1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
|
// SPDX-License-Identifier: GPL-2.0
#include <linux/pagewalk.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/hugetlb.h>
#include <linux/mmu_context.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <asm/tlbflush.h>
#include "internal.h"
/*
* We want to know the real level where a entry is located ignoring any
* folding of levels which may be happening. For example if p4d is folded then
* a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
*/
static int real_depth(int depth)
{
if (depth == 3 && PTRS_PER_PMD == 1)
depth = 2;
if (depth == 2 && PTRS_PER_PUD == 1)
depth = 1;
if (depth == 1 && PTRS_PER_P4D == 1)
depth = 0;
return depth;
}
static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
const struct mm_walk_ops *ops = walk->ops;
int err = 0;
for (;;) {
if (ops->install_pte && pte_none(ptep_get(pte))) {
pte_t new_pte;
err = ops->install_pte(addr, addr + PAGE_SIZE, &new_pte,
walk);
if (err)
break;
set_pte_at(walk->mm, addr, pte, new_pte);
/* Non-present before, so for arches that need it. */
if (!WARN_ON_ONCE(walk->no_vma))
update_mmu_cache(walk->vma, addr, pte);
} else {
err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
if (err)
break;
}
if (addr >= end - PAGE_SIZE)
break;
addr += PAGE_SIZE;
pte++;
}
return err;
}
static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
pte_t *pte;
int err = 0;
spinlock_t *ptl;
if (walk->no_vma) {
/*
* pte_offset_map() might apply user-specific validation.
* Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
* fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
* and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
*/
if (walk->mm == &init_mm || addr >= TASK_SIZE)
pte = pte_offset_kernel(pmd, addr);
else
pte = pte_offset_map(pmd, addr);
if (pte) {
err = walk_pte_range_inner(pte, addr, end, walk);
if (walk->mm != &init_mm && addr < TASK_SIZE)
pte_unmap(pte);
}
} else {
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
if (pte) {
err = walk_pte_range_inner(pte, addr, end, walk);
pte_unmap_unlock(pte, ptl);
}
}
if (!pte)
walk->action = ACTION_AGAIN;
return err;
}
static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
pmd_t *pmd;
unsigned long next;
const struct mm_walk_ops *ops = walk->ops;
bool has_handler = ops->pte_entry;
bool has_install = ops->install_pte;
int err = 0;
int depth = real_depth(3);
pmd = pmd_offset(pud, addr);
do {
again:
next = pmd_addr_end(addr, end);
if (pmd_none(*pmd)) {
if (has_install)
err = __pte_alloc(walk->mm, pmd);
else if (ops->pte_hole)
err = ops->pte_hole(addr, next, depth, walk);
if (err)
break;
if (!has_install)
continue;
}
walk->action = ACTION_SUBTREE;
/*
* This implies that each ->pmd_entry() handler
* needs to know about pmd_trans_huge() pmds
*/
if (ops->pmd_entry)
err = ops->pmd_entry(pmd, addr, next, walk);
if (err)
break;
if (walk->action == ACTION_AGAIN)
goto again;
if (walk->action == ACTION_CONTINUE)
continue;
if (!has_handler) { /* No handlers for lower page tables. */
if (!has_install)
continue; /* Nothing to do. */
/*
* We are ONLY installing, so avoid unnecessarily
* splitting a present huge page.
*/
if (pmd_present(*pmd) &&
(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
continue;
}
if (walk->vma)
split_huge_pmd(walk->vma, pmd, addr);
else if (pmd_leaf(*pmd) || !pmd_present(*pmd))
continue; /* Nothing to do. */
err = walk_pte_range(pmd, addr, next, walk);
if (err)
break;
if (walk->action == ACTION_AGAIN)
goto again;
} while (pmd++, addr = next, addr != end);
return err;
}
static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
pud_t *pud;
unsigned long next;
const struct mm_walk_ops *ops = walk->ops;
bool has_handler = ops->pmd_entry || ops->pte_entry;
bool has_install = ops->install_pte;
int err = 0;
int depth = real_depth(2);
pud = pud_offset(p4d, addr);
do {
again:
next = pud_addr_end(addr, end);
if (pud_none(*pud)) {
if (has_install)
err = __pmd_alloc(walk->mm, pud, addr);
else if (ops->pte_hole)
err = ops->pte_hole(addr, next, depth, walk);
if (err)
break;
if (!has_install)
continue;
}
walk->action = ACTION_SUBTREE;
if (ops->pud_entry)
err = ops->pud_entry(pud, addr, next, walk);
if (err)
break;
if (walk->action == ACTION_AGAIN)
goto again;
if (walk->action == ACTION_CONTINUE)
continue;
if (!has_handler) { /* No handlers for lower page tables. */
if (!has_install)
continue; /* Nothing to do. */
/*
* We are ONLY installing, so avoid unnecessarily
* splitting a present huge page.
*/
if (pud_present(*pud) &&
(pud_trans_huge(*pud) || pud_devmap(*pud)))
continue;
}
if (walk->vma)
split_huge_pud(walk->vma, pud, addr);
else if (pud_leaf(*pud) || !pud_present(*pud))
continue; /* Nothing to do. */
if (pud_none(*pud))
goto again;
err = walk_pmd_range(pud, addr, next, walk);
if (err)
break;
} while (pud++, addr = next, addr != end);
return err;
}
static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
p4d_t *p4d;
unsigned long next;
const struct mm_walk_ops *ops = walk->ops;
bool has_handler = ops->pud_entry || ops->pmd_entry || ops->pte_entry;
bool has_install = ops->install_pte;
int err = 0;
int depth = real_depth(1);
p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
if (p4d_none_or_clear_bad(p4d)) {
if (has_install)
err = __pud_alloc(walk->mm, p4d, addr);
else if (ops->pte_hole)
err = ops->pte_hole(addr, next, depth, walk);
if (err)
break;
if (!has_install)
continue;
}
if (ops->p4d_entry) {
err = ops->p4d_entry(p4d, addr, next, walk);
if (err)
break;
}
if (has_handler || has_install)
err = walk_pud_range(p4d, addr, next, walk);
if (err)
break;
} while (p4d++, addr = next, addr != end);
return err;
}
static int walk_pgd_range(unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
pgd_t *pgd;
unsigned long next;
const struct mm_walk_ops *ops = walk->ops;
bool has_handler = ops->p4d_entry || ops->pud_entry || ops->pmd_entry ||
ops->pte_entry;
bool has_install = ops->install_pte;
int err = 0;
if (walk->pgd)
pgd = walk->pgd + pgd_index(addr);
else
pgd = pgd_offset(walk->mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd)) {
if (has_install)
err = __p4d_alloc(walk->mm, pgd, addr);
else if (ops->pte_hole)
err = ops->pte_hole(addr, next, 0, walk);
if (err)
break;
if (!has_install)
continue;
}
if (ops->pgd_entry) {
err = ops->pgd_entry(pgd, addr, next, walk);
if (err)
break;
}
if (has_handler || has_install)
err = walk_p4d_range(pgd, addr, next, walk);
if (err)
break;
} while (pgd++, addr = next, addr != end);
return err;
}
#ifdef CONFIG_HUGETLB_PAGE
static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
unsigned long end)
{
unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
return boundary < end ? boundary : end;
}
static int walk_hugetlb_range(unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
struct hstate *h = hstate_vma(vma);
unsigned long next;
unsigned long hmask = huge_page_mask(h);
unsigned long sz = huge_page_size(h);
pte_t *pte;
const struct mm_walk_ops *ops = walk->ops;
int err = 0;
hugetlb_vma_lock_read(vma);
do {
next = hugetlb_entry_end(h, addr, end);
pte = hugetlb_walk(vma, addr & hmask, sz);
if (pte)
err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
else if (ops->pte_hole)
err = ops->pte_hole(addr, next, -1, walk);
if (err)
break;
} while (addr = next, addr != end);
hugetlb_vma_unlock_read(vma);
return err;
}
#else /* CONFIG_HUGETLB_PAGE */
static int walk_hugetlb_range(unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
return 0;
}
#endif /* CONFIG_HUGETLB_PAGE */
/*
* Decide whether we really walk over the current vma on [@start, @end)
* or skip it via the returned value. Return 0 if we do walk over the
* current vma, and return 1 if we skip the vma. Negative values means
* error, where we abort the current walk.
*/
static int walk_page_test(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
const struct mm_walk_ops *ops = walk->ops;
if (ops->test_walk)
return ops->test_walk(start, end, walk);
/*
* vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
* range, so we don't walk over it as we do for normal vmas. However,
* Some callers are interested in handling hole range and they don't
* want to just ignore any single address range. Such users certainly
* define their ->pte_hole() callbacks, so let's delegate them to handle
* vma(VM_PFNMAP).
*/
if (vma->vm_flags & VM_PFNMAP) {
int err = 1;
if (ops->pte_hole)
err = ops->pte_hole(start, end, -1, walk);
return err ? err : 1;
}
return 0;
}
static int __walk_page_range(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
int err = 0;
struct vm_area_struct *vma = walk->vma;
const struct mm_walk_ops *ops = walk->ops;
bool is_hugetlb = is_vm_hugetlb_page(vma);
/* We do not support hugetlb PTE installation. */
if (ops->install_pte && is_hugetlb)
return -EINVAL;
if (ops->pre_vma) {
err = ops->pre_vma(start, end, walk);
if (err)
return err;
}
if (is_hugetlb) {
if (ops->hugetlb_entry)
err = walk_hugetlb_range(start, end, walk);
} else
err = walk_pgd_range(start, end, walk);
if (ops->post_vma)
ops->post_vma(walk);
return err;
}
static inline void process_mm_walk_lock(struct mm_struct *mm,
enum page_walk_lock walk_lock)
{
if (walk_lock == PGWALK_RDLOCK)
mmap_assert_locked(mm);
else
mmap_assert_write_locked(mm);
}
static inline void process_vma_walk_lock(struct vm_area_struct *vma,
enum page_walk_lock walk_lock)
{
#ifdef CONFIG_PER_VMA_LOCK
switch (walk_lock) {
case PGWALK_WRLOCK:
vma_start_write(vma);
break;
case PGWALK_WRLOCK_VERIFY:
vma_assert_write_locked(vma);
break;
case PGWALK_RDLOCK:
/* PGWALK_RDLOCK is handled by process_mm_walk_lock */
break;
}
#endif
}
/*
* See the comment for walk_page_range(), this performs the heavy lifting of the
* operation, only sets no restrictions on how the walk proceeds.
*
* We usually restrict the ability to install PTEs, but this functionality is
* available to internal memory management code and provided in mm/internal.h.
*/
int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
unsigned long end, const struct mm_walk_ops *ops,
void *private)
{
int err = 0;
unsigned long next;
struct vm_area_struct *vma;
struct mm_walk walk = {
.ops = ops,
.mm = mm,
.private = private,
};
if (start >= end)
return -EINVAL;
if (!walk.mm)
return -EINVAL;
process_mm_walk_lock(walk.mm, ops->walk_lock);
vma = find_vma(walk.mm, start);
do {
if (!vma) { /* after the last vma */
walk.vma = NULL;
next = end;
if (ops->pte_hole)
err = ops->pte_hole(start, next, -1, &walk);
} else if (start < vma->vm_start) { /* outside vma */
walk.vma = NULL;
next = min(end, vma->vm_start);
if (ops->pte_hole)
err = ops->pte_hole(start, next, -1, &walk);
} else { /* inside vma */
process_vma_walk_lock(vma, ops->walk_lock);
walk.vma = vma;
next = min(end, vma->vm_end);
vma = find_vma(mm, vma->vm_end);
err = walk_page_test(start, next, &walk);
if (err > 0) {
/*
* positive return values are purely for
* controlling the pagewalk, so should never
* be passed to the callers.
*/
err = 0;
continue;
}
if (err < 0)
break;
err = __walk_page_range(start, next, &walk);
}
if (err)
break;
} while (start = next, start < end);
return err;
}
/*
* Determine if the walk operations specified are permitted to be used for a
* page table walk.
*
* This check is performed on all functions which are parameterised by walk
* operations and exposed in include/linux/pagewalk.h.
*
* Internal memory management code can use the walk_page_range_mm() function to
* be able to use all page walking operations.
*/
static bool check_ops_valid(const struct mm_walk_ops *ops)
{
/*
* The installation of PTEs is solely under the control of memory
* management logic and subject to many subtle locking, security and
* cache considerations so we cannot permit other users to do so, and
* certainly not for exported symbols.
*/
if (ops->install_pte)
return false;
return true;
}
/**
* walk_page_range - walk page table with caller specific callbacks
* @mm: mm_struct representing the target process of page table walk
* @start: start address of the virtual address range
* @end: end address of the virtual address range
* @ops: operation to call during the walk
* @private: private data for callbacks' usage
*
* Recursively walk the page table tree of the process represented by @mm
* within the virtual address range [@start, @end). During walking, we can do
* some caller-specific works for each entry, by setting up pmd_entry(),
* pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
* callbacks, the associated entries/pages are just ignored.
* The return values of these callbacks are commonly defined like below:
*
* - 0 : succeeded to handle the current entry, and if you don't reach the
* end address yet, continue to walk.
* - >0 : succeeded to handle the current entry, and return to the caller
* with caller specific value.
* - <0 : failed to handle the current entry, and return to the caller
* with error code.
*
* Before starting to walk page table, some callers want to check whether
* they really want to walk over the current vma, typically by checking
* its vm_flags. walk_page_test() and @ops->test_walk() are used for this
* purpose.
*
* If operations need to be staged before and committed after a vma is walked,
* there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
* since it is intended to handle commit-type operations, can't return any
* errors.
*
* struct mm_walk keeps current values of some common data like vma and pmd,
* which are useful for the access from callbacks. If you want to pass some
* caller-specific data to callbacks, @private should be helpful.
*
* Locking:
* Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
* because these function traverse vma list and/or access to vma's data.
*/
int walk_page_range(struct mm_struct *mm, unsigned long start,
unsigned long end, const struct mm_walk_ops *ops,
void *private)
{
if (!check_ops_valid(ops))
return -EINVAL;
return walk_page_range_mm(mm, start, end, ops, private);
}
/**
* walk_page_range_novma - walk a range of pagetables not backed by a vma
* @mm: mm_struct representing the target process of page table walk
* @start: start address of the virtual address range
* @end: end address of the virtual address range
* @ops: operation to call during the walk
* @pgd: pgd to walk if different from mm->pgd
* @private: private data for callbacks' usage
*
* Similar to walk_page_range() but can walk any page tables even if they are
* not backed by VMAs. Because 'unusual' entries may be walked this function
* will also not lock the PTEs for the pte_entry() callback. This is useful for
* walking the kernel pages tables or page tables for firmware.
*
* Note: Be careful to walk the kernel pages tables, the caller may be need to
* take other effective approaches (mmap lock may be insufficient) to prevent
* the intermediate kernel page tables belonging to the specified address range
* from being freed (e.g. memory hot-remove).
*/
int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
unsigned long end, const struct mm_walk_ops *ops,
pgd_t *pgd,
void *private)
{
struct mm_walk walk = {
.ops = ops,
.mm = mm,
.pgd = pgd,
.private = private,
.no_vma = true
};
if (start >= end || !walk.mm)
return -EINVAL;
if (!check_ops_valid(ops))
return -EINVAL;
/*
* 1) For walking the user virtual address space:
*
* The mmap lock protects the page walker from changes to the page
* tables during the walk. However a read lock is insufficient to
* protect those areas which don't have a VMA as munmap() detaches
* the VMAs before downgrading to a read lock and actually tearing
* down PTEs/page tables. In which case, the mmap write lock should
* be hold.
*
* 2) For walking the kernel virtual address space:
*
* The kernel intermediate page tables usually do not be freed, so
* the mmap map read lock is sufficient. But there are some exceptions.
* E.g. memory hot-remove. In which case, the mmap lock is insufficient
* to prevent the intermediate kernel pages tables belonging to the
* specified address range from being freed. The caller should take
* other actions to prevent this race.
*/
if (mm == &init_mm)
mmap_assert_locked(walk.mm);
else
mmap_assert_write_locked(walk.mm);
return walk_pgd_range(start, end, &walk);
}
int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
unsigned long end, const struct mm_walk_ops *ops,
void *private)
{
struct mm_walk walk = {
.ops = ops,
.mm = vma->vm_mm,
.vma = vma,
.private = private,
};
if (start >= end || !walk.mm)
return -EINVAL;
if (start < vma->vm_start || end > vma->vm_end)
return -EINVAL;
if (!check_ops_valid(ops))
return -EINVAL;
process_mm_walk_lock(walk.mm, ops->walk_lock);
process_vma_walk_lock(vma, ops->walk_lock);
return __walk_page_range(start, end, &walk);
}
int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
void *private)
{
struct mm_walk walk = {
.ops = ops,
.mm = vma->vm_mm,
.vma = vma,
.private = private,
};
if (!walk.mm)
return -EINVAL;
if (!check_ops_valid(ops))
return -EINVAL;
process_mm_walk_lock(walk.mm, ops->walk_lock);
process_vma_walk_lock(vma, ops->walk_lock);
return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
}
/**
* walk_page_mapping - walk all memory areas mapped into a struct address_space.
* @mapping: Pointer to the struct address_space
* @first_index: First page offset in the address_space
* @nr: Number of incremental page offsets to cover
* @ops: operation to call during the walk
* @private: private data for callbacks' usage
*
* This function walks all memory areas mapped into a struct address_space.
* The walk is limited to only the given page-size index range, but if
* the index boundaries cross a huge page-table entry, that entry will be
* included.
*
* Also see walk_page_range() for additional information.
*
* Locking:
* This function can't require that the struct mm_struct::mmap_lock is held,
* since @mapping may be mapped by multiple processes. Instead
* @mapping->i_mmap_rwsem must be held. This might have implications in the
* callbacks, and it's up tho the caller to ensure that the
* struct mm_struct::mmap_lock is not needed.
*
* Also this means that a caller can't rely on the struct
* vm_area_struct::vm_flags to be constant across a call,
* except for immutable flags. Callers requiring this shouldn't use
* this function.
*
* Return: 0 on success, negative error code on failure, positive number on
* caller defined premature termination.
*/
int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
pgoff_t nr, const struct mm_walk_ops *ops,
void *private)
{
struct mm_walk walk = {
.ops = ops,
.private = private,
};
struct vm_area_struct *vma;
pgoff_t vba, vea, cba, cea;
unsigned long start_addr, end_addr;
int err = 0;
if (!check_ops_valid(ops))
return -EINVAL;
lockdep_assert_held(&mapping->i_mmap_rwsem);
vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
first_index + nr - 1) {
/* Clip to the vma */
vba = vma->vm_pgoff;
vea = vba + vma_pages(vma);
cba = first_index;
cba = max(cba, vba);
cea = first_index + nr;
cea = min(cea, vea);
start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
if (start_addr >= end_addr)
continue;
walk.vma = vma;
walk.mm = vma->vm_mm;
err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
if (err > 0) {
err = 0;
break;
} else if (err < 0)
break;
err = __walk_page_range(start_addr, end_addr, &walk);
if (err)
break;
}
return err;
}
/**
* folio_walk_start - walk the page tables to a folio
* @fw: filled with information on success.
* @vma: the VMA.
* @addr: the virtual address to use for the page table walk.
* @flags: flags modifying which folios to walk to.
*
* Walk the page tables using @addr in a given @vma to a mapped folio and
* return the folio, making sure that the page table entry referenced by
* @addr cannot change until folio_walk_end() was called.
*
* As default, this function returns only folios that are not special (e.g., not
* the zeropage) and never returns folios that are supposed to be ignored by the
* VM as documented by vm_normal_page(). If requested, zeropages will be
* returned as well.
*
* As default, this function only considers present page table entries.
* If requested, it will also consider migration entries.
*
* If this function returns NULL it might either indicate "there is nothing" or
* "there is nothing suitable".
*
* On success, @fw is filled and the function returns the folio while the PTL
* is still held and folio_walk_end() must be called to clean up,
* releasing any held locks. The returned folio must *not* be used after the
* call to folio_walk_end(), unless a short-term folio reference is taken before
* that call.
*
* @fw->page will correspond to the page that is effectively referenced by
* @addr. However, for migration entries and shared zeropages @fw->page is
* set to NULL. Note that large folios might be mapped by multiple page table
* entries, and this function will always only lookup a single entry as
* specified by @addr, which might or might not cover more than a single page of
* the returned folio.
*
* This function must *not* be used as a naive replacement for
* get_user_pages() / pin_user_pages(), especially not to perform DMA or
* to carelessly modify page content. This function may *only* be used to grab
* short-term folio references, never to grab long-term folio references.
*
* Using the page table entry pointers in @fw for reading or modifying the
* entry should be avoided where possible: however, there might be valid
* use cases.
*
* WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care.
* For example, PMD page table sharing might require prior unsharing. Also,
* logical hugetlb entries might span multiple physical page table entries,
* which *must* be modified in a single operation (set_huge_pte_at(),
* huge_ptep_set_*, ...). Note that the page table entry stored in @fw might
* not correspond to the first physical entry of a logical hugetlb entry.
*
* The mmap lock must be held in read mode.
*
* Return: folio pointer on success, otherwise NULL.
*/
struct folio *folio_walk_start(struct folio_walk *fw,
struct vm_area_struct *vma, unsigned long addr,
folio_walk_flags_t flags)
{
unsigned long entry_size;
bool expose_page = true;
struct page *page;
pud_t *pudp, pud;
pmd_t *pmdp, pmd;
pte_t *ptep, pte;
spinlock_t *ptl;
pgd_t *pgdp;
p4d_t *p4dp;
mmap_assert_locked(vma->vm_mm);
vma_pgtable_walk_begin(vma);
if (WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end))
goto not_found;
pgdp = pgd_offset(vma->vm_mm, addr);
if (pgd_none_or_clear_bad(pgdp))
goto not_found;
p4dp = p4d_offset(pgdp, addr);
if (p4d_none_or_clear_bad(p4dp))
goto not_found;
pudp = pud_offset(p4dp, addr);
pud = pudp_get(pudp);
if (pud_none(pud))
goto not_found;
if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) &&
(!pud_present(pud) || pud_leaf(pud))) {
ptl = pud_lock(vma->vm_mm, pudp);
pud = pudp_get(pudp);
entry_size = PUD_SIZE;
fw->level = FW_LEVEL_PUD;
fw->pudp = pudp;
fw->pud = pud;
/*
* TODO: FW_MIGRATION support for PUD migration entries
* once there are relevant users.
*/
if (!pud_present(pud) || pud_devmap(pud) || pud_special(pud)) {
spin_unlock(ptl);
goto not_found;
} else if (!pud_leaf(pud)) {
spin_unlock(ptl);
goto pmd_table;
}
/*
* TODO: vm_normal_page_pud() will be handy once we want to
* support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs.
*/
page = pud_page(pud);
goto found;
}
pmd_table:
VM_WARN_ON_ONCE(!pud_present(pud) || pud_leaf(pud));
pmdp = pmd_offset(pudp, addr);
pmd = pmdp_get_lockless(pmdp);
if (pmd_none(pmd))
goto not_found;
if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) &&
(!pmd_present(pmd) || pmd_leaf(pmd))) {
ptl = pmd_lock(vma->vm_mm, pmdp);
pmd = pmdp_get(pmdp);
entry_size = PMD_SIZE;
fw->level = FW_LEVEL_PMD;
fw->pmdp = pmdp;
fw->pmd = pmd;
if (pmd_none(pmd)) {
spin_unlock(ptl);
goto not_found;
} else if (pmd_present(pmd) && !pmd_leaf(pmd)) {
spin_unlock(ptl);
goto pte_table;
} else if (pmd_present(pmd)) {
page = vm_normal_page_pmd(vma, addr, pmd);
if (page) {
goto found;
} else if ((flags & FW_ZEROPAGE) &&
is_huge_zero_pmd(pmd)) {
page = pfn_to_page(pmd_pfn(pmd));
expose_page = false;
goto found;
}
} else if ((flags & FW_MIGRATION) &&
is_pmd_migration_entry(pmd)) {
swp_entry_t entry = pmd_to_swp_entry(pmd);
page = pfn_swap_entry_to_page(entry);
expose_page = false;
goto found;
}
spin_unlock(ptl);
goto not_found;
}
pte_table:
VM_WARN_ON_ONCE(!pmd_present(pmd) || pmd_leaf(pmd));
ptep = pte_offset_map_lock(vma->vm_mm, pmdp, addr, &ptl);
if (!ptep)
goto not_found;
pte = ptep_get(ptep);
entry_size = PAGE_SIZE;
fw->level = FW_LEVEL_PTE;
fw->ptep = ptep;
fw->pte = pte;
if (pte_present(pte)) {
page = vm_normal_page(vma, addr, pte);
if (page)
goto found;
if ((flags & FW_ZEROPAGE) &&
is_zero_pfn(pte_pfn(pte))) {
page = pfn_to_page(pte_pfn(pte));
expose_page = false;
goto found;
}
} else if (!pte_none(pte)) {
swp_entry_t entry = pte_to_swp_entry(pte);
if ((flags & FW_MIGRATION) &&
is_migration_entry(entry)) {
page = pfn_swap_entry_to_page(entry);
expose_page = false;
goto found;
}
}
pte_unmap_unlock(ptep, ptl);
not_found:
vma_pgtable_walk_end(vma);
return NULL;
found:
if (expose_page)
/* Note: Offset from the mapped page, not the folio start. */
fw->page = nth_page(page, (addr & (entry_size - 1)) >> PAGE_SHIFT);
else
fw->page = NULL;
fw->ptl = ptl;
return page_folio(page);
}
|