summaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/bpf/test_verifier.c
blob: 31f1c935cd07d2b8f19398912e59433fd558420d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Testsuite for eBPF verifier
 *
 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
 * Copyright (c) 2017 Facebook
 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
 */

#include <endian.h>
#include <asm/types.h>
#include <linux/types.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stddef.h>
#include <stdbool.h>
#include <sched.h>
#include <limits.h>
#include <assert.h>

#include <linux/unistd.h>
#include <linux/filter.h>
#include <linux/bpf_perf_event.h>
#include <linux/bpf.h>
#include <linux/if_ether.h>
#include <linux/btf.h>

#include <bpf/btf.h>
#include <bpf/bpf.h>
#include <bpf/libbpf.h>

#include "autoconf_helper.h"
#include "unpriv_helpers.h"
#include "cap_helpers.h"
#include "bpf_rand.h"
#include "bpf_util.h"
#include "test_btf.h"
#include "../../../include/linux/filter.h"
#include "testing_helpers.h"

#ifndef ENOTSUPP
#define ENOTSUPP 524
#endif

#define MAX_INSNS	BPF_MAXINSNS
#define MAX_EXPECTED_INSNS	32
#define MAX_UNEXPECTED_INSNS	32
#define MAX_TEST_INSNS	1000000
#define MAX_FIXUPS	8
#define MAX_NR_MAPS	23
#define MAX_TEST_RUNS	8
#define POINTER_VALUE	0xcafe4all
#define TEST_DATA_LEN	64
#define MAX_FUNC_INFOS	8
#define MAX_BTF_STRINGS	256
#define MAX_BTF_TYPES	256

#define INSN_OFF_MASK	((__s16)0xFFFF)
#define INSN_IMM_MASK	((__s32)0xFFFFFFFF)
#define SKIP_INSNS()	BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)

#define DEFAULT_LIBBPF_LOG_LEVEL	4

#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
#define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)

/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
#define ADMIN_CAPS (1ULL << CAP_NET_ADMIN |	\
		    1ULL << CAP_PERFMON |	\
		    1ULL << CAP_BPF)
#define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
static bool unpriv_disabled = false;
static int skips;
static bool verbose = false;
static int verif_log_level = 0;

struct kfunc_btf_id_pair {
	const char *kfunc;
	int insn_idx;
};

struct bpf_test {
	const char *descr;
	struct bpf_insn	insns[MAX_INSNS];
	struct bpf_insn	*fill_insns;
	/* If specified, test engine looks for this sequence of
	 * instructions in the BPF program after loading. Allows to
	 * test rewrites applied by verifier.  Use values
	 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
	 * fields if content does not matter.  The test case fails if
	 * specified instructions are not found.
	 *
	 * The sequence could be split into sub-sequences by adding
	 * SKIP_INSNS instruction at the end of each sub-sequence. In
	 * such case sub-sequences are searched for one after another.
	 */
	struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
	/* If specified, test engine applies same pattern matching
	 * logic as for `expected_insns`. If the specified pattern is
	 * matched test case is marked as failed.
	 */
	struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
	int fixup_map_hash_8b[MAX_FIXUPS];
	int fixup_map_hash_48b[MAX_FIXUPS];
	int fixup_map_hash_16b[MAX_FIXUPS];
	int fixup_map_array_48b[MAX_FIXUPS];
	int fixup_map_sockmap[MAX_FIXUPS];
	int fixup_map_sockhash[MAX_FIXUPS];
	int fixup_map_xskmap[MAX_FIXUPS];
	int fixup_map_stacktrace[MAX_FIXUPS];
	int fixup_prog1[MAX_FIXUPS];
	int fixup_prog2[MAX_FIXUPS];
	int fixup_map_in_map[MAX_FIXUPS];
	int fixup_cgroup_storage[MAX_FIXUPS];
	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
	int fixup_map_spin_lock[MAX_FIXUPS];
	int fixup_map_array_ro[MAX_FIXUPS];
	int fixup_map_array_wo[MAX_FIXUPS];
	int fixup_map_array_small[MAX_FIXUPS];
	int fixup_sk_storage_map[MAX_FIXUPS];
	int fixup_map_event_output[MAX_FIXUPS];
	int fixup_map_reuseport_array[MAX_FIXUPS];
	int fixup_map_ringbuf[MAX_FIXUPS];
	int fixup_map_timer[MAX_FIXUPS];
	int fixup_map_kptr[MAX_FIXUPS];
	struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
	 * Can be a tab-separated sequence of expected strings. An empty string
	 * means no log verification.
	 */
	const char *errstr;
	const char *errstr_unpriv;
	uint32_t insn_processed;
	int prog_len;
	enum {
		UNDEF,
		ACCEPT,
		REJECT,
		VERBOSE_ACCEPT,
	} result, result_unpriv;
	enum bpf_prog_type prog_type;
	uint8_t flags;
	void (*fill_helper)(struct bpf_test *self);
	int runs;
#define bpf_testdata_struct_t					\
	struct {						\
		uint32_t retval, retval_unpriv;			\
		union {						\
			__u8 data[TEST_DATA_LEN];		\
			__u64 data64[TEST_DATA_LEN / 8];	\
		};						\
	}
	union {
		bpf_testdata_struct_t;
		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
	};
	enum bpf_attach_type expected_attach_type;
	const char *kfunc;
	struct bpf_func_info func_info[MAX_FUNC_INFOS];
	int func_info_cnt;
	char btf_strings[MAX_BTF_STRINGS];
	/* A set of BTF types to load when specified,
	 * use macro definitions from test_btf.h,
	 * must end with BTF_END_RAW
	 */
	__u32 btf_types[MAX_BTF_TYPES];
};

/* Note we want this to be 64 bit aligned so that the end of our array is
 * actually the end of the structure.
 */
#define MAX_ENTRIES 11

struct test_val {
	unsigned int index;
	int foo[MAX_ENTRIES];
};

struct other_val {
	long long foo;
	long long bar;
};

static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
{
	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
#define PUSH_CNT 51
	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
	struct bpf_insn *insn = self->fill_insns;
	int i = 0, j, k = 0;

	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
loop:
	for (j = 0; j < PUSH_CNT; j++) {
		insn[i++] = BPF_LD_ABS(BPF_B, 0);
		/* jump to error label */
		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
		i++;
		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
					 BPF_FUNC_skb_vlan_push);
		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
		i++;
	}

	for (j = 0; j < PUSH_CNT; j++) {
		insn[i++] = BPF_LD_ABS(BPF_B, 0);
		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
		i++;
		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
					 BPF_FUNC_skb_vlan_pop);
		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
		i++;
	}
	if (++k < 5)
		goto loop;

	for (; i < len - 3; i++)
		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
	insn[len - 3] = BPF_JMP_A(1);
	/* error label */
	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
	insn[len - 1] = BPF_EXIT_INSN();
	self->prog_len = len;
}

static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
{
	struct bpf_insn *insn = self->fill_insns;
	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
	 * to extend the error value of the inlined ld_abs sequence which then
	 * contains 7 insns. so, set the dividend to 7 so the testcase could
	 * work on all arches.
	 */
	unsigned int len = (1 << 15) / 7;
	int i = 0;

	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	insn[i++] = BPF_LD_ABS(BPF_B, 0);
	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
	i++;
	while (i < len - 1)
		insn[i++] = BPF_LD_ABS(BPF_B, 1);
	insn[i] = BPF_EXIT_INSN();
	self->prog_len = i + 1;
}

static void bpf_fill_rand_ld_dw(struct bpf_test *self)
{
	struct bpf_insn *insn = self->fill_insns;
	uint64_t res = 0;
	int i = 0;

	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
	while (i < self->retval) {
		uint64_t val = bpf_semi_rand_get();
		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };

		res ^= val;
		insn[i++] = tmp[0];
		insn[i++] = tmp[1];
		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
	}
	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
	insn[i] = BPF_EXIT_INSN();
	self->prog_len = i + 1;
	res ^= (res >> 32);
	self->retval = (uint32_t)res;
}

#define MAX_JMP_SEQ 8192

/* test the sequence of 8k jumps */
static void bpf_fill_scale1(struct bpf_test *self)
{
	struct bpf_insn *insn = self->fill_insns;
	int i = 0, k = 0;

	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	/* test to check that the long sequence of jumps is acceptable */
	while (k++ < MAX_JMP_SEQ) {
		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
					 BPF_FUNC_get_prandom_u32);
		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
					-8 * (k % 64 + 1));
	}
	/* is_state_visited() doesn't allocate state for pruning for every jump.
	 * Hence multiply jmps by 4 to accommodate that heuristic
	 */
	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
	insn[i] = BPF_EXIT_INSN();
	self->prog_len = i + 1;
	self->retval = 42;
}

/* test the sequence of 8k jumps in inner most function (function depth 8)*/
static void bpf_fill_scale2(struct bpf_test *self)
{
	struct bpf_insn *insn = self->fill_insns;
	int i = 0, k = 0;

#define FUNC_NEST 7
	for (k = 0; k < FUNC_NEST; k++) {
		insn[i++] = BPF_CALL_REL(1);
		insn[i++] = BPF_EXIT_INSN();
	}
	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	/* test to check that the long sequence of jumps is acceptable */
	k = 0;
	while (k++ < MAX_JMP_SEQ) {
		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
					 BPF_FUNC_get_prandom_u32);
		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
	}
	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
	insn[i] = BPF_EXIT_INSN();
	self->prog_len = i + 1;
	self->retval = 42;
}

static void bpf_fill_scale(struct bpf_test *self)
{
	switch (self->retval) {
	case 1:
		return bpf_fill_scale1(self);
	case 2:
		return bpf_fill_scale2(self);
	default:
		self->prog_len = 0;
		break;
	}
}

static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
{
	unsigned int len = 259, hlen = 128;
	int i;

	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
	for (i = 1; i <= hlen; i++) {
		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
		insn[i + hlen] = BPF_JMP_A(hlen - i);
	}
	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
	insn[len - 1] = BPF_EXIT_INSN();

	return len;
}

static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
{
	unsigned int len = 4100, jmp_off = 2048;
	int i, j;

	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
	for (i = 1; i <= jmp_off; i++) {
		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
	}
	insn[i++] = BPF_JMP_A(jmp_off);
	for (; i <= jmp_off * 2 + 1; i+=16) {
		for (j = 0; j < 16; j++) {
			insn[i + j] = BPF_JMP_A(16 - j - 1);
		}
	}

	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
	insn[len - 1] = BPF_EXIT_INSN();

	return len;
}

static void bpf_fill_torturous_jumps(struct bpf_test *self)
{
	struct bpf_insn *insn = self->fill_insns;
	int i = 0;

	switch (self->retval) {
	case 1:
		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
		return;
	case 2:
		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
		return;
	case 3:
		/* main */
		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
		insn[i++] = BPF_EXIT_INSN();

		/* subprog 1 */
		i += bpf_fill_torturous_jumps_insn_1(insn + i);

		/* subprog 2 */
		i += bpf_fill_torturous_jumps_insn_2(insn + i);

		self->prog_len = i;
		return;
	default:
		self->prog_len = 0;
		break;
	}
}

static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
{
	struct bpf_insn *insn = self->fill_insns;
	/* This test was added to catch a specific use after free
	 * error, which happened upon BPF program reallocation.
	 * Reallocation is handled by core.c:bpf_prog_realloc, which
	 * reuses old memory if page boundary is not crossed. The
	 * value of `len` is chosen to cross this boundary on bpf_loop
	 * patching.
	 */
	const int len = getpagesize() - 25;
	int callback_load_idx;
	int callback_idx;
	int i = 0;

	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
	callback_load_idx = i;
	insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
				 BPF_REG_2, BPF_PSEUDO_FUNC, 0,
				 777 /* filled below */);
	insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
	insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);

	while (i < len - 3)
		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
	insn[i++] = BPF_EXIT_INSN();

	callback_idx = i;
	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
	insn[i++] = BPF_EXIT_INSN();

	insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
	self->func_info[1].insn_off = callback_idx;
	self->prog_len = i;
	assert(i == len);
}

/* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
#define BPF_SK_LOOKUP(func)						\
	/* struct bpf_sock_tuple tuple = {} */				\
	BPF_MOV64_IMM(BPF_REG_2, 0),					\
	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
	BPF_MOV64_IMM(BPF_REG_4, 0),					\
	BPF_MOV64_IMM(BPF_REG_5, 0),					\
	BPF_EMIT_CALL(BPF_FUNC_ ## func)

/* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
 * value into 0 and does necessary preparation for direct packet access
 * through r2. The allowed access range is 8 bytes.
 */
#define BPF_DIRECT_PKT_R2						\
	BPF_MOV64_IMM(BPF_REG_0, 0),					\
	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
		    offsetof(struct __sk_buff, data)),			\
	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
		    offsetof(struct __sk_buff, data_end)),		\
	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
	BPF_EXIT_INSN()

/* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
 * positive u32, and zero-extend it into 64-bit.
 */
#define BPF_RAND_UEXT_R7						\
	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
		     BPF_FUNC_get_prandom_u32),				\
	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)

/* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
 * negative u32, and sign-extend it into 64-bit.
 */
#define BPF_RAND_SEXT_R7						\
	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
		     BPF_FUNC_get_prandom_u32),				\
	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)

static struct bpf_test tests[] = {
#define FILL_ARRAY
#include <verifier/tests.h>
#undef FILL_ARRAY
};

static int probe_filter_length(const struct bpf_insn *fp)
{
	int len;

	for (len = MAX_INSNS - 1; len > 0; --len)
		if (fp[len].code != 0 || fp[len].imm != 0)
			break;
	return len + 1;
}

static bool skip_unsupported_map(enum bpf_map_type map_type)
{
	if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
		printf("SKIP (unsupported map type %d)\n", map_type);
		skips++;
		return true;
	}
	return false;
}

static int __create_map(uint32_t type, uint32_t size_key,
			uint32_t size_value, uint32_t max_elem,
			uint32_t extra_flags)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts);
	int fd;

	opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
	fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
	if (fd < 0) {
		if (skip_unsupported_map(type))
			return -1;
		printf("Failed to create hash map '%s'!\n", strerror(errno));
	}

	return fd;
}

static int create_map(uint32_t type, uint32_t size_key,
		      uint32_t size_value, uint32_t max_elem)
{
	return __create_map(type, size_key, size_value, max_elem, 0);
}

static void update_map(int fd, int index)
{
	struct test_val value = {
		.index = (6 + 1) * sizeof(int),
		.foo[6] = 0xabcdef12,
	};

	assert(!bpf_map_update_elem(fd, &index, &value, 0));
}

static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
{
	struct bpf_insn prog[] = {
		BPF_MOV64_IMM(BPF_REG_0, ret),
		BPF_EXIT_INSN(),
	};

	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
}

static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
				  int idx, int ret)
{
	struct bpf_insn prog[] = {
		BPF_MOV64_IMM(BPF_REG_3, idx),
		BPF_LD_MAP_FD(BPF_REG_2, mfd),
		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			     BPF_FUNC_tail_call),
		BPF_MOV64_IMM(BPF_REG_0, ret),
		BPF_EXIT_INSN(),
	};

	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
}

static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
			     int p1key, int p2key, int p3key)
{
	int mfd, p1fd, p2fd, p3fd;

	mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
			     sizeof(int), max_elem, NULL);
	if (mfd < 0) {
		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
			return -1;
		printf("Failed to create prog array '%s'!\n", strerror(errno));
		return -1;
	}

	p1fd = create_prog_dummy_simple(prog_type, 42);
	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
	p3fd = create_prog_dummy_simple(prog_type, 24);
	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
		goto err;
	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
		goto err;
	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
		goto err;
	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
err:
		close(mfd);
		mfd = -1;
	}
	close(p3fd);
	close(p2fd);
	close(p1fd);
	return mfd;
}

static int create_map_in_map(void)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts);
	int inner_map_fd, outer_map_fd;

	inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
				      sizeof(int), 1, NULL);
	if (inner_map_fd < 0) {
		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
			return -1;
		printf("Failed to create array '%s'!\n", strerror(errno));
		return inner_map_fd;
	}

	opts.inner_map_fd = inner_map_fd;
	outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
				      sizeof(int), sizeof(int), 1, &opts);
	if (outer_map_fd < 0) {
		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
			return -1;
		printf("Failed to create array of maps '%s'!\n",
		       strerror(errno));
	}

	close(inner_map_fd);

	return outer_map_fd;
}

static int create_cgroup_storage(bool percpu)
{
	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
		BPF_MAP_TYPE_CGROUP_STORAGE;
	int fd;

	fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
			    TEST_DATA_LEN, 0, NULL);
	if (fd < 0) {
		if (skip_unsupported_map(type))
			return -1;
		printf("Failed to create cgroup storage '%s'!\n",
		       strerror(errno));
	}

	return fd;
}

/* struct bpf_spin_lock {
 *   int val;
 * };
 * struct val {
 *   int cnt;
 *   struct bpf_spin_lock l;
 * };
 * struct bpf_timer {
 *   __u64 :64;
 *   __u64 :64;
 * } __attribute__((aligned(8)));
 * struct timer {
 *   struct bpf_timer t;
 * };
 * struct btf_ptr {
 *   struct prog_test_ref_kfunc __kptr_untrusted *ptr;
 *   struct prog_test_ref_kfunc __kptr *ptr;
 *   struct prog_test_member __kptr *ptr;
 * }
 */
static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
				  "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted"
				  "\0prog_test_member";
static __u32 btf_raw_types[] = {
	/* int */
	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
	/* struct bpf_spin_lock */                      /* [2] */
	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
	/* struct val */                                /* [3] */
	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
	/* struct bpf_timer */                          /* [4] */
	BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
	/* struct timer */                              /* [5] */
	BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
	BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
	/* struct prog_test_ref_kfunc */		/* [6] */
	BTF_STRUCT_ENC(51, 0, 0),
	BTF_STRUCT_ENC(95, 0, 0),			/* [7] */
	/* type tag "kptr_untrusted" */
	BTF_TYPE_TAG_ENC(80, 6),			/* [8] */
	/* type tag "kptr" */
	BTF_TYPE_TAG_ENC(75, 6),			/* [9] */
	BTF_TYPE_TAG_ENC(75, 7),			/* [10] */
	BTF_PTR_ENC(8),					/* [11] */
	BTF_PTR_ENC(9),					/* [12] */
	BTF_PTR_ENC(10),				/* [13] */
	/* struct btf_ptr */				/* [14] */
	BTF_STRUCT_ENC(43, 3, 24),
	BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */
	BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */
	BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */
};

static char bpf_vlog[UINT_MAX >> 8];

static int load_btf_spec(__u32 *types, int types_len,
			 const char *strings, int strings_len)
{
	struct btf_header hdr = {
		.magic = BTF_MAGIC,
		.version = BTF_VERSION,
		.hdr_len = sizeof(struct btf_header),
		.type_len = types_len,
		.str_off = types_len,
		.str_len = strings_len,
	};
	void *ptr, *raw_btf;
	int btf_fd;
	LIBBPF_OPTS(bpf_btf_load_opts, opts,
		    .log_buf = bpf_vlog,
		    .log_size = sizeof(bpf_vlog),
		    .log_level = (verbose
				  ? verif_log_level
				  : DEFAULT_LIBBPF_LOG_LEVEL),
	);

	raw_btf = malloc(sizeof(hdr) + types_len + strings_len);

	ptr = raw_btf;
	memcpy(ptr, &hdr, sizeof(hdr));
	ptr += sizeof(hdr);
	memcpy(ptr, types, hdr.type_len);
	ptr += hdr.type_len;
	memcpy(ptr, strings, hdr.str_len);
	ptr += hdr.str_len;

	btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
	if (btf_fd < 0)
		printf("Failed to load BTF spec: '%s'\n", strerror(errno));

	free(raw_btf);

	return btf_fd < 0 ? -1 : btf_fd;
}

static int load_btf(void)
{
	return load_btf_spec(btf_raw_types, sizeof(btf_raw_types),
			     btf_str_sec, sizeof(btf_str_sec));
}

static int load_btf_for_test(struct bpf_test *test)
{
	int types_num = 0;

	while (types_num < MAX_BTF_TYPES &&
	       test->btf_types[types_num] != BTF_END_RAW)
		++types_num;

	int types_len = types_num * sizeof(test->btf_types[0]);

	return load_btf_spec(test->btf_types, types_len,
			     test->btf_strings, sizeof(test->btf_strings));
}

static int create_map_spin_lock(void)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts,
		.btf_key_type_id = 1,
		.btf_value_type_id = 3,
	);
	int fd, btf_fd;

	btf_fd = load_btf();
	if (btf_fd < 0)
		return -1;
	opts.btf_fd = btf_fd;
	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
	if (fd < 0)
		printf("Failed to create map with spin_lock\n");
	return fd;
}

static int create_sk_storage_map(void)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts,
		.map_flags = BPF_F_NO_PREALLOC,
		.btf_key_type_id = 1,
		.btf_value_type_id = 3,
	);
	int fd, btf_fd;

	btf_fd = load_btf();
	if (btf_fd < 0)
		return -1;
	opts.btf_fd = btf_fd;
	fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
	close(opts.btf_fd);
	if (fd < 0)
		printf("Failed to create sk_storage_map\n");
	return fd;
}

static int create_map_timer(void)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts,
		.btf_key_type_id = 1,
		.btf_value_type_id = 5,
	);
	int fd, btf_fd;

	btf_fd = load_btf();
	if (btf_fd < 0)
		return -1;

	opts.btf_fd = btf_fd;
	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
	if (fd < 0)
		printf("Failed to create map with timer\n");
	return fd;
}

static int create_map_kptr(void)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts,
		.btf_key_type_id = 1,
		.btf_value_type_id = 14,
	);
	int fd, btf_fd;

	btf_fd = load_btf();
	if (btf_fd < 0)
		return -1;

	opts.btf_fd = btf_fd;
	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
	if (fd < 0)
		printf("Failed to create map with btf_id pointer\n");
	return fd;
}

static void set_root(bool set)
{
	__u64 caps;

	if (set) {
		if (cap_enable_effective(1ULL << CAP_SYS_ADMIN, &caps))
			perror("cap_disable_effective(CAP_SYS_ADMIN)");
	} else {
		if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps))
			perror("cap_disable_effective(CAP_SYS_ADMIN)");
	}
}

static __u64 ptr_to_u64(const void *ptr)
{
	return (uintptr_t) ptr;
}

static struct btf *btf__load_testmod_btf(struct btf *vmlinux)
{
	struct bpf_btf_info info;
	__u32 len = sizeof(info);
	struct btf *btf = NULL;
	char name[64];
	__u32 id = 0;
	int err, fd;

	/* Iterate all loaded BTF objects and find bpf_testmod,
	 * we need SYS_ADMIN cap for that.
	 */
	set_root(true);

	while (true) {
		err = bpf_btf_get_next_id(id, &id);
		if (err) {
			if (errno == ENOENT)
				break;
			perror("bpf_btf_get_next_id failed");
			break;
		}

		fd = bpf_btf_get_fd_by_id(id);
		if (fd < 0) {
			if (errno == ENOENT)
				continue;
			perror("bpf_btf_get_fd_by_id failed");
			break;
		}

		memset(&info, 0, sizeof(info));
		info.name_len = sizeof(name);
		info.name = ptr_to_u64(name);
		len = sizeof(info);

		err = bpf_obj_get_info_by_fd(fd, &info, &len);
		if (err) {
			close(fd);
			perror("bpf_obj_get_info_by_fd failed");
			break;
		}

		if (strcmp("bpf_testmod", name)) {
			close(fd);
			continue;
		}

		btf = btf__load_from_kernel_by_id_split(id, vmlinux);
		if (!btf) {
			close(fd);
			break;
		}

		/* We need the fd to stay open so it can be used in fd_array.
		 * The final cleanup call to btf__free will free btf object
		 * and close the file descriptor.
		 */
		btf__set_fd(btf, fd);
		break;
	}

	set_root(false);
	return btf;
}

static struct btf *testmod_btf;
static struct btf *vmlinux_btf;

static void kfuncs_cleanup(void)
{
	btf__free(testmod_btf);
	btf__free(vmlinux_btf);
}

static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array,
			      struct kfunc_btf_id_pair *fixup_kfunc_btf_id)
{
	/* Patch in kfunc BTF IDs */
	while (fixup_kfunc_btf_id->kfunc) {
		int btf_id = 0;

		/* try to find kfunc in kernel BTF */
		vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf();
		if (vmlinux_btf) {
			btf_id = btf__find_by_name_kind(vmlinux_btf,
							fixup_kfunc_btf_id->kfunc,
							BTF_KIND_FUNC);
			btf_id = btf_id < 0 ? 0 : btf_id;
		}

		/* kfunc not found in kernel BTF, try bpf_testmod BTF */
		if (!btf_id) {
			testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux_btf);
			if (testmod_btf) {
				btf_id = btf__find_by_name_kind(testmod_btf,
								fixup_kfunc_btf_id->kfunc,
								BTF_KIND_FUNC);
				btf_id = btf_id < 0 ? 0 : btf_id;
				if (btf_id) {
					/* We put bpf_testmod module fd into fd_array
					 * and its index 1 into instruction 'off'.
					 */
					*fd_array = btf__fd(testmod_btf);
					prog[fixup_kfunc_btf_id->insn_idx].off = 1;
				}
			}
		}

		prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
		fixup_kfunc_btf_id++;
	}
}

static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
			  struct bpf_insn *prog, int *map_fds, int *fd_array)
{
	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
	int *fixup_map_array_48b = test->fixup_map_array_48b;
	int *fixup_map_sockmap = test->fixup_map_sockmap;
	int *fixup_map_sockhash = test->fixup_map_sockhash;
	int *fixup_map_xskmap = test->fixup_map_xskmap;
	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
	int *fixup_prog1 = test->fixup_prog1;
	int *fixup_prog2 = test->fixup_prog2;
	int *fixup_map_in_map = test->fixup_map_in_map;
	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
	int *fixup_map_array_ro = test->fixup_map_array_ro;
	int *fixup_map_array_wo = test->fixup_map_array_wo;
	int *fixup_map_array_small = test->fixup_map_array_small;
	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
	int *fixup_map_event_output = test->fixup_map_event_output;
	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
	int *fixup_map_timer = test->fixup_map_timer;
	int *fixup_map_kptr = test->fixup_map_kptr;

	if (test->fill_helper) {
		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
		test->fill_helper(test);
	}

	/* Allocating HTs with 1 elem is fine here, since we only test
	 * for verifier and not do a runtime lookup, so the only thing
	 * that really matters is value size in this case.
	 */
	if (*fixup_map_hash_8b) {
		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
					sizeof(long long), 1);
		do {
			prog[*fixup_map_hash_8b].imm = map_fds[0];
			fixup_map_hash_8b++;
		} while (*fixup_map_hash_8b);
	}

	if (*fixup_map_hash_48b) {
		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
					sizeof(struct test_val), 1);
		do {
			prog[*fixup_map_hash_48b].imm = map_fds[1];
			fixup_map_hash_48b++;
		} while (*fixup_map_hash_48b);
	}

	if (*fixup_map_hash_16b) {
		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
					sizeof(struct other_val), 1);
		do {
			prog[*fixup_map_hash_16b].imm = map_fds[2];
			fixup_map_hash_16b++;
		} while (*fixup_map_hash_16b);
	}

	if (*fixup_map_array_48b) {
		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
					sizeof(struct test_val), 1);
		update_map(map_fds[3], 0);
		do {
			prog[*fixup_map_array_48b].imm = map_fds[3];
			fixup_map_array_48b++;
		} while (*fixup_map_array_48b);
	}

	if (*fixup_prog1) {
		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
		do {
			prog[*fixup_prog1].imm = map_fds[4];
			fixup_prog1++;
		} while (*fixup_prog1);
	}

	if (*fixup_prog2) {
		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
		do {
			prog[*fixup_prog2].imm = map_fds[5];
			fixup_prog2++;
		} while (*fixup_prog2);
	}

	if (*fixup_map_in_map) {
		map_fds[6] = create_map_in_map();
		do {
			prog[*fixup_map_in_map].imm = map_fds[6];
			fixup_map_in_map++;
		} while (*fixup_map_in_map);
	}

	if (*fixup_cgroup_storage) {
		map_fds[7] = create_cgroup_storage(false);
		do {
			prog[*fixup_cgroup_storage].imm = map_fds[7];
			fixup_cgroup_storage++;
		} while (*fixup_cgroup_storage);
	}

	if (*fixup_percpu_cgroup_storage) {
		map_fds[8] = create_cgroup_storage(true);
		do {
			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
			fixup_percpu_cgroup_storage++;
		} while (*fixup_percpu_cgroup_storage);
	}
	if (*fixup_map_sockmap) {
		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
					sizeof(int), 1);
		do {
			prog[*fixup_map_sockmap].imm = map_fds[9];
			fixup_map_sockmap++;
		} while (*fixup_map_sockmap);
	}
	if (*fixup_map_sockhash) {
		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
					sizeof(int), 1);
		do {
			prog[*fixup_map_sockhash].imm = map_fds[10];
			fixup_map_sockhash++;
		} while (*fixup_map_sockhash);
	}
	if (*fixup_map_xskmap) {
		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
					sizeof(int), 1);
		do {
			prog[*fixup_map_xskmap].imm = map_fds[11];
			fixup_map_xskmap++;
		} while (*fixup_map_xskmap);
	}
	if (*fixup_map_stacktrace) {
		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
					 sizeof(u64), 1);
		do {
			prog[*fixup_map_stacktrace].imm = map_fds[12];
			fixup_map_stacktrace++;
		} while (*fixup_map_stacktrace);
	}
	if (*fixup_map_spin_lock) {
		map_fds[13] = create_map_spin_lock();
		do {
			prog[*fixup_map_spin_lock].imm = map_fds[13];
			fixup_map_spin_lock++;
		} while (*fixup_map_spin_lock);
	}
	if (*fixup_map_array_ro) {
		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
					   sizeof(struct test_val), 1,
					   BPF_F_RDONLY_PROG);
		update_map(map_fds[14], 0);
		do {
			prog[*fixup_map_array_ro].imm = map_fds[14];
			fixup_map_array_ro++;
		} while (*fixup_map_array_ro);
	}
	if (*fixup_map_array_wo) {
		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
					   sizeof(struct test_val), 1,
					   BPF_F_WRONLY_PROG);
		update_map(map_fds[15], 0);
		do {
			prog[*fixup_map_array_wo].imm = map_fds[15];
			fixup_map_array_wo++;
		} while (*fixup_map_array_wo);
	}
	if (*fixup_map_array_small) {
		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
					   1, 1, 0);
		update_map(map_fds[16], 0);
		do {
			prog[*fixup_map_array_small].imm = map_fds[16];
			fixup_map_array_small++;
		} while (*fixup_map_array_small);
	}
	if (*fixup_sk_storage_map) {
		map_fds[17] = create_sk_storage_map();
		do {
			prog[*fixup_sk_storage_map].imm = map_fds[17];
			fixup_sk_storage_map++;
		} while (*fixup_sk_storage_map);
	}
	if (*fixup_map_event_output) {
		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
					   sizeof(int), sizeof(int), 1, 0);
		do {
			prog[*fixup_map_event_output].imm = map_fds[18];
			fixup_map_event_output++;
		} while (*fixup_map_event_output);
	}
	if (*fixup_map_reuseport_array) {
		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
					   sizeof(u32), sizeof(u64), 1, 0);
		do {
			prog[*fixup_map_reuseport_array].imm = map_fds[19];
			fixup_map_reuseport_array++;
		} while (*fixup_map_reuseport_array);
	}
	if (*fixup_map_ringbuf) {
		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
					 0, getpagesize());
		do {
			prog[*fixup_map_ringbuf].imm = map_fds[20];
			fixup_map_ringbuf++;
		} while (*fixup_map_ringbuf);
	}
	if (*fixup_map_timer) {
		map_fds[21] = create_map_timer();
		do {
			prog[*fixup_map_timer].imm = map_fds[21];
			fixup_map_timer++;
		} while (*fixup_map_timer);
	}
	if (*fixup_map_kptr) {
		map_fds[22] = create_map_kptr();
		do {
			prog[*fixup_map_kptr].imm = map_fds[22];
			fixup_map_kptr++;
		} while (*fixup_map_kptr);
	}

	fixup_prog_kfuncs(prog, fd_array, test->fixup_kfunc_btf_id);
}

struct libcap {
	struct __user_cap_header_struct hdr;
	struct __user_cap_data_struct data[2];
};

static int set_admin(bool admin)
{
	int err;

	if (admin) {
		err = cap_enable_effective(ADMIN_CAPS, NULL);
		if (err)
			perror("cap_enable_effective(ADMIN_CAPS)");
	} else {
		err = cap_disable_effective(ADMIN_CAPS, NULL);
		if (err)
			perror("cap_disable_effective(ADMIN_CAPS)");
	}

	return err;
}

static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
			    void *data, size_t size_data)
{
	__u8 tmp[TEST_DATA_LEN << 2];
	__u32 size_tmp = sizeof(tmp);
	int err, saved_errno;
	LIBBPF_OPTS(bpf_test_run_opts, topts,
		.data_in = data,
		.data_size_in = size_data,
		.data_out = tmp,
		.data_size_out = size_tmp,
		.repeat = 1,
	);

	if (unpriv)
		set_admin(true);
	err = bpf_prog_test_run_opts(fd_prog, &topts);
	saved_errno = errno;

	if (unpriv)
		set_admin(false);

	if (err) {
		switch (saved_errno) {
		case ENOTSUPP:
			printf("Did not run the program (not supported) ");
			return 0;
		case EPERM:
			if (unpriv) {
				printf("Did not run the program (no permission) ");
				return 0;
			}
			/* fallthrough; */
		default:
			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
				strerror(saved_errno));
			return err;
		}
	}

	if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
		printf("FAIL retval %d != %d ", topts.retval, expected_val);
		return 1;
	}

	return 0;
}

/* Returns true if every part of exp (tab-separated) appears in log, in order.
 *
 * If exp is an empty string, returns true.
 */
static bool cmp_str_seq(const char *log, const char *exp)
{
	char needle[200];
	const char *p, *q;
	int len;

	do {
		if (!strlen(exp))
			break;
		p = strchr(exp, '\t');
		if (!p)
			p = exp + strlen(exp);

		len = p - exp;
		if (len >= sizeof(needle) || !len) {
			printf("FAIL\nTestcase bug\n");
			return false;
		}
		strncpy(needle, exp, len);
		needle[len] = 0;
		q = strstr(log, needle);
		if (!q) {
			printf("FAIL\nUnexpected verifier log!\n"
			       "EXP: %s\nRES:\n", needle);
			return false;
		}
		log = q + len;
		exp = p + 1;
	} while (*p);
	return true;
}

static struct bpf_insn *get_xlated_program(int fd_prog, int *cnt)
{
	__u32 buf_element_size = sizeof(struct bpf_insn);
	struct bpf_prog_info info = {};
	__u32 info_len = sizeof(info);
	__u32 xlated_prog_len;
	struct bpf_insn *buf;

	if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) {
		perror("bpf_prog_get_info_by_fd failed");
		return NULL;
	}

	xlated_prog_len = info.xlated_prog_len;
	if (xlated_prog_len % buf_element_size) {
		printf("Program length %d is not multiple of %d\n",
		       xlated_prog_len, buf_element_size);
		return NULL;
	}

	*cnt = xlated_prog_len / buf_element_size;
	buf = calloc(*cnt, buf_element_size);
	if (!buf) {
		perror("can't allocate xlated program buffer");
		return NULL;
	}

	bzero(&info, sizeof(info));
	info.xlated_prog_len = xlated_prog_len;
	info.xlated_prog_insns = (__u64)(unsigned long)buf;
	if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) {
		perror("second bpf_prog_get_info_by_fd failed");
		goto out_free_buf;
	}

	return buf;

out_free_buf:
	free(buf);
	return NULL;
}

static bool is_null_insn(struct bpf_insn *insn)
{
	struct bpf_insn null_insn = {};

	return memcmp(insn, &null_insn, sizeof(null_insn)) == 0;
}

static bool is_skip_insn(struct bpf_insn *insn)
{
	struct bpf_insn skip_insn = SKIP_INSNS();

	return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0;
}

static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
{
	int i;

	for (i = 0; i < max_len; ++i) {
		if (is_null_insn(&seq[i]))
			return i;
	}
	return max_len;
}

static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
{
	struct bpf_insn orig_masked;

	memcpy(&orig_masked, orig, sizeof(orig_masked));
	if (masked->imm == INSN_IMM_MASK)
		orig_masked.imm = INSN_IMM_MASK;
	if (masked->off == INSN_OFF_MASK)
		orig_masked.off = INSN_OFF_MASK;

	return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0;
}

static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
			    int seq_len, int subseq_len)
{
	int i, j;

	if (subseq_len > seq_len)
		return -1;

	for (i = 0; i < seq_len - subseq_len + 1; ++i) {
		bool found = true;

		for (j = 0; j < subseq_len; ++j) {
			if (!compare_masked_insn(&seq[i + j], &subseq[j])) {
				found = false;
				break;
			}
		}
		if (found)
			return i;
	}

	return -1;
}

static int find_skip_insn_marker(struct bpf_insn *seq, int len)
{
	int i;

	for (i = 0; i < len; ++i)
		if (is_skip_insn(&seq[i]))
			return i;

	return -1;
}

/* Return true if all sub-sequences in `subseqs` could be found in
 * `seq` one after another. Sub-sequences are separated by a single
 * nil instruction.
 */
static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
				  int seq_len, int max_subseqs_len)
{
	int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len);

	while (subseqs_len > 0) {
		int skip_idx = find_skip_insn_marker(subseqs, subseqs_len);
		int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
		int subseq_idx = find_insn_subseq(seq, subseqs,
						  seq_len, cur_subseq_len);

		if (subseq_idx < 0)
			return false;
		seq += subseq_idx + cur_subseq_len;
		seq_len -= subseq_idx + cur_subseq_len;
		subseqs += cur_subseq_len + 1;
		subseqs_len -= cur_subseq_len + 1;
	}

	return true;
}

static void print_insn(struct bpf_insn *buf, int cnt)
{
	int i;

	printf("  addr  op d s off  imm\n");
	for (i = 0; i < cnt; ++i) {
		struct bpf_insn *insn = &buf[i];

		if (is_null_insn(insn))
			break;

		if (is_skip_insn(insn))
			printf("  ...\n");
		else
			printf("  %04x: %02x %1x %x %04hx %08x\n",
			       i, insn->code, insn->dst_reg,
			       insn->src_reg, insn->off, insn->imm);
	}
}

static bool check_xlated_program(struct bpf_test *test, int fd_prog)
{
	struct bpf_insn *buf;
	int cnt;
	bool result = true;
	bool check_expected = !is_null_insn(test->expected_insns);
	bool check_unexpected = !is_null_insn(test->unexpected_insns);

	if (!check_expected && !check_unexpected)
		goto out;

	buf = get_xlated_program(fd_prog, &cnt);
	if (!buf) {
		printf("FAIL: can't get xlated program\n");
		result = false;
		goto out;
	}

	if (check_expected &&
	    !find_all_insn_subseqs(buf, test->expected_insns,
				   cnt, MAX_EXPECTED_INSNS)) {
		printf("FAIL: can't find expected subsequence of instructions\n");
		result = false;
		if (verbose) {
			printf("Program:\n");
			print_insn(buf, cnt);
			printf("Expected subsequence:\n");
			print_insn(test->expected_insns, MAX_EXPECTED_INSNS);
		}
	}

	if (check_unexpected &&
	    find_all_insn_subseqs(buf, test->unexpected_insns,
				  cnt, MAX_UNEXPECTED_INSNS)) {
		printf("FAIL: found unexpected subsequence of instructions\n");
		result = false;
		if (verbose) {
			printf("Program:\n");
			print_insn(buf, cnt);
			printf("Un-expected subsequence:\n");
			print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS);
		}
	}

	free(buf);
 out:
	return result;
}

static void do_test_single(struct bpf_test *test, bool unpriv,
			   int *passes, int *errors)
{
	int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
	int prog_len, prog_type = test->prog_type;
	struct bpf_insn *prog = test->insns;
	LIBBPF_OPTS(bpf_prog_load_opts, opts);
	int run_errs, run_successes;
	int map_fds[MAX_NR_MAPS];
	const char *expected_err;
	int fd_array[2] = { -1, -1 };
	int saved_errno;
	int fixup_skips;
	__u32 pflags;
	int i, err;

	fd_prog = -1;
	for (i = 0; i < MAX_NR_MAPS; i++)
		map_fds[i] = -1;
	btf_fd = -1;

	if (!prog_type)
		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
	fixup_skips = skips;
	do_test_fixup(test, prog_type, prog, map_fds, &fd_array[1]);
	if (test->fill_insns) {
		prog = test->fill_insns;
		prog_len = test->prog_len;
	} else {
		prog_len = probe_filter_length(prog);
	}
	/* If there were some map skips during fixup due to missing bpf
	 * features, skip this test.
	 */
	if (fixup_skips != skips)
		return;

	pflags = BPF_F_TEST_RND_HI32;
	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
		pflags |= BPF_F_STRICT_ALIGNMENT;
	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
		pflags |= BPF_F_ANY_ALIGNMENT;
	if (test->flags & ~3)
		pflags |= test->flags;

	expected_ret = unpriv && test->result_unpriv != UNDEF ?
		       test->result_unpriv : test->result;
	expected_err = unpriv && test->errstr_unpriv ?
		       test->errstr_unpriv : test->errstr;

	opts.expected_attach_type = test->expected_attach_type;
	if (verbose)
		opts.log_level = verif_log_level | 4; /* force stats */
	else if (expected_ret == VERBOSE_ACCEPT)
		opts.log_level = 2;
	else
		opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
	opts.prog_flags = pflags;
	if (fd_array[1] != -1)
		opts.fd_array = &fd_array[0];

	if ((prog_type == BPF_PROG_TYPE_TRACING ||
	     prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
		int attach_btf_id;

		attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
						opts.expected_attach_type);
		if (attach_btf_id < 0) {
			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
				test->kfunc);
			(*errors)++;
			return;
		}

		opts.attach_btf_id = attach_btf_id;
	}

	if (test->btf_types[0] != 0) {
		btf_fd = load_btf_for_test(test);
		if (btf_fd < 0)
			goto fail_log;
		opts.prog_btf_fd = btf_fd;
	}

	if (test->func_info_cnt != 0) {
		opts.func_info = test->func_info;
		opts.func_info_cnt = test->func_info_cnt;
		opts.func_info_rec_size = sizeof(test->func_info[0]);
	}

	opts.log_buf = bpf_vlog;
	opts.log_size = sizeof(bpf_vlog);
	fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
	saved_errno = errno;

	/* BPF_PROG_TYPE_TRACING requires more setup and
	 * bpf_probe_prog_type won't give correct answer
	 */
	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
	    !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
		printf("SKIP (unsupported program type %d)\n", prog_type);
		skips++;
		goto close_fds;
	}

	if (fd_prog < 0 && saved_errno == ENOTSUPP) {
		printf("SKIP (program uses an unsupported feature)\n");
		skips++;
		goto close_fds;
	}

	alignment_prevented_execution = 0;

	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
		if (fd_prog < 0) {
			printf("FAIL\nFailed to load prog '%s'!\n",
			       strerror(saved_errno));
			goto fail_log;
		}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
		if (fd_prog >= 0 &&
		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
			alignment_prevented_execution = 1;
#endif
		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
			goto fail_log;
		}
	} else {
		if (fd_prog >= 0) {
			printf("FAIL\nUnexpected success to load!\n");
			goto fail_log;
		}
		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
			      expected_err, bpf_vlog);
			goto fail_log;
		}
	}

	if (!unpriv && test->insn_processed) {
		uint32_t insn_processed;
		char *proc;

		proc = strstr(bpf_vlog, "processed ");
		insn_processed = atoi(proc + 10);
		if (test->insn_processed != insn_processed) {
			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
			       insn_processed, test->insn_processed);
			goto fail_log;
		}
	}

	if (verbose)
		printf(", verifier log:\n%s", bpf_vlog);

	if (!check_xlated_program(test, fd_prog))
		goto fail_log;

	run_errs = 0;
	run_successes = 0;
	if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
		uint32_t expected_val;
		int i;

		if (!test->runs)
			test->runs = 1;

		for (i = 0; i < test->runs; i++) {
			if (unpriv && test->retvals[i].retval_unpriv)
				expected_val = test->retvals[i].retval_unpriv;
			else
				expected_val = test->retvals[i].retval;

			err = do_prog_test_run(fd_prog, unpriv, expected_val,
					       test->retvals[i].data,
					       sizeof(test->retvals[i].data));
			if (err) {
				printf("(run %d/%d) ", i + 1, test->runs);
				run_errs++;
			} else {
				run_successes++;
			}
		}
	}

	if (!run_errs) {
		(*passes)++;
		if (run_successes > 1)
			printf("%d cases ", run_successes);
		printf("OK");
		if (alignment_prevented_execution)
			printf(" (NOTE: not executed due to unknown alignment)");
		printf("\n");
	} else {
		printf("\n");
		goto fail_log;
	}
close_fds:
	if (test->fill_insns)
		free(test->fill_insns);
	close(fd_prog);
	close(btf_fd);
	for (i = 0; i < MAX_NR_MAPS; i++)
		close(map_fds[i]);
	sched_yield();
	return;
fail_log:
	(*errors)++;
	printf("%s", bpf_vlog);
	goto close_fds;
}

static bool is_admin(void)
{
	__u64 caps;

	/* The test checks for finer cap as CAP_NET_ADMIN,
	 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
	 * Thus, disable CAP_SYS_ADMIN at the beginning.
	 */
	if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) {
		perror("cap_disable_effective(CAP_SYS_ADMIN)");
		return false;
	}

	return (caps & ADMIN_CAPS) == ADMIN_CAPS;
}

static bool test_as_unpriv(struct bpf_test *test)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
	/* Some architectures have strict alignment requirements. In
	 * that case, the BPF verifier detects if a program has
	 * unaligned accesses and rejects them. A user can pass
	 * BPF_F_ANY_ALIGNMENT to a program to override this
	 * check. That, however, will only work when a privileged user
	 * loads a program. An unprivileged user loading a program
	 * with this flag will be rejected prior entering the
	 * verifier.
	 */
	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
		return false;
#endif
	return !test->prog_type ||
	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
}

static int do_test(bool unpriv, unsigned int from, unsigned int to)
{
	int i, passes = 0, errors = 0;

	/* ensure previous instance of the module is unloaded */
	unload_bpf_testmod(verbose);

	if (load_bpf_testmod(verbose))
		return EXIT_FAILURE;

	for (i = from; i < to; i++) {
		struct bpf_test *test = &tests[i];

		/* Program types that are not supported by non-root we
		 * skip right away.
		 */
		if (test_as_unpriv(test) && unpriv_disabled) {
			printf("#%d/u %s SKIP\n", i, test->descr);
			skips++;
		} else if (test_as_unpriv(test)) {
			if (!unpriv)
				set_admin(false);
			printf("#%d/u %s ", i, test->descr);
			do_test_single(test, true, &passes, &errors);
			if (!unpriv)
				set_admin(true);
		}

		if (unpriv) {
			printf("#%d/p %s SKIP\n", i, test->descr);
			skips++;
		} else {
			printf("#%d/p %s ", i, test->descr);
			do_test_single(test, false, &passes, &errors);
		}
	}

	unload_bpf_testmod(verbose);
	kfuncs_cleanup();

	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
	       skips, errors);
	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
}

int main(int argc, char **argv)
{
	unsigned int from = 0, to = ARRAY_SIZE(tests);
	bool unpriv = !is_admin();
	int arg = 1;

	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
		arg++;
		verbose = true;
		verif_log_level = 1;
		argc--;
	}
	if (argc > 1 && strcmp(argv[1], "-vv") == 0) {
		arg++;
		verbose = true;
		verif_log_level = 2;
		argc--;
	}

	if (argc == 3) {
		unsigned int l = atoi(argv[arg]);
		unsigned int u = atoi(argv[arg + 1]);

		if (l < to && u < to) {
			from = l;
			to   = u + 1;
		}
	} else if (argc == 2) {
		unsigned int t = atoi(argv[arg]);

		if (t < to) {
			from = t;
			to   = t + 1;
		}
	}

	get_unpriv_disabled();
	if (unpriv && unpriv_disabled) {
		printf("Cannot run as unprivileged user with sysctl %s.\n",
		       UNPRIV_SYSCTL);
		return EXIT_FAILURE;
	}

	/* Use libbpf 1.0 API mode */
	libbpf_set_strict_mode(LIBBPF_STRICT_ALL);

	bpf_semi_rand_init();
	return do_test(unpriv, from, to);
}