1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
|
/*
* mdadm - manage Linux "md" devices aka RAID arrays.
*
* Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Neil Brown
* Email: <neilb@suse.de>
*/
#include "mdadm.h"
#include <stdint.h>
/* To restripe, we read from old geometry to a buffer, and
* read from buffer to new geometry.
* When reading, we might have missing devices and so could need
* to reconstruct.
* When writing, we need to create correct parity and Q.
*
*/
static int geo_map(int block, unsigned long long stripe, int raid_disks,
int level, int layout)
{
/* On the given stripe, find which disk in the array will have
* block numbered 'block'.
* '-1' means the parity block.
* '-2' means the Q syndrome.
*/
int pd;
/* layout is not relevant for raid0 and raid4 */
if ((level == 0) ||
(level == 4))
layout = 0;
switch(level*100 + layout) {
case 000:
case 400:
case 500 + ALGORITHM_PARITY_N:
/* raid 4 isn't messed around by parity blocks */
if (block == -1)
return raid_disks-1; /* parity block */
return block;
case 500 + ALGORITHM_LEFT_ASYMMETRIC:
pd = (raid_disks-1) - stripe % raid_disks;
if (block == -1) return pd;
if (block >= pd)
block++;
return block;
case 500 + ALGORITHM_RIGHT_ASYMMETRIC:
pd = stripe % raid_disks;
if (block == -1) return pd;
if (block >= pd)
block++;
return block;
case 500 + ALGORITHM_LEFT_SYMMETRIC:
pd = (raid_disks - 1) - stripe % raid_disks;
if (block == -1) return pd;
return (pd + 1 + block) % raid_disks;
case 500 + ALGORITHM_RIGHT_SYMMETRIC:
pd = stripe % raid_disks;
if (block == -1) return pd;
return (pd + 1 + block) % raid_disks;
case 500 + ALGORITHM_PARITY_0:
return block + 1;
case 600 + ALGORITHM_PARITY_N_6:
if (block == -2)
return raid_disks - 1;
if (block == -1)
return raid_disks - 2; /* parity block */
return block;
case 600 + ALGORITHM_LEFT_ASYMMETRIC_6:
if (block == -2)
return raid_disks - 1;
raid_disks--;
pd = (raid_disks-1) - stripe % raid_disks;
if (block == -1) return pd;
if (block >= pd)
block++;
return block;
case 600 + ALGORITHM_RIGHT_ASYMMETRIC_6:
if (block == -2)
return raid_disks - 1;
raid_disks--;
pd = stripe % raid_disks;
if (block == -1) return pd;
if (block >= pd)
block++;
return block;
case 600 + ALGORITHM_LEFT_SYMMETRIC_6:
if (block == -2)
return raid_disks - 1;
raid_disks--;
pd = (raid_disks - 1) - stripe % raid_disks;
if (block == -1) return pd;
return (pd + 1 + block) % raid_disks;
case 600 + ALGORITHM_RIGHT_SYMMETRIC_6:
if (block == -2)
return raid_disks - 1;
raid_disks--;
pd = stripe % raid_disks;
if (block == -1) return pd;
return (pd + 1 + block) % raid_disks;
case 600 + ALGORITHM_PARITY_0_6:
if (block == -2)
return raid_disks - 1;
return block + 1;
case 600 + ALGORITHM_PARITY_0:
if (block == -1)
return 0;
if (block == -2)
return 1;
return block + 2;
case 600 + ALGORITHM_LEFT_ASYMMETRIC:
pd = raid_disks - 1 - (stripe % raid_disks);
if (block == -1) return pd;
if (block == -2) return (pd+1) % raid_disks;
if (pd == raid_disks - 1)
return block+1;
if (block >= pd)
return block+2;
return block;
case 600 + ALGORITHM_ROTATING_ZERO_RESTART:
/* Different order for calculating Q, otherwize same as ... */
case 600 + ALGORITHM_RIGHT_ASYMMETRIC:
pd = stripe % raid_disks;
if (block == -1) return pd;
if (block == -2) return (pd+1) % raid_disks;
if (pd == raid_disks - 1)
return block+1;
if (block >= pd)
return block+2;
return block;
case 600 + ALGORITHM_LEFT_SYMMETRIC:
pd = raid_disks - 1 - (stripe % raid_disks);
if (block == -1) return pd;
if (block == -2) return (pd+1) % raid_disks;
return (pd + 2 + block) % raid_disks;
case 600 + ALGORITHM_RIGHT_SYMMETRIC:
pd = stripe % raid_disks;
if (block == -1) return pd;
if (block == -2) return (pd+1) % raid_disks;
return (pd + 2 + block) % raid_disks;
case 600 + ALGORITHM_ROTATING_N_RESTART:
/* Same a left_asymmetric, by first stripe is
* D D D P Q rather than
* Q D D D P
*/
pd = raid_disks - 1 - ((stripe + 1) % raid_disks);
if (block == -1) return pd;
if (block == -2) return (pd+1) % raid_disks;
if (pd == raid_disks - 1)
return block+1;
if (block >= pd)
return block+2;
return block;
case 600 + ALGORITHM_ROTATING_N_CONTINUE:
/* Same as left_symmetric but Q is before P */
pd = raid_disks - 1 - (stripe % raid_disks);
if (block == -1) return pd;
if (block == -2) return (pd+raid_disks-1) % raid_disks;
return (pd + 1 + block) % raid_disks;
}
return -1;
}
static int is_ddf(int layout)
{
switch (layout)
{
default:
return 0;
case ALGORITHM_ROTATING_N_CONTINUE:
case ALGORITHM_ROTATING_N_RESTART:
case ALGORITHM_ROTATING_ZERO_RESTART:
return 1;
}
}
static void xor_blocks(char *target, char **sources, int disks, int size)
{
int i, j;
/* Amazingly inefficient... */
for (i=0; i<size; i++) {
char c = 0;
for (j=0 ; j<disks; j++)
c ^= sources[j][i];
target[i] = c;
}
}
static void qsyndrome(uint8_t *p, uint8_t *q, uint8_t **sources, int disks, int size)
{
int d, z;
uint8_t wq0, wp0, wd0, w10, w20;
for ( d = 0; d < size; d++) {
wq0 = wp0 = sources[disks-1][d];
for ( z = disks-2 ; z >= 0 ; z-- ) {
wd0 = sources[z][d];
wp0 ^= wd0;
w20 = (wq0&0x80) ? 0xff : 0x00;
w10 = (wq0 << 1) & 0xff;
w20 &= 0x1d;
w10 ^= w20;
wq0 = w10 ^ wd0;
}
p[d] = wp0;
q[d] = wq0;
}
}
/*
* The following was taken from linux/drivers/md/mktables.c, and modified
* to create in-memory tables rather than C code
*/
static uint8_t gfmul(uint8_t a, uint8_t b)
{
uint8_t v = 0;
while (b) {
if (b & 1)
v ^= a;
a = (a << 1) ^ (a & 0x80 ? 0x1d : 0);
b >>= 1;
}
return v;
}
static uint8_t gfpow(uint8_t a, int b)
{
uint8_t v = 1;
b %= 255;
if (b < 0)
b += 255;
while (b) {
if (b & 1)
v = gfmul(v, a);
a = gfmul(a, a);
b >>= 1;
}
return v;
}
int tables_ready = 0;
uint8_t raid6_gfmul[256][256];
uint8_t raid6_gfexp[256];
uint8_t raid6_gfinv[256];
uint8_t raid6_gfexi[256];
uint8_t raid6_gflog[256];
uint8_t raid6_gfilog[256];
void make_tables(void)
{
int i, j;
uint8_t v;
uint32_t b, log;
/* Compute multiplication table */
for (i = 0; i < 256; i++)
for (j = 0; j < 256; j++)
raid6_gfmul[i][j] = gfmul(i, j);
/* Compute power-of-2 table (exponent) */
v = 1;
for (i = 0; i < 256; i++) {
raid6_gfexp[i] = v;
v = gfmul(v, 2);
if (v == 1)
v = 0; /* For entry 255, not a real entry */
}
/* Compute inverse table x^-1 == x^254 */
for (i = 0; i < 256; i++)
raid6_gfinv[i] = gfpow(i, 254);
/* Compute inv(2^x + 1) (exponent-xor-inverse) table */
for (i = 0; i < 256; i ++)
raid6_gfexi[i] = raid6_gfinv[raid6_gfexp[i] ^ 1];
/* Compute log and inverse log */
/* Modified code from:
* http://web.eecs.utk.edu/~plank/plank/papers/CS-96-332.html
*/
b = 1;
raid6_gflog[0] = 0;
raid6_gfilog[255] = 0;
for (log = 0; log < 255; log++) {
raid6_gflog[b] = (uint8_t) log;
raid6_gfilog[log] = (uint8_t) b;
b = b << 1;
if (b & 256) b = b ^ 0435;
}
tables_ready = 1;
}
uint8_t *zero;
/* Following was taken from linux/drivers/md/raid6recov.c */
/* Recover two failed data blocks. */
void raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
uint8_t **ptrs)
{
uint8_t *p, *q, *dp, *dq;
uint8_t px, qx, db;
const uint8_t *pbmul; /* P multiplier table for B data */
const uint8_t *qmul; /* Q multiplier table (for both) */
p = ptrs[disks-2];
q = ptrs[disks-1];
/* Compute syndrome with zero for the missing data pages
Use the dead data pages as temporary storage for
delta p and delta q */
dp = ptrs[faila];
ptrs[faila] = zero;
dq = ptrs[failb];
ptrs[failb] = zero;
qsyndrome(dp, dq, ptrs, disks-2, bytes);
/* Restore pointer table */
ptrs[faila] = dp;
ptrs[failb] = dq;
/* Now, pick the proper data tables */
pbmul = raid6_gfmul[raid6_gfexi[failb-faila]];
qmul = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]];
/* Now do it... */
while ( bytes-- ) {
px = *p ^ *dp;
qx = qmul[*q ^ *dq];
*dq++ = db = pbmul[px] ^ qx; /* Reconstructed B */
*dp++ = db ^ px; /* Reconstructed A */
p++; q++;
}
}
/* Recover failure of one data block plus the P block */
void raid6_datap_recov(int disks, size_t bytes, int faila, uint8_t **ptrs)
{
uint8_t *p, *q, *dq;
const uint8_t *qmul; /* Q multiplier table */
p = ptrs[disks-2];
q = ptrs[disks-1];
/* Compute syndrome with zero for the missing data page
Use the dead data page as temporary storage for delta q */
dq = ptrs[faila];
ptrs[faila] = zero;
qsyndrome(p, dq, ptrs, disks-2, bytes);
/* Restore pointer table */
ptrs[faila] = dq;
/* Now, pick the proper data tables */
qmul = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]]];
/* Now do it... */
while ( bytes-- ) {
*p++ ^= *dq = qmul[*q ^ *dq];
q++; dq++;
}
}
/* Try to find out if a specific disk has a problem */
int raid6_check_disks(int data_disks, int start, int chunk_size,
int level, int layout, int diskP, int diskQ,
char *p, char *q, char **stripes)
{
int i;
int data_id, diskD;
uint8_t Px, Qx;
int curr_broken_disk = -1;
int prev_broken_disk = -1;
int broken_status = 0;
for(i = 0; i < chunk_size; i++) {
Px = (uint8_t)stripes[diskP][i] ^ (uint8_t)p[i];
Qx = (uint8_t)stripes[diskQ][i] ^ (uint8_t)q[i];
if((Px != 0) && (Qx == 0))
curr_broken_disk = diskP;
if((Px == 0) && (Qx != 0))
curr_broken_disk = diskQ;
if((Px != 0) && (Qx != 0)) {
data_id = (raid6_gflog[Qx] - raid6_gflog[Px]) & 0xFF;
diskD = geo_map(data_id, start/chunk_size,
data_disks + 2, level, layout);
curr_broken_disk = diskD;
}
if((Px == 0) && (Qx == 0))
curr_broken_disk = curr_broken_disk;
switch(broken_status) {
case 0:
if(curr_broken_disk != -1) {
prev_broken_disk = curr_broken_disk;
broken_status = 1;
}
break;
case 1:
if(curr_broken_disk != prev_broken_disk)
broken_status = 2;
if(curr_broken_disk >= data_disks + 2)
broken_status = 2;
break;
case 2:
default:
curr_broken_disk = prev_broken_disk = -2;
break;
}
}
return curr_broken_disk;
}
/* Save data:
* We are given:
* A list of 'fds' of the active disks. Some may be absent.
* A geometry: raid_disks, chunk_size, level, layout
* A list of 'fds' for mirrored targets. They are already seeked to
* right (Write) location
* A start and length which must be stripe-aligned
* 'buf' is large enough to hold one stripe, and is aligned
*/
int save_stripes(int *source, unsigned long long *offsets,
int raid_disks, int chunk_size, int level, int layout,
int nwrites, int *dest,
unsigned long long start, unsigned long long length,
char *buf)
{
int len;
int data_disks = raid_disks - (level == 0 ? 0 : level <=5 ? 1 : 2);
int disk;
int i;
if (!tables_ready)
make_tables();
if (zero == NULL) {
zero = malloc(chunk_size);
memset(zero, 0, chunk_size);
}
len = data_disks * chunk_size;
while (length > 0) {
int failed = 0;
int fdisk[3], fblock[3];
for (disk = 0; disk < raid_disks ; disk++) {
unsigned long long offset;
int dnum;
offset = (start/chunk_size/data_disks)*chunk_size;
dnum = geo_map(disk < data_disks ? disk : data_disks - disk - 1,
start/chunk_size/data_disks,
raid_disks, level, layout);
if (dnum < 0) abort();
if (source[dnum] < 0 ||
lseek64(source[dnum], offsets[dnum]+offset, 0) < 0 ||
read(source[dnum], buf+disk * chunk_size, chunk_size)
!= chunk_size)
if (failed <= 2) {
fdisk[failed] = dnum;
fblock[failed] = disk;
failed++;
}
}
if (failed == 0 || fblock[0] >= data_disks)
/* all data disks are good */
;
else if (failed == 1 || fblock[1] >= data_disks+1) {
/* one failed data disk and good parity */
char *bufs[data_disks];
for (i=0; i < data_disks; i++)
if (fblock[0] == i)
bufs[i] = buf + data_disks*chunk_size;
else
bufs[i] = buf + i*chunk_size;
xor_blocks(buf + fblock[0]*chunk_size,
bufs, data_disks, chunk_size);
} else if (failed > 2 || level != 6)
/* too much failure */
return -1;
else {
/* RAID6 computations needed. */
uint8_t *bufs[data_disks+4];
int qdisk;
int syndrome_disks;
disk = geo_map(-1, start/chunk_size/data_disks,
raid_disks, level, layout);
qdisk = geo_map(-2, start/chunk_size/data_disks,
raid_disks, level, layout);
if (is_ddf(layout)) {
/* q over 'raid_disks' blocks, in device order.
* 'p' and 'q' get to be all zero
*/
for (i = 0; i < raid_disks; i++)
bufs[i] = zero;
for (i = 0; i < data_disks; i++) {
int dnum = geo_map(i,
start/chunk_size/data_disks,
raid_disks, level, layout);
int snum;
/* i is the logical block number, so is index to 'buf'.
* dnum is physical disk number
* and thus the syndrome number.
*/
snum = dnum;
bufs[snum] = (uint8_t*)buf + chunk_size * i;
}
syndrome_disks = raid_disks;
} else {
/* for md, q is over 'data_disks' blocks,
* starting immediately after 'q'
* Note that for the '_6' variety, the p block
* makes a hole that we need to be careful of.
*/
int j;
int snum = 0;
for (j = 0; j < raid_disks; j++) {
int dnum = (qdisk + 1 + j) % raid_disks;
if (dnum == disk || dnum == qdisk)
continue;
for (i = 0; i < data_disks; i++)
if (geo_map(i,
start/chunk_size/data_disks,
raid_disks, level, layout) == dnum)
break;
/* i is the logical block number, so is index to 'buf'.
* dnum is physical disk number
* snum is syndrome disk for which 0 is immediately after Q
*/
bufs[snum] = (uint8_t*)buf + chunk_size * i;
if (fblock[0] == i)
fdisk[0] = snum;
if (fblock[1] == i)
fdisk[1] = snum;
snum++;
}
syndrome_disks = data_disks;
}
/* Place P and Q blocks at end of bufs */
bufs[syndrome_disks] = (uint8_t*)buf + chunk_size * data_disks;
bufs[syndrome_disks+1] = (uint8_t*)buf + chunk_size * (data_disks+1);
if (fblock[1] == data_disks)
/* One data failed, and parity failed */
raid6_datap_recov(syndrome_disks+2, chunk_size,
fdisk[0], bufs);
else {
if (fdisk[0] > fdisk[1]) {
int t = fdisk[0];
fdisk[0] = fdisk[1];
fdisk[1] = t;
}
/* Two data blocks failed, P,Q OK */
raid6_2data_recov(syndrome_disks+2, chunk_size,
fdisk[0], fdisk[1], bufs);
}
}
for (i=0; i<nwrites; i++)
if (write(dest[i], buf, len) != len)
return -1;
length -= len;
start += len;
}
return 0;
}
/* Restore data:
* We are given:
* A list of 'fds' of the active disks. Some may be '-1' for not-available.
* A geometry: raid_disks, chunk_size, level, layout
* An 'fd' to read from. It is already seeked to the right (Read) location.
* A start and length.
* The length must be a multiple of the stripe size.
*
* We build a full stripe in memory and then write it out.
* We assume that there are enough working devices.
*/
int restore_stripes(int *dest, unsigned long long *offsets,
int raid_disks, int chunk_size, int level, int layout,
int source, unsigned long long read_offset,
unsigned long long start, unsigned long long length)
{
char *stripe_buf;
char **stripes = malloc(raid_disks * sizeof(char*));
char **blocks = malloc(raid_disks * sizeof(char*));
int i;
int data_disks = raid_disks - (level == 0 ? 0 : level <= 5 ? 1 : 2);
if (posix_memalign((void**)&stripe_buf, 4096, raid_disks * chunk_size))
stripe_buf = NULL;
if (zero == NULL) {
zero = malloc(chunk_size);
if (zero)
memset(zero, 0, chunk_size);
}
if (stripe_buf == NULL || stripes == NULL || blocks == NULL
|| zero == NULL) {
free(stripe_buf);
free(stripes);
free(blocks);
free(zero);
return -2;
}
for (i=0; i<raid_disks; i++)
stripes[i] = stripe_buf + i * chunk_size;
while (length > 0) {
unsigned int len = data_disks * chunk_size;
unsigned long long offset;
int disk, qdisk;
int syndrome_disks;
if (length < len)
return -3;
for (i=0; i < data_disks; i++) {
int disk = geo_map(i, start/chunk_size/data_disks,
raid_disks, level, layout);
if ((unsigned long long)lseek64(source, read_offset, 0)
!= read_offset)
return -1;
if (read(source, stripes[disk],
chunk_size) != chunk_size)
return -1;
read_offset += chunk_size;
}
/* We have the data, now do the parity */
offset = (start/chunk_size/data_disks) * chunk_size;
switch (level) {
case 4:
case 5:
disk = geo_map(-1, start/chunk_size/data_disks,
raid_disks, level, layout);
for (i = 0; i < data_disks; i++)
blocks[i] = stripes[(disk+1+i) % raid_disks];
xor_blocks(stripes[disk], blocks, data_disks, chunk_size);
break;
case 6:
disk = geo_map(-1, start/chunk_size/data_disks,
raid_disks, level, layout);
qdisk = geo_map(-2, start/chunk_size/data_disks,
raid_disks, level, layout);
if (is_ddf(layout)) {
/* q over 'raid_disks' blocks, in device order.
* 'p' and 'q' get to be all zero
*/
for (i = 0; i < raid_disks; i++)
if (i == disk || i == qdisk)
blocks[i] = (char*)zero;
else
blocks[i] = stripes[i];
syndrome_disks = raid_disks;
} else {
/* for md, q is over 'data_disks' blocks,
* starting immediately after 'q'
*/
for (i = 0; i < data_disks; i++)
blocks[i] = stripes[(qdisk+1+i) % raid_disks];
syndrome_disks = data_disks;
}
qsyndrome((uint8_t*)stripes[disk],
(uint8_t*)stripes[qdisk],
(uint8_t**)blocks,
syndrome_disks, chunk_size);
break;
}
for (i=0; i < raid_disks ; i++)
if (dest[i] >= 0) {
if (lseek64(dest[i], offsets[i]+offset, 0) < 0)
return -1;
if (write(dest[i], stripes[i], chunk_size) != chunk_size)
return -1;
}
length -= len;
start += len;
}
return 0;
}
#ifdef MAIN
int test_stripes(int *source, unsigned long long *offsets,
int raid_disks, int chunk_size, int level, int layout,
unsigned long long start, unsigned long long length)
{
/* ready the data and p (and q) blocks, and check we got them right */
char *stripe_buf = malloc(raid_disks * chunk_size);
char **stripes = malloc(raid_disks * sizeof(char*));
char **blocks = malloc(raid_disks * sizeof(char*));
char *p = malloc(chunk_size);
char *q = malloc(chunk_size);
int i;
int diskP, diskQ;
int data_disks = raid_disks - (level == 5 ? 1: 2);
if (!tables_ready)
make_tables();
for ( i = 0 ; i < raid_disks ; i++)
stripes[i] = stripe_buf + i * chunk_size;
while (length > 0) {
int disk;
for (i = 0 ; i < raid_disks ; i++) {
lseek64(source[i], offsets[i]+start, 0);
read(source[i], stripes[i], chunk_size);
}
for (i = 0 ; i < data_disks ; i++) {
int disk = geo_map(i, start/chunk_size, raid_disks,
level, layout);
blocks[i] = stripes[disk];
printf("%d->%d\n", i, disk);
}
switch(level) {
case 6:
qsyndrome(p, q, (uint8_t**)blocks, data_disks, chunk_size);
diskP = geo_map(-1, start/chunk_size, raid_disks,
level, layout);
if (memcmp(p, stripes[diskP], chunk_size) != 0) {
printf("P(%d) wrong at %llu\n", diskP,
start / chunk_size);
}
diskQ = geo_map(-2, start/chunk_size, raid_disks,
level, layout);
if (memcmp(q, stripes[diskQ], chunk_size) != 0) {
printf("Q(%d) wrong at %llu\n", diskQ,
start / chunk_size);
}
disk = raid6_check_disks(data_disks, start, chunk_size,
level, layout, diskP, diskQ,
p, q, stripes);
if(disk >= 0) {
printf("Possible failed disk: %d\n", disk);
}
if(disk == -2) {
printf("Failure detected, but disk unknown\n");
}
break;
}
length -= chunk_size;
start += chunk_size;
}
return 0;
}
unsigned long long getnum(char *str, char **err)
{
char *e;
unsigned long long rv = strtoull(str, &e, 10);
if (e==str || *e) {
*err = str;
return 0;
}
return rv;
}
main(int argc, char *argv[])
{
/* save/restore file raid_disks chunk_size level layout start length devices...
*/
int save;
int *fds;
char *file;
char *buf;
int storefd;
unsigned long long *offsets;
int raid_disks, chunk_size, level, layout;
unsigned long long start, length;
int i;
char *err = NULL;
if (argc < 10) {
fprintf(stderr, "Usage: test_stripe save/restore file raid_disks"
" chunk_size level layout start length devices...\n");
exit(1);
}
if (strcmp(argv[1], "save")==0)
save = 1;
else if (strcmp(argv[1], "restore") == 0)
save = 0;
else if (strcmp(argv[1], "test") == 0)
save = 2;
else {
fprintf(stderr, "test_stripe: must give 'save' or 'restore'.\n");
exit(2);
}
file = argv[2];
raid_disks = getnum(argv[3], &err);
chunk_size = getnum(argv[4], &err);
level = getnum(argv[5], &err);
layout = getnum(argv[6], &err);
start = getnum(argv[7], &err);
length = getnum(argv[8], &err);
if (err) {
fprintf(stderr, "test_stripe: Bad number: %s\n", err);
exit(2);
}
if (argc != raid_disks + 9) {
fprintf(stderr, "test_stripe: wrong number of devices: want %d found %d\n",
raid_disks, argc-9);
exit(2);
}
fds = malloc(raid_disks * sizeof(*fds));
offsets = malloc(raid_disks * sizeof(*offsets));
memset(offsets, 0, raid_disks * sizeof(*offsets));
storefd = open(file, O_RDWR);
if (storefd < 0) {
perror(file);
fprintf(stderr, "test_stripe: could not open %s.\n", file);
exit(3);
}
for (i=0; i<raid_disks; i++) {
fds[i] = open(argv[9+i], O_RDWR);
if (fds[i] < 0) {
perror(argv[9+i]);
fprintf(stderr,"test_stripe: cannot open %s.\n", argv[9+i]);
exit(3);
}
}
buf = malloc(raid_disks * chunk_size);
if (save == 1) {
int rv = save_stripes(fds, offsets,
raid_disks, chunk_size, level, layout,
1, &storefd,
start, length, buf);
if (rv != 0) {
fprintf(stderr,
"test_stripe: save_stripes returned %d\n", rv);
exit(1);
}
} else if (save == 2) {
int rv = test_stripes(fds, offsets,
raid_disks, chunk_size, level, layout,
start, length);
if (rv != 0) {
fprintf(stderr,
"test_stripe: test_stripes returned %d\n", rv);
exit(1);
}
} else {
int rv = restore_stripes(fds, offsets,
raid_disks, chunk_size, level, layout,
storefd, 0ULL,
start, length);
if (rv != 0) {
fprintf(stderr,
"test_stripe: restore_stripes returned %d\n",
rv);
exit(1);
}
}
exit(0);
}
#endif /* MAIN */
|