * most consider human-perceivable. However, the kernel also runs on a
	 * lot slower CPUs including microcontrollers where the threshold is way
	 * too low.
	 *
	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
	 * This is by no means accurate but it doesn't have to be. The mechanism
	 * is still useful even when the threshold is fully scaled up. Also, as
	 * the reports would usually be applicable to everyone, some machines
	 * operating on longer thresholds won't significantly diminish their
	 * usefulness.
	 */
	thresh = 10 * USEC_PER_MSEC;

	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
	if (bogo < 4000)
		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);

	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
		 loops_per_jiffy, bogo, thresh);

	wq_cpu_intensive_thresh_us = thresh;
}

/**
 * workqueue_init - bring workqueue subsystem fully online
 *
 * This is the second step of three-staged workqueue subsystem initialization
 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
 * been created and work items queued on them, but there are no kworkers
 * executing the work items yet. Populate the worker pools with the initial
 * workers and enable future kworker creations.
 */
void __init workqueue_init(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	int cpu, bkt;

	wq_cpu_intensive_thresh_init();

	mutex_lock(&wq_pool_mutex);

	/*
	 * Per-cpu pools created earlier could be missing node hint. Fix them
	 * up. Also, create a rescuer for workqueues that requested it.
	 */
	for_each_possible_cpu(cpu) {
		for_each_bh_worker_pool(pool, cpu)
			pool->node = cpu_to_node(cpu);
		for_each_cpu_worker_pool(pool, cpu)
			pool->node = cpu_to_node(cpu);
	}

	list_for_each_entry(wq, &workqueues, list) {
		WARN(init_rescuer(wq),
		     "workqueue: failed to create early rescuer for %s",
		     wq->name);
	}

	mutex_unlock(&wq_pool_mutex);

	/*
	 * Create the initial workers. A BH pool has one pseudo worker that
	 * represents the shared BH execution context and thus doesn't get
	 * affected by hotplug events. Create the BH pseudo workers for all
	 * possible CPUs here.
	 */
	for_each_possible_cpu(cpu)
		for_each_bh_worker_pool(pool, cpu)
			BUG_ON(!create_worker(pool));

	for_each_online_cpu(cpu) {
		for_each_cpu_worker_pool(pool, cpu) {
			pool->flags &= ~POOL_DISASSOCIATED;
			BUG_ON(!create_worker(pool));
		}
	}

	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
		BUG_ON(!create_worker(pool));

	wq_online = true;
	wq_watchdog_init();
}

/*
 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
 * and consecutive pod ID. The rest of @pt is initialized accordingly.
 */
static void __init init_pod_type(struct wq_pod_type *pt,
				 bool (*cpus_share_pod)(int, int))
{
	int cur, pre, cpu, pod;

	pt->nr_pods = 0;

	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
	BUG_ON(!pt->cpu_pod);

	for_each_possible_cpu(cur) {
		for_each_possible_cpu(pre) {
			if (pre >= cur) {
				pt->cpu_pod[cur] = pt->nr_pods++;
				break;
			}
			if (cpus_share_pod(cur, pre)) {
				pt->cpu_pod[cur] = pt->cpu_pod[pre];
				break;
			}
		}
	}

	/* init the rest to match @pt->cpu_pod[] */
	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
	BUG_ON(!pt->pod_cpus || !pt->pod_node);

	for (pod = 0; pod < pt->nr_pods; pod++)
		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));

	for_each_possible_cpu(cpu) {
		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
	}
}

static bool __init cpus_dont_share(int cpu0, int cpu1)
{
	return false;
}

static bool __init cpus_share_smt(int cpu0, int cpu1)
{
#ifdef CONFIG_SCHED_SMT
	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
#else
	return false;
#endif
}

static bool __init cpus_share_numa(int cpu0, int cpu1)
{
	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
}

/**
 * workqueue_init_topology - initialize CPU pods for unbound workqueues
 *
 * This is the third step of three-staged workqueue subsystem initialization and
 * invoked after SMP and topology information are fully initialized. It
 * initializes the unbound CPU pods accordingly.
 */
void __init workqueue_init_topology(void)
{
	struct workqueue_struct *wq;
	int cpu;

	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);

	wq_topo_initialized = true;

	mutex_lock(&wq_pool_mutex);

	/*
	 * Workqueues allocated earlier would have all CPUs sharing the default
	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
	 * combinations to apply per-pod sharing.
	 */
	list_for_each_entry(wq, &workqueues, list) {
		for_each_online_cpu(cpu)
			wq_update_pod(wq, cpu, cpu, true);
		if (wq->flags & WQ_UNBOUND) {
			mutex_lock(&wq->mutex);
			wq_update_node_max_active(wq, -1);
			mutex_unlock(&wq->mutex);
		}
	}

	mutex_unlock(&wq_pool_mutex);
}

void __warn_flushing_systemwide_wq(void)
{
	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
	dump_stack();
}
EXPORT_SYMBOL(__warn_flushing_systemwide_wq);

static int __init workqueue_unbound_cpus_setup(char *str)
{
	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
		cpumask_clear(&wq_cmdline_cpumask);
		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
	}

	return 1;
}
__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);