summaryrefslogtreecommitdiffstats
path: root/tools/sched_ext/scx_central.bpf.c
blob: e6fad6211f6c1d210840be2e208c769fcf45fdb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * A central FIFO sched_ext scheduler which demonstrates the followings:
 *
 * a. Making all scheduling decisions from one CPU:
 *
 *    The central CPU is the only one making scheduling decisions. All other
 *    CPUs kick the central CPU when they run out of tasks to run.
 *
 *    There is one global BPF queue and the central CPU schedules all CPUs by
 *    dispatching from the global queue to each CPU's local dsq from dispatch().
 *    This isn't the most straightforward. e.g. It'd be easier to bounce
 *    through per-CPU BPF queues. The current design is chosen to maximally
 *    utilize and verify various SCX mechanisms such as LOCAL_ON dispatching.
 *
 * b. Tickless operation
 *
 *    All tasks are dispatched with the infinite slice which allows stopping the
 *    ticks on CONFIG_NO_HZ_FULL kernels running with the proper nohz_full
 *    parameter. The tickless operation can be observed through
 *    /proc/interrupts.
 *
 *    Periodic switching is enforced by a periodic timer checking all CPUs and
 *    preempting them as necessary. Unfortunately, BPF timer currently doesn't
 *    have a way to pin to a specific CPU, so the periodic timer isn't pinned to
 *    the central CPU.
 *
 * c. Preemption
 *
 *    Kthreads are unconditionally queued to the head of a matching local dsq
 *    and dispatched with SCX_DSQ_PREEMPT. This ensures that a kthread is always
 *    prioritized over user threads, which is required for ensuring forward
 *    progress as e.g. the periodic timer may run on a ksoftirqd and if the
 *    ksoftirqd gets starved by a user thread, there may not be anything else to
 *    vacate that user thread.
 *
 *    SCX_KICK_PREEMPT is used to trigger scheduling and CPUs to move to the
 *    next tasks.
 *
 * This scheduler is designed to maximize usage of various SCX mechanisms. A
 * more practical implementation would likely put the scheduling loop outside
 * the central CPU's dispatch() path and add some form of priority mechanism.
 *
 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
 */
#include <scx/common.bpf.h>

char _license[] SEC("license") = "GPL";

enum {
	FALLBACK_DSQ_ID		= 0,
	MS_TO_NS		= 1000LLU * 1000,
	TIMER_INTERVAL_NS	= 1 * MS_TO_NS,
};

const volatile s32 central_cpu;
const volatile u32 nr_cpu_ids = 1;	/* !0 for veristat, set during init */
const volatile u64 slice_ns = SCX_SLICE_DFL;

bool timer_pinned = true;
u64 nr_total, nr_locals, nr_queued, nr_lost_pids;
u64 nr_timers, nr_dispatches, nr_mismatches, nr_retries;
u64 nr_overflows;

UEI_DEFINE(uei);

struct {
	__uint(type, BPF_MAP_TYPE_QUEUE);
	__uint(max_entries, 4096);
	__type(value, s32);
} central_q SEC(".maps");

/* can't use percpu map due to bad lookups */
bool RESIZABLE_ARRAY(data, cpu_gimme_task);
u64 RESIZABLE_ARRAY(data, cpu_started_at);

struct central_timer {
	struct bpf_timer timer;
};

struct {
	__uint(type, BPF_MAP_TYPE_ARRAY);
	__uint(max_entries, 1);
	__type(key, u32);
	__type(value, struct central_timer);
} central_timer SEC(".maps");

static bool vtime_before(u64 a, u64 b)
{
	return (s64)(a - b) < 0;
}

s32 BPF_STRUCT_OPS(central_select_cpu, struct task_struct *p,
		   s32 prev_cpu, u64 wake_flags)
{
	/*
	 * Steer wakeups to the central CPU as much as possible to avoid
	 * disturbing other CPUs. It's safe to blindly return the central cpu as
	 * select_cpu() is a hint and if @p can't be on it, the kernel will
	 * automatically pick a fallback CPU.
	 */
	return central_cpu;
}

void BPF_STRUCT_OPS(central_enqueue, struct task_struct *p, u64 enq_flags)
{
	s32 pid = p->pid;

	__sync_fetch_and_add(&nr_total, 1);

	/*
	 * Push per-cpu kthreads at the head of local dsq's and preempt the
	 * corresponding CPU. This ensures that e.g. ksoftirqd isn't blocked
	 * behind other threads which is necessary for forward progress
	 * guarantee as we depend on the BPF timer which may run from ksoftirqd.
	 */
	if ((p->flags & PF_KTHREAD) && p->nr_cpus_allowed == 1) {
		__sync_fetch_and_add(&nr_locals, 1);
		scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL, SCX_SLICE_INF,
				   enq_flags | SCX_ENQ_PREEMPT);
		return;
	}

	if (bpf_map_push_elem(&central_q, &pid, 0)) {
		__sync_fetch_and_add(&nr_overflows, 1);
		scx_bpf_dsq_insert(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, enq_flags);
		return;
	}

	__sync_fetch_and_add(&nr_queued, 1);

	if (!scx_bpf_task_running(p))
		scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
}

static bool dispatch_to_cpu(s32 cpu)
{
	struct task_struct *p;
	s32 pid;

	bpf_repeat(BPF_MAX_LOOPS) {
		if (bpf_map_pop_elem(&central_q, &pid))
			break;

		__sync_fetch_and_sub(&nr_queued, 1);

		p = bpf_task_from_pid(pid);
		if (!p) {
			__sync_fetch_and_add(&nr_lost_pids, 1);
			continue;
		}

		/*
		 * If we can't run the task at the top, do the dumb thing and
		 * bounce it to the fallback dsq.
		 */
		if (!bpf_cpumask_test_cpu(cpu, p->cpus_ptr)) {
			__sync_fetch_and_add(&nr_mismatches, 1);
			scx_bpf_dsq_insert(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, 0);
			bpf_task_release(p);
			/*
			 * We might run out of dispatch buffer slots if we continue dispatching
			 * to the fallback DSQ, without dispatching to the local DSQ of the
			 * target CPU. In such a case, break the loop now as will fail the
			 * next dispatch operation.
			 */
			if (!scx_bpf_dispatch_nr_slots())
				break;
			continue;
		}

		/* dispatch to local and mark that @cpu doesn't need more */
		scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL_ON | cpu, SCX_SLICE_INF, 0);

		if (cpu != central_cpu)
			scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE);

		bpf_task_release(p);
		return true;
	}

	return false;
}

void BPF_STRUCT_OPS(central_dispatch, s32 cpu, struct task_struct *prev)
{
	if (cpu == central_cpu) {
		/* dispatch for all other CPUs first */
		__sync_fetch_and_add(&nr_dispatches, 1);

		bpf_for(cpu, 0, nr_cpu_ids) {
			bool *gimme;

			if (!scx_bpf_dispatch_nr_slots())
				break;

			/* central's gimme is never set */
			gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids);
			if (!gimme || !*gimme)
				continue;

			if (dispatch_to_cpu(cpu))
				*gimme = false;
		}

		/*
		 * Retry if we ran out of dispatch buffer slots as we might have
		 * skipped some CPUs and also need to dispatch for self. The ext
		 * core automatically retries if the local dsq is empty but we
		 * can't rely on that as we're dispatching for other CPUs too.
		 * Kick self explicitly to retry.
		 */
		if (!scx_bpf_dispatch_nr_slots()) {
			__sync_fetch_and_add(&nr_retries, 1);
			scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
			return;
		}

		/* look for a task to run on the central CPU */
		if (scx_bpf_dsq_move_to_local(FALLBACK_DSQ_ID))
			return;
		dispatch_to_cpu(central_cpu);
	} else {
		bool *gimme;

		if (scx_bpf_dsq_move_to_local(FALLBACK_DSQ_ID))
			return;

		gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids);
		if (gimme)
			*gimme = true;

		/*
		 * Force dispatch on the scheduling CPU so that it finds a task
		 * to run for us.
		 */
		scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
	}
}

void BPF_STRUCT_OPS(central_running, struct task_struct *p)
{
	s32 cpu = scx_bpf_task_cpu(p);
	u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
	if (started_at)
		*started_at = bpf_ktime_get_ns() ?: 1;	/* 0 indicates idle */
}

void BPF_STRUCT_OPS(central_stopping, struct task_struct *p, bool runnable)
{
	s32 cpu = scx_bpf_task_cpu(p);
	u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
	if (started_at)
		*started_at = 0;
}

static int central_timerfn(void *map, int *key, struct bpf_timer *timer)
{
	u64 now = bpf_ktime_get_ns();
	u64 nr_to_kick = nr_queued;
	s32 i, curr_cpu;

	curr_cpu = bpf_get_smp_processor_id();
	if (timer_pinned && (curr_cpu != central_cpu)) {
		scx_bpf_error("Central timer ran on CPU %d, not central CPU %d",
			      curr_cpu, central_cpu);
		return 0;
	}

	bpf_for(i, 0, nr_cpu_ids) {
		s32 cpu = (nr_timers + i) % nr_cpu_ids;
		u64 *started_at;

		if (cpu == central_cpu)
			continue;

		/* kick iff the current one exhausted its slice */
		started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
		if (started_at && *started_at &&
		    vtime_before(now, *started_at + slice_ns))
			continue;

		/* and there's something pending */
		if (scx_bpf_dsq_nr_queued(FALLBACK_DSQ_ID) ||
		    scx_bpf_dsq_nr_queued(SCX_DSQ_LOCAL_ON | cpu))
			;
		else if (nr_to_kick)
			nr_to_kick--;
		else
			continue;

		scx_bpf_kick_cpu(cpu, SCX_KICK_PREEMPT);
	}

	bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN);
	__sync_fetch_and_add(&nr_timers, 1);
	return 0;
}

int BPF_STRUCT_OPS_SLEEPABLE(central_init)
{
	u32 key = 0;
	struct bpf_timer *timer;
	int ret;

	ret = scx_bpf_create_dsq(FALLBACK_DSQ_ID, -1);
	if (ret)
		return ret;

	timer = bpf_map_lookup_elem(&central_timer, &key);
	if (!timer)
		return -ESRCH;

	if (bpf_get_smp_processor_id() != central_cpu) {
		scx_bpf_error("init from non-central CPU");
		return -EINVAL;
	}

	bpf_timer_init(timer, &central_timer, CLOCK_MONOTONIC);
	bpf_timer_set_callback(timer, central_timerfn);

	ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN);
	/*
	 * BPF_F_TIMER_CPU_PIN is pretty new (>=6.7). If we're running in a
	 * kernel which doesn't have it, bpf_timer_start() will return -EINVAL.
	 * Retry without the PIN. This would be the perfect use case for
	 * bpf_core_enum_value_exists() but the enum type doesn't have a name
	 * and can't be used with bpf_core_enum_value_exists(). Oh well...
	 */
	if (ret == -EINVAL) {
		timer_pinned = false;
		ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, 0);
	}
	if (ret)
		scx_bpf_error("bpf_timer_start failed (%d)", ret);
	return ret;
}

void BPF_STRUCT_OPS(central_exit, struct scx_exit_info *ei)
{
	UEI_RECORD(uei, ei);
}

SCX_OPS_DEFINE(central_ops,
	       /*
		* We are offloading all scheduling decisions to the central CPU
		* and thus being the last task on a given CPU doesn't mean
		* anything special. Enqueue the last tasks like any other tasks.
		*/
	       .flags			= SCX_OPS_ENQ_LAST,

	       .select_cpu		= (void *)central_select_cpu,
	       .enqueue			= (void *)central_enqueue,
	       .dispatch		= (void *)central_dispatch,
	       .running			= (void *)central_running,
	       .stopping		= (void *)central_stopping,
	       .init			= (void *)central_init,
	       .exit			= (void *)central_exit,
	       .name			= "central");