diff options
author | Andrey Matyukov <andrey.matyukov@intel.com> | 2021-06-09 23:38:40 +0200 |
---|---|---|
committer | Tomas Mraz <tomas@openssl.org> | 2022-02-10 15:10:12 +0100 |
commit | 63b996e752ac698186c38177232280e6515d571b (patch) | |
tree | 3459936d5b244fffd86273289f9c35e23f76230b /crypto/modes | |
parent | Fix outdated comments (diff) | |
download | openssl-63b996e752ac698186c38177232280e6515d571b.tar.xz openssl-63b996e752ac698186c38177232280e6515d571b.zip |
AES-GCM enabled with AVX512 vAES and vPCLMULQDQ.
Vectorized 'stitched' encrypt + ghash implementation of AES-GCM enabled
with AVX512 vAES and vPCLMULQDQ instructions (available starting Intel's
IceLake micro-architecture).
The performance details for representative IceLake Server and Client
platforms are shown below
Performance data:
OpenSSL Speed KBs/Sec
Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz (1Core/1Thread)
Payload in Bytes 16 64 256 1024 8192 16384
AES-128-GCM
Baseline 478708.27 1118296.96 2428092.52 3518199.4 4172355.99 4235762.07
Patched 534613.95 2009345.55 3775588.15 5059517.64 8476794.88 8941541.79
Speedup 1.12 1.80 1.55 1.44 2.03 2.11
AES-256-GCM
Baseline 399237.27 961699.9 2136377.65 2979889.15 3554823.37 3617757.5
Patched 475948.13 1720128.51 3462407.12 4696832.2 7532013.16 7924953.91
Speedup 1.19 1.79 1.62 1.58 2.12 2.19
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz (1Core/1Thread)
Payload in Bytes 16 64 256 1024 8192 16384
AES-128-GCM
Baseline 259128.54 570756.43 1362554.16 1990654.57 2359128.88 2401671.58
Patched 292139.47 1079320.95 2001974.63 2829007.46 4510318.59 4705314.41
Speedup 1.13 1.89 1.47 1.42 1.91 1.96
AES-256-GCM
Baseline 236000.34 550506.76 1234638.08 1716734.57 2011255.6 2028099.99
Patched 247256.32 919731.34 1773270.43 2553239.55 3953115.14 4111227.29
Speedup 1.05 1.67 1.44 1.49 1.97 2.03
Reviewed-by: TJ O'Dwyer, Marcel Cornu, Pablo de Lara
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/17239)
Diffstat (limited to 'crypto/modes')
-rw-r--r-- | crypto/modes/asm/aes-gcm-avx512.pl | 4975 | ||||
-rw-r--r-- | crypto/modes/build.info | 3 |
2 files changed, 4977 insertions, 1 deletions
diff --git a/crypto/modes/asm/aes-gcm-avx512.pl b/crypto/modes/asm/aes-gcm-avx512.pl new file mode 100644 index 0000000000..1c7ee8769a --- /dev/null +++ b/crypto/modes/asm/aes-gcm-avx512.pl @@ -0,0 +1,4975 @@ +# Copyright 2021 The OpenSSL Project Authors. All Rights Reserved. +# Copyright (c) 2021, Intel Corporation. All Rights Reserved. +# +# Licensed under the Apache License 2.0 (the "License"). You may not use +# this file except in compliance with the License. You can obtain a copy +# in the file LICENSE in the source distribution or at +# https://www.openssl.org/source/license.html +# +# +# This implementation is based on the AES-GCM code (AVX512VAES + VPCLMULQDQ) +# from Intel(R) Multi-Buffer Crypto for IPsec Library v1.1 +# (https://github.com/intel/intel-ipsec-mb). +# Original author is Tomasz Kantecki <tomasz.kantecki@intel.com>. +# +# References: +# [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on +# Intel Architecture Processors. August, 2010. +# [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on +# Intel Architecture Processors. October, 2012. +# [3] Shay Gueron et. al. Intel Carry-Less Multiplication Instruction and its +# Usage for Computing the GCM Mode. May, 2010. +# +# +# December 2021 +# +# Initial release. +# +# GCM128_CONTEXT structure has storage for 16 hkeys only, but this +# implementation can use up to 48. To avoid extending the context size, +# precompute and store in the context first 16 hkeys only, and compute the rest +# on demand keeping them in the local frame. +# +#====================================================================== +# $output is the last argument if it looks like a file (it has an extension) +# $flavour is the first argument if it doesn't look like a file +$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef; +$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef; + +$win64 = 0; +$win64 = 1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); + +$avx512vaes = 0; + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; +$dir = $1; +($xlate = "${dir}x86_64-xlate.pl" and -f $xlate) + or ($xlate = "${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) + or die "can't locate x86_64-xlate.pl"; + +if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { + $avx512vaes = ($1 >= 2.30); +} + +if (!$avx512vaes + && $win64 + && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) + && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) +{ + $avx512vaes = ($1 == 2.13 && $2 >= 3) + ($1 >= 2.14); +} + +if (!$avx512vaes && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { + $avx512vaes = ($2 >= 7.0); +} + +open OUT, "| \"$^X\" \"$xlate\" $flavour \"$output\"" + or die "can't call $xlate: $!"; +*STDOUT = *OUT; + +#====================================================================== +if ($avx512vaes>0) { #<<< + +$code .= <<___; +.extern OPENSSL_ia32cap_P +.globl ossl_vaes_vpclmulqdq_capable +.type ossl_vaes_vpclmulqdq_capable,\@abi-omnipotent +.align 32 +ossl_vaes_vpclmulqdq_capable: + mov OPENSSL_ia32cap_P+8(%rip), %rcx + # avx512vpclmulqdq + avx512vaes + avx512vl + avx512bw + avx512dq + avx512f + mov \$`1<<42|1<<41|1<<31|1<<30|1<<17|1<<16`,%rdx + xor %eax,%eax + and %rdx,%rcx + cmp %rdx,%rcx + cmove %rcx,%rax + ret +.size ossl_vaes_vpclmulqdq_capable, .-ossl_vaes_vpclmulqdq_capable +___ + +# ; Mapping key length -> AES rounds count +my %aes_rounds = ( + 128 => 9, + 192 => 11, + 256 => 13); + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; Code generation control switches +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +# ; ABI-aware zeroing of volatile registers in EPILOG(). +# ; Disabled due to performance reasons. +my $CLEAR_SCRATCH_REGISTERS = 0; + +# ; Zero HKeys storage from the stack if they are stored there +my $CLEAR_HKEYS_STORAGE_ON_EXIT = 1; + +# ; Enable / disable check of function arguments for null pointer +# ; Currently disabled, as this check is handled outside. +my $CHECK_FUNCTION_ARGUMENTS = 0; + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; Global constants +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +# AES block size in bytes +my $AES_BLOCK_SIZE = 16; + +# Storage capacity in elements +my $HKEYS_STORAGE_CAPACITY = 48; +my $LOCAL_STORAGE_CAPACITY = 48; +my $HKEYS_CONTEXT_CAPACITY = 16; + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; Stack frame definition +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +# (1) -> +64(Win)/+48(Lin)-byte space for pushed GPRs +# (2) -> +8-byte space for 16-byte alignment of XMM storage +# (3) -> Frame pointer (%RBP) +# (4) -> +160-byte XMM storage (Windows only, zero on Linux) +# (5) -> +48-byte space for 64-byte alignment of %RSP from p.8 +# (6) -> +768-byte LOCAL storage (optional, can be omitted in some functions) +# (7) -> +768-byte HKEYS storage +# (8) -> Stack pointer (%RSP) aligned on 64-byte boundary + +my $GP_STORAGE = $win64 ? 8 * 8 : 8 * 6; # ; space for saved non-volatile GP registers (pushed on stack) +my $XMM_STORAGE = $win64 ? (10 * 16) : 0; # ; space for saved XMM registers +my $HKEYS_STORAGE = ($HKEYS_STORAGE_CAPACITY * $AES_BLOCK_SIZE); # ; space for HKeys^i, i=1..48 +my $LOCAL_STORAGE = ($LOCAL_STORAGE_CAPACITY * $AES_BLOCK_SIZE); # ; space for up to 48 AES blocks + +my $STACK_HKEYS_OFFSET = 0; +my $STACK_LOCAL_OFFSET = ($STACK_HKEYS_OFFSET + $HKEYS_STORAGE); + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; Function arguments abstraction +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +my ($arg1, $arg2, $arg3, $arg4, $arg5, $arg6, $arg7, $arg8, $arg9, $arg10, $arg11); + +# ; This implementation follows the convention: for non-leaf functions (they +# ; must call PROLOG) %rbp is used as a frame pointer, and has fixed offset from +# ; the function entry: $GP_STORAGE + [8 bytes alignment (Windows only)]. This +# ; helps to facilitate SEH handlers writing. +# +# ; Leaf functions here do not use more than 4 input arguments. +if ($win64) { + $arg1 = "%rcx"; + $arg2 = "%rdx"; + $arg3 = "%r8"; + $arg4 = "%r9"; + $arg5 = "`$GP_STORAGE + 8 + 8*5`(%rbp)"; # +8 - alignment bytes + $arg6 = "`$GP_STORAGE + 8 + 8*6`(%rbp)"; + $arg7 = "`$GP_STORAGE + 8 + 8*7`(%rbp)"; + $arg8 = "`$GP_STORAGE + 8 + 8*8`(%rbp)"; + $arg9 = "`$GP_STORAGE + 8 + 8*9`(%rbp)"; + $arg10 = "`$GP_STORAGE + 8 + 8*10`(%rbp)"; + $arg11 = "`$GP_STORAGE + 8 + 8*11`(%rbp)"; +} else { + $arg1 = "%rdi"; + $arg2 = "%rsi"; + $arg3 = "%rdx"; + $arg4 = "%rcx"; + $arg5 = "%r8"; + $arg6 = "%r9"; + $arg7 = "`$GP_STORAGE + 8*1`(%rbp)"; + $arg8 = "`$GP_STORAGE + 8*2`(%rbp)"; + $arg9 = "`$GP_STORAGE + 8*3`(%rbp)"; + $arg10 = "`$GP_STORAGE + 8*4`(%rbp)"; + $arg11 = "`$GP_STORAGE + 8*5`(%rbp)"; +} + +# ; Offsets in gcm128_context structure (see include/crypto/modes.h) +my $CTX_OFFSET_CurCount = (16 * 0); # ; (Yi) Current counter for generation of encryption key +my $CTX_OFFSET_PEncBlock = (16 * 1); # ; (repurposed EKi field) Partial block buffer +my $CTX_OFFSET_EK0 = (16 * 2); # ; (EK0) Encrypted Y0 counter (see gcm spec notation) +my $CTX_OFFSET_AadLen = (16 * 3); # ; (len.u[0]) Length of Hash which has been input +my $CTX_OFFSET_InLen = ((16 * 3) + 8); # ; (len.u[1]) Length of input data which will be encrypted or decrypted +my $CTX_OFFSET_AadHash = (16 * 4); # ; (Xi) Current hash +my $CTX_OFFSET_HTable = (16 * 6); # ; (Htable) Precomputed table (allows 16 values) + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; Helper functions +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +# ; Generates "random" local labels +sub random_string() { + my @chars = ('a' .. 'z', 'A' .. 'Z', '0' .. '9', '_'); + my $length = 15; + my $str; + map { $str .= $chars[rand(33)] } 1 .. $length; + return $str; +} + +sub BYTE { + my ($reg) = @_; + if ($reg =~ /%r[abcd]x/i) { + $reg =~ s/%r([abcd])x/%${1}l/i; + } elsif ($reg =~ /%r[sdb][ip]/i) { + $reg =~ s/%r([sdb][ip])/%${1}l/i; + } elsif ($reg =~ /%r[0-9]{1,2}/i) { + $reg =~ s/%(r[0-9]{1,2})/%${1}b/i; + } else { + die "BYTE: unknown register: $reg\n"; + } + return $reg; +} + +sub WORD { + my ($reg) = @_; + if ($reg =~ /%r[abcdsdb][xip]/i) { + $reg =~ s/%r([abcdsdb])([xip])/%${1}${2}/i; + } elsif ($reg =~ /%r[0-9]{1,2}/) { + $reg =~ s/%(r[0-9]{1,2})/%${1}w/i; + } else { + die "WORD: unknown register: $reg\n"; + } + return $reg; +} + +sub DWORD { + my ($reg) = @_; + if ($reg =~ /%r[abcdsdb][xip]/i) { + $reg =~ s/%r([abcdsdb])([xip])/%e${1}${2}/i; + } elsif ($reg =~ /%r[0-9]{1,2}/i) { + $reg =~ s/%(r[0-9]{1,2})/%${1}d/i; + } else { + die "DWORD: unknown register: $reg\n"; + } + return $reg; +} + +sub XWORD { + my ($reg) = @_; + if ($reg =~ /%[xyz]mm/i) { + $reg =~ s/%[xyz]mm/%xmm/i; + } else { + die "XWORD: unknown register: $reg\n"; + } + return $reg; +} + +sub YWORD { + my ($reg) = @_; + if ($reg =~ /%[xyz]mm/i) { + $reg =~ s/%[xyz]mm/%ymm/i; + } else { + die "YWORD: unknown register: $reg\n"; + } + return $reg; +} + +sub ZWORD { + my ($reg) = @_; + if ($reg =~ /%[xyz]mm/i) { + $reg =~ s/%[xyz]mm/%zmm/i; + } else { + die "ZWORD: unknown register: $reg\n"; + } + return $reg; +} + +# ; Helper function to construct effective address based on two kinds of +# ; offsets: numerical or located in the register +sub EffectiveAddress { + my ($base, $offset, $displacement) = @_; + $displacement = 0 if (!$displacement); + + if ($offset =~ /^\d+\z/) { # numerical offset + return "`$offset + $displacement`($base)"; + } else { # offset resides in register + return "$displacement($base,$offset,1)"; + } +} + +# ; Provides memory location of corresponding HashKey power +sub HashKeyByIdx { + my ($idx, $base) = @_; + my $base_str = ($base eq "%rsp") ? "frame" : "context"; + + my $offset = &HashKeyOffsetByIdx($idx, $base_str); + return "$offset($base)"; +} + +# ; Provides offset (in bytes) of corresponding HashKey power from the highest key in the storage +sub HashKeyOffsetByIdx { + my ($idx, $base) = @_; + die "HashKeyOffsetByIdx: base should be either 'frame' or 'context'; base = $base" + if (($base ne "frame") && ($base ne "context")); + + my $offset_base; + my $offset_idx; + if ($base eq "frame") { # frame storage + die "HashKeyOffsetByIdx: idx out of bounds (1..48)! idx = $idx\n" if ($idx > $HKEYS_STORAGE_CAPACITY || $idx < 1); + $offset_base = $STACK_HKEYS_OFFSET; + $offset_idx = ($AES_BLOCK_SIZE * ($HKEYS_STORAGE_CAPACITY - $idx)); + } else { # context storage + die "HashKeyOffsetByIdx: idx out of bounds (1..16)! idx = $idx\n" if ($idx > $HKEYS_CONTEXT_CAPACITY || $idx < 1); + $offset_base = $CTX_OFFSET_HTable; + $offset_idx = ($AES_BLOCK_SIZE * ($HKEYS_CONTEXT_CAPACITY - $idx)); + } + return $offset_base + $offset_idx; +} + +# ; Creates local frame and does back up of non-volatile registers. +# ; Holds stack unwinding directives. +sub PROLOG { + my ($need_hkeys_stack_storage, $need_aes_stack_storage, $func_name) = @_; + + my $DYNAMIC_STACK_ALLOC_SIZE = 0; + my $DYNAMIC_STACK_ALLOC_ALIGNMENT_SPACE = $win64 ? 48 : 52; + + if ($need_hkeys_stack_storage) { + $DYNAMIC_STACK_ALLOC_SIZE += $HKEYS_STORAGE; + } + + if ($need_aes_stack_storage) { + if (!$need_hkeys_stack_storage) { + die "PROLOG: unsupported case - aes storage without hkeys one"; + } + $DYNAMIC_STACK_ALLOC_SIZE += $LOCAL_STORAGE; + } + + $code .= <<___; + push %rbx +.cfi_push %rbx +.L${func_name}_seh_push_rbx: + push %rbp +.cfi_push %rbp +.L${func_name}_seh_push_rbp: + push %r12 +.cfi_push %r12 +.L${func_name}_seh_push_r12: + push %r13 +.cfi_push %r13 +.L${func_name}_seh_push_r13: + push %r14 +.cfi_push %r14 +.L${func_name}_seh_push_r14: + push %r15 +.cfi_push %r15 +.L${func_name}_seh_push_r15: +___ + + if ($win64) { + $code .= <<___; + push %rdi +.L${func_name}_seh_push_rdi: + push %rsi +.L${func_name}_seh_push_rsi: + + sub \$`$XMM_STORAGE+8`,%rsp # +8 alignment +.L${func_name}_seh_allocstack_xmm: +___ + } + $code .= <<___; + # ; %rbp contains stack pointer right after GP regs pushed at stack + [8 + # ; bytes of alignment (Windows only)]. It serves as a frame pointer in SEH + # ; handlers. The requirement for a frame pointer is that its offset from + # ; RSP shall be multiple of 16, and not exceed 240 bytes. The frame pointer + # ; itself seems to be reasonable to use here, because later we do 64-byte stack + # ; alignment which gives us non-determinate offsets and complicates writing + # ; SEH handlers. + # + # ; It also serves as an anchor for retrieving stack arguments on both Linux + # ; and Windows. + lea `$XMM_STORAGE`(%rsp),%rbp +.cfi_def_cfa_register %rbp +.L${func_name}_seh_setfp: +___ + if ($win64) { + + # ; xmm6:xmm15 need to be preserved on Windows + foreach my $reg_idx (6 .. 15) { + my $xmm_reg_offset = ($reg_idx - 6) * 16; + $code .= <<___; + vmovdqu %xmm${reg_idx},$xmm_reg_offset(%rsp) +.L${func_name}_seh_save_xmm${reg_idx}: +___ + } + } + + $code .= <<___; +# Prolog ends here. Next stack allocation is treated as "dynamic". +.L${func_name}_seh_prolog_end: +___ + + if ($DYNAMIC_STACK_ALLOC_SIZE) { + $code .= <<___; + sub \$`$DYNAMIC_STACK_ALLOC_SIZE + $DYNAMIC_STACK_ALLOC_ALIGNMENT_SPACE`,%rsp + and \$(-64),%rsp +___ + } +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; Restore register content for the caller. +# ;;; And cleanup stack. +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +sub EPILOG { + my ($hkeys_storage_on_stack, $payload_len) = @_; + + my $rndsuffix = &random_string(); + + if ($hkeys_storage_on_stack && $CLEAR_HKEYS_STORAGE_ON_EXIT) { + + # ; There is no need in hkeys cleanup if payload len was small, i.e. no hkeys + # ; were stored in the local frame storage + $code .= <<___; + cmpq \$`16*16`,$payload_len + jbe .Lskip_hkeys_cleanup_${rndsuffix} + vpxor %xmm0,%xmm0,%xmm0 +___ + for (my $i = 0; $i < int($HKEYS_STORAGE / 64); $i++) { + $code .= "vmovdqa64 %zmm0,`$STACK_HKEYS_OFFSET + 64*$i`(%rsp)\n"; + } + $code .= ".Lskip_hkeys_cleanup_${rndsuffix}:\n"; + } + + if ($CLEAR_SCRATCH_REGISTERS) { + &clear_scratch_gps_asm(); + &clear_scratch_zmms_asm(); + } else { + $code .= "vzeroupper\n"; + } + + if ($win64) { + + # ; restore xmm15:xmm6 + for (my $reg_idx = 15; $reg_idx >= 6; $reg_idx--) { + my $xmm_reg_offset = -$XMM_STORAGE + ($reg_idx - 6) * 16; + $code .= <<___; + vmovdqu $xmm_reg_offset(%rbp),%xmm${reg_idx}, +___ + } + } + + if ($win64) { + + # Forming valid epilog for SEH with use of frame pointer. + # https://docs.microsoft.com/en-us/cpp/build/prolog-and-epilog?view=msvc-160#epilog-code + $code .= "lea 8(%rbp),%rsp\n"; + } else { + $code .= "lea (%rbp),%rsp\n"; + $code .= ".cfi_def_cfa_register %rsp\n"; + } + + if ($win64) { + $code .= <<___; + pop %rsi +.cfi_pop %rsi + pop %rdi +.cfi_pop %rdi +___ + } + $code .= <<___; + pop %r15 +.cfi_pop %r15 + pop %r14 +.cfi_pop %r14 + pop %r13 +.cfi_pop %r13 + pop %r12 +.cfi_pop %r12 + pop %rbp +.cfi_pop %rbp + pop %rbx +.cfi_pop %rbx +___ +} + +# ; Clears all scratch ZMM registers +# ; +# ; It should be called before restoring the XMM registers +# ; for Windows (XMM6-XMM15). +# ; +sub clear_scratch_zmms_asm { + + # ; On Linux, all ZMM registers are scratch registers + if (!$win64) { + $code .= "vzeroall\n"; + } else { + foreach my $i (0 .. 5) { + $code .= "vpxorq %xmm${i},%xmm${i},%xmm${i}\n"; + } + } + foreach my $i (16 .. 31) { + $code .= "vpxorq %xmm${i},%xmm${i},%xmm${i}\n"; + } +} + +# Clears all scratch GP registers +sub clear_scratch_gps_asm { + foreach my $reg ("%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11") { + $code .= "xor $reg,$reg\n"; + } + if (!$win64) { + foreach my $reg ("%rsi", "%rdi") { + $code .= "xor $reg,$reg\n"; + } + } +} + +sub precompute_hkeys_on_stack { + my $GCM128_CTX = $_[0]; + my $HKEYS_READY = $_[1]; + my $ZTMP0 = $_[2]; + my $ZTMP1 = $_[3]; + my $ZTMP2 = $_[4]; + my $ZTMP3 = $_[5]; + my $ZTMP4 = $_[6]; + my $ZTMP5 = $_[7]; + my $ZTMP6 = $_[8]; + my $HKEYS_RANGE = $_[9]; # ; "first16", "mid16", "all", "first32", "last32" + + die "precompute_hkeys_on_stack: Unexpected value of HKEYS_RANGE: $HKEYS_RANGE" + if ($HKEYS_RANGE ne "first16" + && $HKEYS_RANGE ne "mid16" + && $HKEYS_RANGE ne "all" + && $HKEYS_RANGE ne "first32" + && $HKEYS_RANGE ne "last32"); + + my $rndsuffix = &random_string(); + + $code .= <<___; + test $HKEYS_READY,$HKEYS_READY + jnz .L_skip_hkeys_precomputation_${rndsuffix} +___ + + if ($HKEYS_RANGE eq "first16" || $HKEYS_RANGE eq "first32" || $HKEYS_RANGE eq "all") { + + # ; Fill the stack with the first 16 hkeys from the context + $code .= <<___; + # ; Move 16 hkeys from the context to stack + vmovdqu64 @{[HashKeyByIdx(4,$GCM128_CTX)]},$ZTMP0 + vmovdqu64 $ZTMP0,@{[HashKeyByIdx(4,"%rsp")]} + + vmovdqu64 @{[HashKeyByIdx(8,$GCM128_CTX)]},$ZTMP1 + vmovdqu64 $ZTMP1,@{[HashKeyByIdx(8,"%rsp")]} + + # ; broadcast HashKey^8 + vshufi64x2 \$0x00,$ZTMP1,$ZTMP1,$ZTMP1 + + vmovdqu64 @{[HashKeyByIdx(12,$GCM128_CTX)]},$ZTMP2 + vmovdqu64 $ZTMP2,@{[HashKeyByIdx(12,"%rsp")]} + + vmovdqu64 @{[HashKeyByIdx(16,$GCM128_CTX)]},$ZTMP3 + vmovdqu64 $ZTMP3,@{[HashKeyByIdx(16,"%rsp")]} +___ + } + + if ($HKEYS_RANGE eq "mid16" || $HKEYS_RANGE eq "last32") { + $code .= <<___; + vmovdqu64 @{[HashKeyByIdx(8,"%rsp")]},$ZTMP1 + + # ; broadcast HashKey^8 + vshufi64x2 \$0x00,$ZTMP1,$ZTMP1,$ZTMP1 + + vmovdqu64 @{[HashKeyByIdx(12,"%rsp")]},$ZTMP2 + vmovdqu64 @{[HashKeyByIdx(16,"%rsp")]},$ZTMP3 +___ + + } + + if ($HKEYS_RANGE eq "mid16" || $HKEYS_RANGE eq "first32" || $HKEYS_RANGE eq "last32" || $HKEYS_RANGE eq "all") { + + # ; Precompute hkeys^i, i=17..32 + my $i = 20; + foreach (1 .. int((32 - 16) / 8)) { + + # ;; compute HashKey^(4 + n), HashKey^(3 + n), ... HashKey^(1 + n) + &GHASH_MUL($ZTMP2, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6); + $code .= "vmovdqu64 $ZTMP2,@{[HashKeyByIdx($i,\"%rsp\")]}\n"; + $i += 4; + + # ;; compute HashKey^(8 + n), HashKey^(7 + n), ... HashKey^(5 + n) + &GHASH_MUL($ZTMP3, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6); + $code .= "vmovdqu64 $ZTMP3,@{[HashKeyByIdx($i,\"%rsp\")]}\n"; + $i += 4; + } + } + + if ($HKEYS_RANGE eq "last32" || $HKEYS_RANGE eq "all") { + + # ; Precompute hkeys^i, i=33..48 (HKEYS_STORAGE_CAPACITY = 48) + my $i = 36; + foreach (1 .. int((48 - 32) / 8)) { + + # ;; compute HashKey^(4 + n), HashKey^(3 + n), ... HashKey^(1 + n) + &GHASH_MUL($ZTMP2, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6); + $code .= "vmovdqu64 $ZTMP2,@{[HashKeyByIdx($i,\"%rsp\")]}\n"; + $i += 4; + + # ;; compute HashKey^(8 + n), HashKey^(7 + n), ... HashKey^(5 + n) + &GHASH_MUL($ZTMP3, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6); + $code .= "vmovdqu64 $ZTMP3,@{[HashKeyByIdx($i,\"%rsp\")]}\n"; + $i += 4; + } + } + + $code .= ".L_skip_hkeys_precomputation_${rndsuffix}:\n"; +} + +# ;; ============================================================================= +# ;; Generic macro to produce code that executes $OPCODE instruction +# ;; on selected number of AES blocks (16 bytes long ) between 0 and 16. +# ;; All three operands of the instruction come from registers. +# ;; Note: if 3 blocks are left at the end instruction is produced to operate all +# ;; 4 blocks (full width of ZMM) +sub ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16 { + my $NUM_BLOCKS = $_[0]; # [in] numerical value, number of AES blocks (0 to 16) + my $OPCODE = $_[1]; # [in] instruction name + my @DST; + $DST[0] = $_[2]; # [out] destination ZMM register + $DST[1] = $_[3]; # [out] destination ZMM register + $DST[2] = $_[4]; # [out] destination ZMM register + $DST[3] = $_[5]; # [out] destination ZMM register + my @SRC1; + $SRC1[0] = $_[6]; # [in] source 1 ZMM register + $SRC1[1] = $_[7]; # [in] source 1 ZMM register + $SRC1[2] = $_[8]; # [in] source 1 ZMM register + $SRC1[3] = $_[9]; # [in] source 1 ZMM register + my @SRC2; + $SRC2[0] = $_[10]; # [in] source 2 ZMM register + $SRC2[1] = $_[11]; # [in] source 2 ZMM register + $SRC2[2] = $_[12]; # [in] source 2 ZMM register + $SRC2[3] = $_[13]; # [in] source 2 ZMM register + + die "ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16: num_blocks is out of bounds = $NUM_BLOCKS\n" + if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0); + + my $reg_idx = 0; + my $blocks_left = $NUM_BLOCKS; + + foreach (1 .. ($NUM_BLOCKS / 4)) { + $code .= "$OPCODE $SRC2[$reg_idx],$SRC1[$reg_idx],$DST[$reg_idx]\n"; + $reg_idx++; + $blocks_left -= 4; + } + + my $DSTREG = $DST[$reg_idx]; + my $SRC1REG = $SRC1[$reg_idx]; + my $SRC2REG = $SRC2[$reg_idx]; + + if ($blocks_left == 1) { + $code .= "$OPCODE @{[XWORD($SRC2REG)]},@{[XWORD($SRC1REG)]},@{[XWORD($DSTREG)]}\n"; + } elsif ($blocks_left == 2) { + $code .= "$OPCODE @{[YWORD($SRC2REG)]},@{[YWORD($SRC1REG)]},@{[YWORD($DSTREG)]}\n"; + } elsif ($blocks_left == 3) { + $code .= "$OPCODE $SRC2REG,$SRC1REG,$DSTREG\n"; + } +} + +# ;; ============================================================================= +# ;; Loads specified number of AES blocks into ZMM registers using mask register +# ;; for the last loaded register (xmm, ymm or zmm). +# ;; Loads take place at 1 byte granularity. +sub ZMM_LOAD_MASKED_BLOCKS_0_16 { + my $NUM_BLOCKS = $_[0]; # [in] numerical value, number of AES blocks (0 to 16) + my $INP = $_[1]; # [in] input data pointer to read from + my $DATA_OFFSET = $_[2]; # [in] offset to the output pointer (GP or numerical) + my @DST; + $DST[0] = $_[3]; # [out] ZMM register with loaded data + $DST[1] = $_[4]; # [out] ZMM register with loaded data + $DST[2] = $_[5]; # [out] ZMM register with loaded data + $DST[3] = $_[6]; # [out] ZMM register with loaded data + my $MASK = $_[7]; # [in] mask register + + die "ZMM_LOAD_MASKED_BLOCKS_0_16: num_blocks is out of bounds = $NUM_BLOCKS\n" + if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0); + + my $src_offset = 0; + my $dst_idx = 0; + my $blocks_left = $NUM_BLOCKS; + + if ($NUM_BLOCKS > 0) { + foreach (1 .. (int(($NUM_BLOCKS + 3) / 4) - 1)) { + $code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},$DST[$dst_idx]\n"; + $src_offset += 64; + $dst_idx++; + $blocks_left -= 4; + } + } + + my $DSTREG = $DST[$dst_idx]; + + if ($blocks_left == 1) { + $code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},@{[XWORD($DSTREG)]}\{$MASK\}{z}\n"; + } elsif ($blocks_left == 2) { + $code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},@{[YWORD($DSTREG)]}\{$MASK\}{z}\n"; + } elsif (($blocks_left == 3 || $blocks_left == 4)) { + $code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},$DSTREG\{$MASK\}{z}\n"; + } +} + +# ;; ============================================================================= +# ;; Stores specified number of AES blocks from ZMM registers with mask register +# ;; for the last loaded register (xmm, ymm or zmm). +# ;; Stores take place at 1 byte granularity. +sub ZMM_STORE_MASKED_BLOCKS_0_16 { + my $NUM_BLOCKS = $_[0]; # [in] numerical value, number of AES blocks (0 to 16) + my $OUTP = $_[1]; # [in] output data pointer to write to + my $DATA_OFFSET = $_[2]; # [in] offset to the output pointer (GP or numerical) + my @SRC; + $SRC[0] = $_[3]; # [in] ZMM register with data to store + $SRC[1] = $_[4]; # [in] ZMM register with data to store + $SRC[2] = $_[5]; # [in] ZMM register with data to store + $SRC[3] = $_[6]; # [in] ZMM register with data to store + my $MASK = $_[7]; # [in] mask register + + die "ZMM_STORE_MASKED_BLOCKS_0_16: num_blocks is out of bounds = $NUM_BLOCKS\n" + if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0); + + my $dst_offset = 0; + my $src_idx = 0; + my $blocks_left = $NUM_BLOCKS; + + if ($NUM_BLOCKS > 0) { + foreach (1 .. (int(($NUM_BLOCKS + 3) / 4) - 1)) { + $code .= "vmovdqu8 $SRC[$src_idx],`$dst_offset`($OUTP,$DATA_OFFSET,1)\n"; + $dst_offset += 64; + $src_idx++; + $blocks_left -= 4; + } + } + + my $SRCREG = $SRC[$src_idx]; + + if ($blocks_left == 1) { + $code .= "vmovdqu8 @{[XWORD($SRCREG)]},`$dst_offset`($OUTP,$DATA_OFFSET,1){$MASK}\n"; + } elsif ($blocks_left == 2) { + $code .= "vmovdqu8 @{[YWORD($SRCREG)]},`$dst_offset`($OUTP,$DATA_OFFSET,1){$MASK}\n"; + } elsif ($blocks_left == 3 || $blocks_left == 4) { + $code .= "vmovdqu8 $SRCREG,`$dst_offset`($OUTP,$DATA_OFFSET,1){$MASK}\n"; + } +} + +# ;;; =========================================================================== +# ;;; Handles AES encryption rounds +# ;;; It handles special cases: the last and first rounds +# ;;; Optionally, it performs XOR with data after the last AES round. +# ;;; Uses NROUNDS parameter to check what needs to be done for the current round. +# ;;; If 3 blocks are trailing then operation on whole ZMM is performed (4 blocks). +sub ZMM_AESENC_ROUND_BLOCKS_0_16 { + my $L0B0_3 = $_[0]; # [in/out] zmm; blocks 0 to 3 + my $L0B4_7 = $_[1]; # [in/out] zmm; blocks 4 to 7 + my $L0B8_11 = $_[2]; # [in/out] zmm; blocks 8 to 11 + my $L0B12_15 = $_[3]; # [in/out] zmm; blocks 12 to 15 + my $KEY = $_[4]; # [in] zmm containing round key + my $ROUND = $_[5]; # [in] round number + my $D0_3 = $_[6]; # [in] zmm or no_data; plain/cipher text blocks 0-3 + my $D4_7 = $_[7]; # [in] zmm or no_data; plain/cipher text blocks 4-7 + my $D8_11 = $_[8]; # [in] zmm or no_data; plain/cipher text blocks 8-11 + my $D12_15 = $_[9]; # [in] zmm or no_data; plain/cipher text blocks 12-15 + my $NUMBL = $_[10]; # [in] number of blocks; numerical value + my $NROUNDS = $_[11]; # [in] number of rounds; numerical value + + # ;;; === first AES round + if ($ROUND < 1) { + + # ;; round 0 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUMBL, "vpxorq", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3, + $L0B4_7, $L0B8_11, $L0B12_15, $KEY, $KEY, $KEY, $KEY); + } + + # ;;; === middle AES rounds + if ($ROUND >= 1 && $ROUND <= $NROUNDS) { + + # ;; rounds 1 to 9/11/13 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUMBL, "vaesenc", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3, + $L0B4_7, $L0B8_11, $L0B12_15, $KEY, $KEY, $KEY, $KEY); + } + + # ;;; === last AES round + if ($ROUND > $NROUNDS) { + + # ;; the last round - mix enclast with text xor's + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUMBL, "vaesenclast", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3, + $L0B4_7, $L0B8_11, $L0B12_15, $KEY, $KEY, $KEY, $KEY); + + # ;;; === XOR with data + if ( ($D0_3 ne "no_data") + && ($D4_7 ne "no_data") + && ($D8_11 ne "no_data") + && ($D12_15 ne "no_data")) + { + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUMBL, "vpxorq", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3, + $L0B4_7, $L0B8_11, $L0B12_15, $D0_3, $D4_7, $D8_11, $D12_15); + } + } +} + +# ;;; Horizontal XOR - 4 x 128bits xored together +sub VHPXORI4x128 { + my $REG = $_[0]; # [in/out] ZMM with 4x128bits to xor; 128bit output + my $TMP = $_[1]; # [clobbered] ZMM temporary register + $code .= <<___; + vextracti64x4 \$1,$REG,@{[YWORD($TMP)]} + vpxorq @{[YWORD($TMP)]},@{[YWORD($REG)]},@{[YWORD($REG)]} + vextracti32x4 \$1,@{[YWORD($REG)]},@{[XWORD($TMP)]} + vpxorq @{[XWORD($TMP)]},@{[XWORD($REG)]},@{[XWORD($REG)]} +___ +} + +# ;;; AVX512 reduction macro +sub VCLMUL_REDUCE { + my $OUT = $_[0]; # [out] zmm/ymm/xmm: result (must not be $TMP1 or $HI128) + my $POLY = $_[1]; # [in] zmm/ymm/xmm: polynomial + my $HI128 = $_[2]; # [in] zmm/ymm/xmm: high 128b of hash to reduce + my $LO128 = $_[3]; # [in] zmm/ymm/xmm: low 128b of hash to reduce + my $TMP0 = $_[4]; # [in] zmm/ymm/xmm: temporary register + my $TMP1 = $_[5]; # [in] zmm/ymm/xmm: temporary register + + $code .= <<___; + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; first phase of the reduction + vpclmulqdq \$0x01,$LO128,$POLY,$TMP0 + vpslldq \$8,$TMP0,$TMP0 # ; shift-L 2 DWs + vpxorq $TMP0,$LO128,$TMP0 # ; first phase of the reduction complete + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; second phase of the reduction + vpclmulqdq \$0x00,$TMP0,$POLY,$TMP1 + vpsrldq \$4,$TMP1,$TMP1 # ; shift-R only 1-DW to obtain 2-DWs shift-R + vpclmulqdq \$0x10,$TMP0,$POLY,$OUT + vpslldq \$4,$OUT,$OUT # ; shift-L 1-DW to obtain result with no shifts + vpternlogq \$0x96,$HI128,$TMP1,$OUT # ; OUT/GHASH = OUT xor TMP1 xor HI128 + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +___ +} + +# ;; =========================================================================== +# ;; schoolbook multiply of 16 blocks (16 x 16 bytes) +# ;; - it is assumed that data read from $INPTR is already shuffled and +# ;; $INPTR address is 64 byte aligned +# ;; - there is an option to pass ready blocks through ZMM registers too. +# ;; 4 extra parameters need to be passed in such case and 21st ($ZTMP9) argument can be empty +sub GHASH_16 { + my $TYPE = $_[0]; # [in] ghash type: start (xor hash), mid, end (same as mid; no reduction), + # end_reduce (end with reduction), start_reduce + my $GH = $_[1]; # [in/out] ZMM ghash sum: high 128-bits + my $GM = $_[2]; # [in/out] ZMM ghash sum: middle 128-bits + my $GL = $_[3]; # [in/out] ZMM ghash sum: low 128-bits + my $INPTR = $_[4]; # [in] data input pointer + my $INOFF = $_[5]; # [in] data input offset + my $INDIS = $_[6]; # [in] data input displacement + my $HKPTR = $_[7]; # [in] hash key pointer + my $HKOFF = $_[8]; # [in] hash key offset (can be either numerical offset, or register containing offset) + my $HKDIS = $_[9]; # [in] hash key displacement + my $HASH = $_[10]; # [in/out] ZMM hash value in/out + my $ZTMP0 = $_[11]; # [clobbered] temporary ZMM + my $ZTMP1 = $_[12]; # [clobbered] temporary ZMM + my $ZTMP2 = $_[13]; # [clobbered] temporary ZMM + my $ZTMP3 = $_[14]; # [clobbered] temporary ZMM + my $ZTMP4 = $_[15]; # [clobbered] temporary ZMM + my $ZTMP5 = $_[16]; # [clobbered] temporary ZMM + my $ZTMP6 = $_[17]; # [clobbered] temporary ZMM + my $ZTMP7 = $_[18]; # [clobbered] temporary ZMM + my $ZTMP8 = $_[19]; # [clobbered] temporary ZMM + my $ZTMP9 = $_[20]; # [clobbered] temporary ZMM, can be empty if 4 extra parameters below are provided + my $DAT0 = $_[21]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused) + my $DAT1 = $_[22]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused) + my $DAT2 = $_[23]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused) + my $DAT3 = $_[24]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused) + + my $start_ghash = 0; + my $do_reduction = 0; + if ($TYPE eq "start") { + $start_ghash = 1; + } + + if ($TYPE eq "start_reduce") { + $start_ghash = 1; + $do_reduction = 1; + } + + if ($TYPE eq "end_reduce") { + $do_reduction = 1; + } + + # ;; ghash blocks 0-3 + if (scalar(@_) == 21) { + $code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+0*64))]},$ZTMP9\n"; + } else { + $ZTMP9 = $DAT0; + } + + if ($start_ghash != 0) { + $code .= "vpxorq $HASH,$ZTMP9,$ZTMP9\n"; + } + $code .= <<___; + vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+0*64))]},$ZTMP8 + vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP0 # ; T0H = a1*b1 + vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP1 # ; T0L = a0*b0 + vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP2 # ; T0M1 = a1*b0 + vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP3 # ; T0M2 = a0*b1 +___ + + # ;; ghash blocks 4-7 + if (scalar(@_) == 21) { + $code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+1*64))]},$ZTMP9\n"; + } else { + $ZTMP9 = $DAT1; + } + $code .= <<___; + vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+1*64))]},$ZTMP8 + vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP4 # ; T1H = a1*b1 + vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP5 # ; T1L = a0*b0 + vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP6 # ; T1M1 = a1*b0 + vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP7 # ; T1M2 = a0*b1 +___ + + # ;; update sums + if ($start_ghash != 0) { + $code .= <<___; + vpxorq $ZTMP6,$ZTMP2,$GM # ; GM = T0M1 + T1M1 + vpxorq $ZTMP4,$ZTMP0,$GH # ; GH = T0H + T1H + vpxorq $ZTMP5,$ZTMP1,$GL # ; GL = T0L + T1L + vpternlogq \$0x96,$ZTMP7,$ZTMP3,$GM # ; GM = T0M2 + T1M1 +___ + } else { # ;; mid, end, end_reduce + $code .= <<___; + vpternlogq \$0x96,$ZTMP6,$ZTMP2,$GM # ; GM += T0M1 + T1M1 + vpternlogq \$0x96,$ZTMP4,$ZTMP0,$GH # ; GH += T0H + T1H + vpternlogq \$0x96,$ZTMP5,$ZTMP1,$GL # ; GL += T0L + T1L + vpternlogq \$0x96,$ZTMP7,$ZTMP3,$GM # ; GM += T0M2 + T1M1 +___ + } + + # ;; ghash blocks 8-11 + if (scalar(@_) == 21) { + $code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+2*64))]},$ZTMP9\n"; + } else { + $ZTMP9 = $DAT2; + } + $code .= <<___; + vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+2*64))]},$ZTMP8 + vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP0 # ; T0H = a1*b1 + vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP1 # ; T0L = a0*b0 + vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP2 # ; T0M1 = a1*b0 + vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP3 # ; T0M2 = a0*b1 +___ + + # ;; ghash blocks 12-15 + if (scalar(@_) == 21) { + $code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+3*64))]},$ZTMP9\n"; + } else { + $ZTMP9 = $DAT3; + } + $code .= <<___; + vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+3*64))]},$ZTMP8 + vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP4 # ; T1H = a1*b1 + vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP5 # ; T1L = a0*b0 + vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP6 # ; T1M1 = a1*b0 + vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP7 # ; T1M2 = a0*b1 + # ;; update sums + vpternlogq \$0x96,$ZTMP6,$ZTMP2,$GM # ; GM += T0M1 + T1M1 + vpternlogq \$0x96,$ZTMP4,$ZTMP0,$GH # ; GH += T0H + T1H + vpternlogq \$0x96,$ZTMP5,$ZTMP1,$GL # ; GL += T0L + T1L + vpternlogq \$0x96,$ZTMP7,$ZTMP3,$GM # ; GM += T0M2 + T1M1 +___ + if ($do_reduction != 0) { + $code .= <<___; + # ;; integrate GM into GH and GL + vpsrldq \$8,$GM,$ZTMP0 + vpslldq \$8,$GM,$ZTMP1 + vpxorq $ZTMP0,$GH,$GH + vpxorq $ZTMP1,$GL,$GL +___ + + # ;; add GH and GL 128-bit words horizontally + &VHPXORI4x128($GH, $ZTMP0); + &VHPXORI4x128($GL, $ZTMP1); + + # ;; reduction + $code .= "vmovdqa64 POLY2(%rip),@{[XWORD($ZTMP2)]}\n"; + &VCLMUL_REDUCE(&XWORD($HASH), &XWORD($ZTMP2), &XWORD($GH), &XWORD($GL), &XWORD($ZTMP0), &XWORD($ZTMP1)); + } +} + +# ;; =========================================================================== +# ;; GHASH 1 to 16 blocks of cipher text +# ;; - performs reduction at the end +# ;; - it doesn't load the data and it assumed it is already loaded and shuffled +sub GHASH_1_TO_16 { + my $GCM128_CTX = $_[0]; # [in] pointer to expanded keys + my $GHASH = $_[1]; # [out] ghash output + my $T0H = $_[2]; # [clobbered] temporary ZMM + my $T0L = $_[3]; # [clobbered] temporary ZMM + my $T0M1 = $_[4]; # [clobbered] temporary ZMM + my $T0M2 = $_[5]; # [clobbered] temporary ZMM + my $T1H = $_[6]; # [clobbered] temporary ZMM + my $T1L = $_[7]; # [clobbered] temporary ZMM + my $T1M1 = $_[8]; # [clobbered] temporary ZMM + my $T1M2 = $_[9]; # [clobbered] temporary ZMM + my $HK = $_[10]; # [clobbered] temporary ZMM + my $AAD_HASH_IN = $_[11]; # [in] input hash value + my @CIPHER_IN; + $CIPHER_IN[0] = $_[12]; # [in] ZMM with cipher text blocks 0-3 + $CIPHER_IN[1] = $_[13]; # [in] ZMM with cipher text blocks 4-7 + $CIPHER_IN[2] = $_[14]; # [in] ZMM with cipher text blocks 8-11 + $CIPHER_IN[3] = $_[15]; # [in] ZMM with cipher text blocks 12-15 + my $NUM_BLOCKS = $_[16]; # [in] numerical value, number of blocks + my $GH = $_[17]; # [in] ZMM with hi product part + my $GM = $_[18]; # [in] ZMM with mid product part + my $GL = $_[19]; # [in] ZMM with lo product part + + die "GHASH_1_TO_16: num_blocks is out of bounds = $NUM_BLOCKS\n" if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0); + + if (scalar(@_) == 17) { + $code .= "vpxorq $AAD_HASH_IN,$CIPHER_IN[0],$CIPHER_IN[0]\n"; + } + + if ($NUM_BLOCKS == 16) { + $code .= <<___; + vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK + vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T0H # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T0L # ; L = a0*b0 + vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T0M1 # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T0M2 # ; M2 = a0*b1 + vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-1*4, $GCM128_CTX)]},$HK + vpclmulqdq \$0x11,$HK,$CIPHER_IN[1],$T1H # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$CIPHER_IN[1],$T1L # ; L = a0*b0 + vpclmulqdq \$0x01,$HK,$CIPHER_IN[1],$T1M1 # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$CIPHER_IN[1],$T1M2 # ; M2 = a0*b1 + vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-2*4, $GCM128_CTX)]},$HK + vpclmulqdq \$0x11,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; L = a0*b0 + vpternlogq \$0x96,$T1H,$CIPHER_IN[0],$T0H + vpternlogq \$0x96,$T1L,$CIPHER_IN[1],$T0L + vpclmulqdq \$0x01,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; M2 = a0*b1 + vpternlogq \$0x96,$T1M1,$CIPHER_IN[0],$T0M1 + vpternlogq \$0x96,$T1M2,$CIPHER_IN[1],$T0M2 + vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-3*4, $GCM128_CTX)]},$HK + vpclmulqdq \$0x11,$HK,$CIPHER_IN[3],$T1H # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$CIPHER_IN[3],$T1L # ; L = a0*b0 + vpclmulqdq \$0x01,$HK,$CIPHER_IN[3],$T1M1 # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$CIPHER_IN[3],$T1M2 # ; M2 = a0*b1 + vpxorq $T1H,$T0H,$T1H + vpxorq $T1L,$T0L,$T1L + vpxorq $T1M1,$T0M1,$T1M1 + vpxorq $T1M2,$T0M2,$T1M2 +___ + } elsif ($NUM_BLOCKS >= 12) { + $code .= <<___; + vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK + vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T0H # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T0L # ; L = a0*b0 + vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T0M1 # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T0M2 # ; M2 = a0*b1 + vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-1*4, $GCM128_CTX)]},$HK + vpclmulqdq \$0x11,$HK,$CIPHER_IN[1],$T1H # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$CIPHER_IN[1],$T1L # ; L = a0*b0 + vpclmulqdq \$0x01,$HK,$CIPHER_IN[1],$T1M1 # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$CIPHER_IN[1],$T1M2 # ; M2 = a0*b1 + vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-2*4, $GCM128_CTX)]},$HK + vpclmulqdq \$0x11,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; L = a0*b0 + vpternlogq \$0x96,$T0H,$CIPHER_IN[0],$T1H + vpternlogq \$0x96,$T0L,$CIPHER_IN[1],$T1L + vpclmulqdq \$0x01,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; M2 = a0*b1 + vpternlogq \$0x96,$T0M1,$CIPHER_IN[0],$T1M1 + vpternlogq \$0x96,$T0M2,$CIPHER_IN[1],$T1M2 +___ + } elsif ($NUM_BLOCKS >= 8) { + $code .= <<___; + vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK + vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T0H # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T0L # ; L = a0*b0 + vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T0M1 # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T0M2 # ; M2 = a0*b1 + vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-1*4, $GCM128_CTX)]},$HK + vpclmulqdq \$0x11,$HK,$CIPHER_IN[1],$T1H # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$CIPHER_IN[1],$T1L # ; L = a0*b0 + vpclmulqdq \$0x01,$HK,$CIPHER_IN[1],$T1M1 # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$CIPHER_IN[1],$T1M2 # ; M2 = a0*b1 + vpxorq $T1H,$T0H,$T1H + vpxorq $T1L,$T0L,$T1L + vpxorq $T1M1,$T0M1,$T1M1 + vpxorq $T1M2,$T0M2,$T1M2 +___ + } elsif ($NUM_BLOCKS >= 4) { + $code .= <<___; + vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK + vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T1H # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T1L # ; L = a0*b0 + vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T1M1 # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T1M2 # ; M2 = a0*b1 +___ + } + + # ;; T1H/L/M1/M2 - hold current product sums (provided $NUM_BLOCKS >= 4) + my $blocks_left = ($NUM_BLOCKS % 4); + if ($blocks_left > 0) { + + # ;; ===================================================== + # ;; There are 1, 2 or 3 blocks left to process. + # ;; It may also be that they are the only blocks to process. + + # ;; Set hash key and register index position for the remaining 1 to 3 blocks + my $reg_idx = ($NUM_BLOCKS / 4); + my $REG_IN = $CIPHER_IN[$reg_idx]; + + if ($blocks_left == 1) { + $code .= <<___; + vmovdqu64 @{[HashKeyByIdx($blocks_left, $GCM128_CTX)]},@{[XWORD($HK)]} + vpclmulqdq \$0x01,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0M1)]} # ; M1 = a1*b0 + vpclmulqdq \$0x10,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0M2)]} # ; M2 = a0*b1 + vpclmulqdq \$0x11,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0H)]} # ; H = a1*b1 + vpclmulqdq \$0x00,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0L)]} # ; L = a0*b0 +___ + } elsif ($blocks_left == 2) { + $code .= <<___; + vmovdqu64 @{[HashKeyByIdx($blocks_left, $GCM128_CTX)]},@{[YWORD($HK)]} + vpclmulqdq \$0x01,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0M1)]} # ; M1 = a1*b0 + vpclmulqdq \$0x10,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0M2)]} # ; M2 = a0*b1 + vpclmulqdq \$0x11,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0H)]} # ; H = a1*b1 + vpclmulqdq \$0x00,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0L)]} # ; L = a0*b0 +___ + } else { # ; blocks_left == 3 + $code .= <<___; + vmovdqu64 @{[HashKeyByIdx($blocks_left, $GCM128_CTX)]},@{[YWORD($HK)]} + vinserti64x2 \$2,@{[HashKeyByIdx($blocks_left-2, $GCM128_CTX)]},$HK,$HK + vpclmulqdq \$0x01,$HK,$REG_IN,$T0M1 # ; M1 = a1*b0 + vpclmulqdq \$0x10,$HK,$REG_IN,$T0M2 # ; M2 = a0*b1 + vpclmulqdq \$0x11,$HK,$REG_IN,$T0H # ; H = a1*b1 + vpclmulqdq \$0x00,$HK,$REG_IN,$T0L # ; L = a0*b0 +___ + } + + if (scalar(@_) == 20) { + + # ;; *** GH/GM/GL passed as arguments + if ($NUM_BLOCKS >= 4) { + $code .= <<___; + # ;; add ghash product sums from the first 4, 8 or 12 blocks + vpxorq $T1M1,$T0M1,$T0M1 + vpternlogq \$0x96,$T1M2,$GM,$T0M2 + vpternlogq \$0x96,$T1H,$GH,$T0H + vpternlogq \$0x96,$T1L,$GL,$T0L +___ + } else { + $code .= <<___; + vpxorq $GM,$T0M1,$T0M1 + vpxorq $GH,$T0H,$T0H + vpxorq $GL,$T0L,$T0L +___ + } + } else { + + # ;; *** GH/GM/GL NOT passed as arguments + if ($NUM_BLOCKS >= 4) { + $code .= <<___; + # ;; add ghash product sums from the first 4, 8 or 12 blocks + vpxorq $T1M1,$T0M1,$T0M1 + vpxorq $T1M2,$T0M2,$T0M2 + vpxorq $T1H,$T0H,$T0H + vpxorq $T1L,$T0L,$T0L +___ + } + } + $code .= <<___; + # ;; integrate TM into TH and TL + vpxorq $T0M2,$T0M1,$T0M1 + vpsrldq \$8,$T0M1,$T1M1 + vpslldq \$8,$T0M1,$T1M2 + vpxorq $T1M1,$T0H,$T0H + vpxorq $T1M2,$T0L,$T0L +___ + } else { + + # ;; ===================================================== + # ;; number of blocks is 4, 8, 12 or 16 + # ;; T1H/L/M1/M2 include product sums not T0H/L/M1/M2 + if (scalar(@_) == 20) { + $code .= <<___; + # ;; *** GH/GM/GL passed as arguments + vpxorq $GM,$T1M1,$T1M1 + vpxorq $GH,$T1H,$T1H + vpxorq $GL,$T1L,$T1L +___ + } + $code .= <<___; + # ;; integrate TM into TH and TL + vpxorq $T1M2,$T1M1,$T1M1 + vpsrldq \$8,$T1M1,$T0M1 + vpslldq \$8,$T1M1,$T0M2 + vpxorq $T0M1,$T1H,$T0H + vpxorq $T0M2,$T1L,$T0L +___ + } + + # ;; add TH and TL 128-bit words horizontally + &VHPXORI4x128($T0H, $T1M1); + &VHPXORI4x128($T0L, $T1M2); + + # ;; reduction + $code .= "vmovdqa64 POLY2(%rip),@{[XWORD($HK)]}\n"; + &VCLMUL_REDUCE( + @{[XWORD($GHASH)]}, + @{[XWORD($HK)]}, + @{[XWORD($T0H)]}, + @{[XWORD($T0L)]}, + @{[XWORD($T0M1)]}, + @{[XWORD($T0M2)]}); +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;; GHASH_MUL MACRO to implement: Data*HashKey mod (x^128 + x^127 + x^126 +x^121 + 1) +# ;; Input: A and B (128-bits each, bit-reflected) +# ;; Output: C = A*B*x mod poly, (i.e. >>1 ) +# ;; To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input +# ;; GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly. +# ;; +# ;; Refer to [3] for more detals. +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +sub GHASH_MUL { + my $GH = $_[0]; #; [in/out] xmm/ymm/zmm with multiply operand(s) (128-bits) + my $HK = $_[1]; #; [in] xmm/ymm/zmm with hash key value(s) (128-bits) + my $T1 = $_[2]; #; [clobbered] xmm/ymm/zmm + my $T2 = $_[3]; #; [clobbered] xmm/ymm/zmm + my $T3 = $_[4]; #; [clobbered] xmm/ymm/zmm + + $code .= <<___; + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + vpclmulqdq \$0x11,$HK,$GH,$T1 # ; $T1 = a1*b1 + vpclmulqdq \$0x00,$HK,$GH,$T2 # ; $T2 = a0*b0 + vpclmulqdq \$0x01,$HK,$GH,$T3 # ; $T3 = a1*b0 + vpclmulqdq \$0x10,$HK,$GH,$GH # ; $GH = a0*b1 + vpxorq $T3,$GH,$GH + + vpsrldq \$8,$GH,$T3 # ; shift-R $GH 2 DWs + vpslldq \$8,$GH,$GH # ; shift-L $GH 2 DWs + vpxorq $T3,$T1,$T1 + vpxorq $T2,$GH,$GH + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;first phase of the reduction + vmovdqu64 POLY2(%rip),$T3 + + vpclmulqdq \$0x01,$GH,$T3,$T2 + vpslldq \$8,$T2,$T2 # ; shift-L $T2 2 DWs + vpxorq $T2,$GH,$GH # ; first phase of the reduction complete + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;second phase of the reduction + vpclmulqdq \$0x00,$GH,$T3,$T2 + vpsrldq \$4,$T2,$T2 # ; shift-R only 1-DW to obtain 2-DWs shift-R + vpclmulqdq \$0x10,$GH,$T3,$GH + vpslldq \$4,$GH,$GH # ; Shift-L 1-DW to obtain result with no shifts + # ; second phase of the reduction complete, the result is in $GH + vpternlogq \$0x96,$T2,$T1,$GH # ; GH = GH xor T1 xor T2 + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +___ +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; PRECOMPUTE computes HashKey_i +sub PRECOMPUTE { + my $GCM128_CTX = $_[0]; #; [in/out] context pointer, hkeys content updated + my $HK = $_[1]; #; [in] xmm, hash key + my $T1 = $_[2]; #; [clobbered] xmm + my $T2 = $_[3]; #; [clobbered] xmm + my $T3 = $_[4]; #; [clobbered] xmm + my $T4 = $_[5]; #; [clobbered] xmm + my $T5 = $_[6]; #; [clobbered] xmm + my $T6 = $_[7]; #; [clobbered] xmm + + my $ZT1 = &ZWORD($T1); + my $ZT2 = &ZWORD($T2); + my $ZT3 = &ZWORD($T3); + my $ZT4 = &ZWORD($T4); + my $ZT5 = &ZWORD($T5); + my $ZT6 = &ZWORD($T6); + + my $YT1 = &YWORD($T1); + my $YT2 = &YWORD($T2); + my $YT3 = &YWORD($T3); + my $YT4 = &YWORD($T4); + my $YT5 = &YWORD($T5); + my $YT6 = &YWORD($T6); + + $code .= <<___; + vshufi32x4 \$0x00,@{[YWORD($HK)]},@{[YWORD($HK)]},$YT5 + vmovdqa $YT5,$YT4 +___ + + # ;; calculate HashKey^2<<1 mod poly + &GHASH_MUL($YT4, $YT5, $YT1, $YT2, $YT3); + + $code .= <<___; + vmovdqu64 $T4,@{[HashKeyByIdx(2,$GCM128_CTX)]} + vinserti64x2 \$1,$HK,$YT4,$YT5 + vmovdqa64 $YT5,$YT6 # ;; YT6 = HashKey | HashKey^2 +___ + + # ;; use 2x128-bit computation + # ;; calculate HashKey^4<<1 mod poly, HashKey^3<<1 mod poly + &GHASH_MUL($YT5, $YT4, $YT1, $YT2, $YT3); # ;; YT5 = HashKey^3 | HashKey^4 + + $code .= <<___; + vmovdqu64 $YT5,@{[HashKeyByIdx(4,$GCM128_CTX)]} + + vinserti64x4 \$1,$YT6,$ZT5,$ZT5 # ;; ZT5 = YT6 | YT5 + + # ;; switch to 4x128-bit computations now + vshufi64x2 \$0x00,$ZT5,$ZT5,$ZT4 # ;; broadcast HashKey^4 across all ZT4 + vmovdqa64 $ZT5,$ZT6 # ;; save HashKey^4 to HashKey^1 in ZT6 +___ + + # ;; calculate HashKey^5<<1 mod poly, HashKey^6<<1 mod poly, ... HashKey^8<<1 mod poly + &GHASH_MUL($ZT5, $ZT4, $ZT1, $ZT2, $ZT3); + $code .= <<___; + vmovdqu64 $ZT5,@{[HashKeyByIdx(8,$GCM128_CTX)]} # ;; HashKey^8 to HashKey^5 in ZT5 now + vshufi64x2 \$0x00,$ZT5,$ZT5,$ZT4 # ;; broadcast HashKey^8 across all ZT4 +___ + + # ;; calculate HashKey^9<<1 mod poly, HashKey^10<<1 mod poly, ... HashKey^16<<1 mod poly + # ;; use HashKey^8 as multiplier against ZT6 and ZT5 - this allows deeper ooo execution + + # ;; compute HashKey^(12), HashKey^(11), ... HashKey^(9) + &GHASH_MUL($ZT6, $ZT4, $ZT1, $ZT2, $ZT3); + $code .= "vmovdqu64 $ZT6,@{[HashKeyByIdx(12,$GCM128_CTX)]}\n"; + + # ;; compute HashKey^(16), HashKey^(15), ... HashKey^(13) + &GHASH_MUL($ZT5, $ZT4, $ZT1, $ZT2, $ZT3); + $code .= "vmovdqu64 $ZT5,@{[HashKeyByIdx(16,$GCM128_CTX)]}\n"; + + # ; Hkeys 17..48 will be precomputed somewhere else as context can hold only 16 hkeys +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;; READ_SMALL_DATA_INPUT +# ;; Packs xmm register with data when data input is less or equal to 16 bytes +# ;; Returns 0 if data has length 0 +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +sub READ_SMALL_DATA_INPUT { + my $OUTPUT = $_[0]; # [out] xmm register + my $INPUT = $_[1]; # [in] buffer pointer to read from + my $LENGTH = $_[2]; # [in] number of bytes to read + my $TMP1 = $_[3]; # [clobbered] + my $TMP2 = $_[4]; # [clobbered] + my $MASK = $_[5]; # [out] k1 to k7 register to store the partial block mask + + $code .= <<___; + mov \$16,@{[DWORD($TMP2)]} + lea byte_len_to_mask_table(%rip),$TMP1 + cmp $TMP2,$LENGTH + cmovc $LENGTH,$TMP2 +___ + if ($win64) { + $code .= <<___; + add $TMP2,$TMP1 + add $TMP2,$TMP1 + kmovw ($TMP1),$MASK +___ + } else { + $code .= "kmovw ($TMP1,$TMP2,2),$MASK\n"; + } + $code .= "vmovdqu8 ($INPUT),${OUTPUT}{$MASK}{z}\n"; +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# CALC_AAD_HASH: Calculates the hash of the data which will not be encrypted. +# Input: The input data (A_IN), that data's length (A_LEN), and the hash key (HASH_KEY). +# Output: The hash of the data (AAD_HASH). +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +sub CALC_AAD_HASH { + my $A_IN = $_[0]; # [in] AAD text pointer + my $A_LEN = $_[1]; # [in] AAD length + my $AAD_HASH = $_[2]; # [in/out] xmm ghash value + my $GCM128_CTX = $_[3]; # [in] pointer to context + my $ZT0 = $_[4]; # [clobbered] ZMM register + my $ZT1 = $_[5]; # [clobbered] ZMM register + my $ZT2 = $_[6]; # [clobbered] ZMM register + my $ZT3 = $_[7]; # [clobbered] ZMM register + my $ZT4 = $_[8]; # [clobbered] ZMM register + my $ZT5 = $_[9]; # [clobbered] ZMM register + my $ZT6 = $_[10]; # [clobbered] ZMM register + my $ZT7 = $_[11]; # [clobbered] ZMM register + my $ZT8 = $_[12]; # [clobbered] ZMM register + my $ZT9 = $_[13]; # [clobbered] ZMM register + my $ZT10 = $_[14]; # [clobbered] ZMM register + my $ZT11 = $_[15]; # [clobbered] ZMM register + my $ZT12 = $_[16]; # [clobbered] ZMM register + my $ZT13 = $_[17]; # [clobbered] ZMM register + my $ZT14 = $_[18]; # [clobbered] ZMM register + my $ZT15 = $_[19]; # [clobbered] ZMM register + my $ZT16 = $_[20]; # [clobbered] ZMM register + my $T1 = $_[21]; # [clobbered] GP register + my $T2 = $_[22]; # [clobbered] GP register + my $T3 = $_[23]; # [clobbered] GP register + my $MASKREG = $_[24]; # [clobbered] mask register + + my $HKEYS_READY = "%rbx"; + + my $SHFMSK = $ZT13; + + my $rndsuffix = &random_string(); + + $code .= <<___; + mov $A_IN,$T1 # ; T1 = AAD + mov $A_LEN,$T2 # ; T2 = aadLen + or $T2,$T2 + jz .L_CALC_AAD_done_${rndsuffix} + + xor $HKEYS_READY,$HKEYS_READY + vmovdqa64 SHUF_MASK(%rip),$SHFMSK + +.L_get_AAD_loop48x16_${rndsuffix}: + cmp \$`(48*16)`,$T2 + jl .L_exit_AAD_loop48x16_${rndsuffix} +___ + + $code .= <<___; + vmovdqu64 `64*0`($T1),$ZT1 # ; Blocks 0-3 + vmovdqu64 `64*1`($T1),$ZT2 # ; Blocks 4-7 + vmovdqu64 `64*2`($T1),$ZT3 # ; Blocks 8-11 + vmovdqu64 `64*3`($T1),$ZT4 # ; Blocks 12-15 + vpshufb $SHFMSK,$ZT1,$ZT1 + vpshufb $SHFMSK,$ZT2,$ZT2 + vpshufb $SHFMSK,$ZT3,$ZT3 + vpshufb $SHFMSK,$ZT4,$ZT4 +___ + + &precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZT0, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT14, "all"); + $code .= "mov \$1,$HKEYS_READY\n"; + + &GHASH_16( + "start", $ZT5, $ZT6, $ZT7, + "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp", + &HashKeyOffsetByIdx(48, "frame"), 0, "@{[ZWORD($AAD_HASH)]}", $ZT0, + $ZT8, $ZT9, $ZT10, $ZT11, + $ZT12, $ZT14, $ZT15, $ZT16, + "NO_ZMM", $ZT1, $ZT2, $ZT3, + $ZT4); + + $code .= <<___; + vmovdqu64 `16*16 + 64*0`($T1),$ZT1 # ; Blocks 16-19 + vmovdqu64 `16*16 + 64*1`($T1),$ZT2 # ; Blocks 20-23 + vmovdqu64 `16*16 + 64*2`($T1),$ZT3 # ; Blocks 24-27 + vmovdqu64 `16*16 + 64*3`($T1),$ZT4 # ; Blocks 28-31 + vpshufb $SHFMSK,$ZT1,$ZT1 + vpshufb $SHFMSK,$ZT2,$ZT2 + vpshufb $SHFMSK,$ZT3,$ZT3 + vpshufb $SHFMSK,$ZT4,$ZT4 +___ + + &GHASH_16( + "mid", $ZT5, $ZT6, $ZT7, + "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp", + &HashKeyOffsetByIdx(32, "frame"), 0, "NO_HASH_IN_OUT", $ZT0, + $ZT8, $ZT9, $ZT10, $ZT11, + $ZT12, $ZT14, $ZT15, $ZT16, + "NO_ZMM", $ZT1, $ZT2, $ZT3, + $ZT4); + + $code .= <<___; + vmovdqu64 `32*16 + 64*0`($T1),$ZT1 # ; Blocks 32-35 + vmovdqu64 `32*16 + 64*1`($T1),$ZT2 # ; Blocks 36-39 + vmovdqu64 `32*16 + 64*2`($T1),$ZT3 # ; Blocks 40-43 + vmovdqu64 `32*16 + 64*3`($T1),$ZT4 # ; Blocks 44-47 + vpshufb $SHFMSK,$ZT1,$ZT1 + vpshufb $SHFMSK,$ZT2,$ZT2 + vpshufb $SHFMSK,$ZT3,$ZT3 + vpshufb $SHFMSK,$ZT4,$ZT4 +___ + + &GHASH_16( + "end_reduce", $ZT5, $ZT6, $ZT7, + "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp", + &HashKeyOffsetByIdx(16, "frame"), 0, &ZWORD($AAD_HASH), $ZT0, + $ZT8, $ZT9, $ZT10, $ZT11, + $ZT12, $ZT14, $ZT15, $ZT16, + "NO_ZMM", $ZT1, $ZT2, $ZT3, + $ZT4); + + $code .= <<___; + sub \$`(48*16)`,$T2 + je .L_CALC_AAD_done_${rndsuffix} + + add \$`(48*16)`,$T1 + jmp .L_get_AAD_loop48x16_${rndsuffix} + +.L_exit_AAD_loop48x16_${rndsuffix}: + # ; Less than 48x16 bytes remaining + cmp \$`(32*16)`,$T2 + jl .L_less_than_32x16_${rndsuffix} +___ + + $code .= <<___; + # ; Get next 16 blocks + vmovdqu64 `64*0`($T1),$ZT1 + vmovdqu64 `64*1`($T1),$ZT2 + vmovdqu64 `64*2`($T1),$ZT3 + vmovdqu64 `64*3`($T1),$ZT4 + vpshufb $SHFMSK,$ZT1,$ZT1 + vpshufb $SHFMSK,$ZT2,$ZT2 + vpshufb $SHFMSK,$ZT3,$ZT3 + vpshufb $SHFMSK,$ZT4,$ZT4 +___ + + &precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZT0, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT14, "first32"); + $code .= "mov \$1,$HKEYS_READY\n"; + + &GHASH_16( + "start", $ZT5, $ZT6, $ZT7, + "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp", + &HashKeyOffsetByIdx(32, "frame"), 0, &ZWORD($AAD_HASH), $ZT0, + $ZT8, $ZT9, $ZT10, $ZT11, + $ZT12, $ZT14, $ZT15, $ZT16, + "NO_ZMM", $ZT1, $ZT2, $ZT3, + $ZT4); + + $code .= <<___; + vmovdqu64 `16*16 + 64*0`($T1),$ZT1 + vmovdqu64 `16*16 + 64*1`($T1),$ZT2 + vmovdqu64 `16*16 + 64*2`($T1),$ZT3 + vmovdqu64 `16*16 + 64*3`($T1),$ZT4 + vpshufb $SHFMSK,$ZT1,$ZT1 + vpshufb $SHFMSK,$ZT2,$ZT2 + vpshufb $SHFMSK,$ZT3,$ZT3 + vpshufb $SHFMSK,$ZT4,$ZT4 +___ + + &GHASH_16( + "end_reduce", $ZT5, $ZT6, $ZT7, + "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp", + &HashKeyOffsetByIdx(16, "frame"), 0, &ZWORD($AAD_HASH), $ZT0, + $ZT8, $ZT9, $ZT10, $ZT11, + $ZT12, $ZT14, $ZT15, $ZT16, + "NO_ZMM", $ZT1, $ZT2, $ZT3, + $ZT4); + + $code .= <<___; + sub \$`(32*16)`,$T2 + je .L_CALC_AAD_done_${rndsuffix} + + add \$`(32*16)`,$T1 + jmp .L_less_than_16x16_${rndsuffix} + +.L_less_than_32x16_${rndsuffix}: + cmp \$`(16*16)`,$T2 + jl .L_less_than_16x16_${rndsuffix} + # ; Get next 16 blocks + vmovdqu64 `64*0`($T1),$ZT1 + vmovdqu64 `64*1`($T1),$ZT2 + vmovdqu64 `64*2`($T1),$ZT3 + vmovdqu64 `64*3`($T1),$ZT4 + vpshufb $SHFMSK,$ZT1,$ZT1 + vpshufb $SHFMSK,$ZT2,$ZT2 + vpshufb $SHFMSK,$ZT3,$ZT3 + vpshufb $SHFMSK,$ZT4,$ZT4 +___ + + # ; This code path does not use more than 16 hkeys, so they can be taken from the context + # ; (not from the stack storage) + &GHASH_16( + "start_reduce", $ZT5, $ZT6, $ZT7, + "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", $GCM128_CTX, + &HashKeyOffsetByIdx(16, "context"), 0, &ZWORD($AAD_HASH), $ZT0, + $ZT8, $ZT9, $ZT10, $ZT11, + $ZT12, $ZT14, $ZT15, $ZT16, + "NO_ZMM", $ZT1, $ZT2, $ZT3, + $ZT4); + + $code .= <<___; + sub \$`(16*16)`,$T2 + je .L_CALC_AAD_done_${rndsuffix} + + add \$`(16*16)`,$T1 + # ; Less than 16x16 bytes remaining +.L_less_than_16x16_${rndsuffix}: + # ;; prep mask source address + lea byte64_len_to_mask_table(%rip),$T3 + lea ($T3,$T2,8),$T3 + + # ;; calculate number of blocks to ghash (including partial bytes) + add \$15,@{[DWORD($T2)]} + shr \$4,@{[DWORD($T2)]} + cmp \$2,@{[DWORD($T2)]} + jb .L_AAD_blocks_1_${rndsuffix} + je .L_AAD_blocks_2_${rndsuffix} + cmp \$4,@{[DWORD($T2)]} + jb .L_AAD_blocks_3_${rndsuffix} + je .L_AAD_blocks_4_${rndsuffix} + cmp \$6,@{[DWORD($T2)]} + jb .L_AAD_blocks_5_${rndsuffix} + je .L_AAD_blocks_6_${rndsuffix} + cmp \$8,@{[DWORD($T2)]} + jb .L_AAD_blocks_7_${rndsuffix} + je .L_AAD_blocks_8_${rndsuffix} + cmp \$10,@{[DWORD($T2)]} + jb .L_AAD_blocks_9_${rndsuffix} + je .L_AAD_blocks_10_${rndsuffix} + cmp \$12,@{[DWORD($T2)]} + jb .L_AAD_blocks_11_${rndsuffix} + je .L_AAD_blocks_12_${rndsuffix} + cmp \$14,@{[DWORD($T2)]} + jb .L_AAD_blocks_13_${rndsuffix} + je .L_AAD_blocks_14_${rndsuffix} + cmp \$15,@{[DWORD($T2)]} + je .L_AAD_blocks_15_${rndsuffix} +___ + + # ;; fall through for 16 blocks + + # ;; The flow of each of these cases is identical: + # ;; - load blocks plain text + # ;; - shuffle loaded blocks + # ;; - xor in current hash value into block 0 + # ;; - perform up multiplications with ghash keys + # ;; - jump to reduction code + + for (my $aad_blocks = 16; $aad_blocks > 0; $aad_blocks--) { + $code .= ".L_AAD_blocks_${aad_blocks}_${rndsuffix}:\n"; + if ($aad_blocks > 12) { + $code .= "sub \$`12*16*8`, $T3\n"; + } elsif ($aad_blocks > 8) { + $code .= "sub \$`8*16*8`, $T3\n"; + } elsif ($aad_blocks > 4) { + $code .= "sub \$`4*16*8`, $T3\n"; + } + $code .= "kmovq ($T3),$MASKREG\n"; + + &ZMM_LOAD_MASKED_BLOCKS_0_16($aad_blocks, $T1, 0, $ZT1, $ZT2, $ZT3, $ZT4, $MASKREG); + + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16($aad_blocks, "vpshufb", $ZT1, $ZT2, $ZT3, $ZT4, + $ZT1, $ZT2, $ZT3, $ZT4, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK); + + &GHASH_1_TO_16($GCM128_CTX, &ZWORD($AAD_HASH), + $ZT0, $ZT5, $ZT6, $ZT7, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, &ZWORD($AAD_HASH), $ZT1, $ZT2, $ZT3, $ZT4, $aad_blocks); + + if ($aad_blocks > 1) { + + # ;; fall through to CALC_AAD_done in 1 block case + $code .= "jmp .L_CALC_AAD_done_${rndsuffix}\n"; + } + + } + $code .= ".L_CALC_AAD_done_${rndsuffix}:\n"; + + # ;; result in AAD_HASH +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;; PARTIAL_BLOCK +# ;; Handles encryption/decryption and the tag partial blocks between +# ;; update calls. +# ;; Requires the input data be at least 1 byte long. +# ;; Output: +# ;; A cipher/plain of the first partial block (CIPH_PLAIN_OUT), +# ;; AAD_HASH and updated GCM128_CTX +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +sub PARTIAL_BLOCK { + my $GCM128_CTX = $_[0]; # [in] key pointer + my $PBLOCK_LEN = $_[1]; # [in] partial block length + my $CIPH_PLAIN_OUT = $_[2]; # [in] output buffer + my $PLAIN_CIPH_IN = $_[3]; # [in] input buffer + my $PLAIN_CIPH_LEN = $_[4]; # [in] buffer length + my $DATA_OFFSET = $_[5]; # [out] data offset (gets set) + my $AAD_HASH = $_[6]; # [out] updated GHASH value + my $ENC_DEC = $_[7]; # [in] cipher direction + my $GPTMP0 = $_[8]; # [clobbered] GP temporary register + my $GPTMP1 = $_[9]; # [clobbered] GP temporary register + my $GPTMP2 = $_[10]; # [clobbered] GP temporary register + my $ZTMP0 = $_[11]; # [clobbered] ZMM temporary register + my $ZTMP1 = $_[12]; # [clobbered] ZMM temporary register + my $ZTMP2 = $_[13]; # [clobbered] ZMM temporary register + my $ZTMP3 = $_[14]; # [clobbered] ZMM temporary register + my $ZTMP4 = $_[15]; # [clobbered] ZMM temporary register + my $ZTMP5 = $_[16]; # [clobbered] ZMM temporary register + my $ZTMP6 = $_[17]; # [clobbered] ZMM temporary register + my $ZTMP7 = $_[18]; # [clobbered] ZMM temporary register + my $MASKREG = $_[19]; # [clobbered] mask temporary register + + my $XTMP0 = &XWORD($ZTMP0); + my $XTMP1 = &XWORD($ZTMP1); + my $XTMP2 = &XWORD($ZTMP2); + my $XTMP3 = &XWORD($ZTMP3); + my $XTMP4 = &XWORD($ZTMP4); + my $XTMP5 = &XWORD($ZTMP5); + my $XTMP6 = &XWORD($ZTMP6); + my $XTMP7 = &XWORD($ZTMP7); + + my $LENGTH = $DATA_OFFSET; + my $IA0 = $GPTMP1; + my $IA1 = $GPTMP2; + my $IA2 = $GPTMP0; + + my $rndsuffix = &random_string(); + + $code .= <<___; + # ;; if no partial block present then LENGTH/DATA_OFFSET will be set to zero + mov ($PBLOCK_LEN),$LENGTH + or $LENGTH,$LENGTH + je .L_partial_block_done_${rndsuffix} # ;Leave Macro if no partial blocks +___ + + &READ_SMALL_DATA_INPUT($XTMP0, $PLAIN_CIPH_IN, $PLAIN_CIPH_LEN, $IA0, $IA2, $MASKREG); + + $code .= <<___; + # ;; XTMP1 = my_ctx_data.partial_block_enc_key + vmovdqu64 $CTX_OFFSET_PEncBlock($GCM128_CTX),$XTMP1 + vmovdqu64 @{[HashKeyByIdx(1,$GCM128_CTX)]},$XTMP2 + + # ;; adjust the shuffle mask pointer to be able to shift right $LENGTH bytes + # ;; (16 - $LENGTH) is the number of bytes in plaintext mod 16) + lea SHIFT_MASK(%rip),$IA0 + add $LENGTH,$IA0 + vmovdqu64 ($IA0),$XTMP3 # ; shift right shuffle mask + vpshufb $XTMP3,$XTMP1,$XTMP1 +___ + + if ($ENC_DEC eq "DEC") { + $code .= <<___; + # ;; keep copy of cipher text in $XTMP4 + vmovdqa64 $XTMP0,$XTMP4 +___ + } + $code .= <<___; + vpxorq $XTMP0,$XTMP1,$XTMP1 # ; Ciphertext XOR E(K, Yn) + # ;; Set $IA1 to be the amount of data left in CIPH_PLAIN_IN after filling the block + # ;; Determine if partial block is not being filled and shift mask accordingly +___ + if ($win64) { + $code .= <<___; + mov $PLAIN_CIPH_LEN,$IA1 + add $LENGTH,$IA1 +___ + } else { + $code .= "lea ($PLAIN_CIPH_LEN, $LENGTH, 1),$IA1\n"; + } + $code .= <<___; + sub \$16,$IA1 + jge .L_no_extra_mask_${rndsuffix} + sub $IA1,$IA0 +.L_no_extra_mask_${rndsuffix}: + # ;; get the appropriate mask to mask out bottom $LENGTH bytes of $XTMP1 + # ;; - mask out bottom $LENGTH bytes of $XTMP1 + # ;; sizeof(SHIFT_MASK) == 16 bytes + vmovdqu64 16($IA0),$XTMP0 + vpand $XTMP0,$XTMP1,$XTMP1 +___ + + if ($ENC_DEC eq "DEC") { + $code .= <<___; + vpand $XTMP0,$XTMP4,$XTMP4 + vpshufb SHUF_MASK(%rip),$XTMP4,$XTMP4 + vpshufb $XTMP3,$XTMP4,$XTMP4 + vpxorq $XTMP4,$AAD_HASH,$AAD_HASH +___ + } else { + $code .= <<___; + vpshufb SHUF_MASK(%rip),$XTMP1,$XTMP1 + vpshufb $XTMP3,$XTMP1,$XTMP1 + vpxorq $XTMP1,$AAD_HASH,$AAD_HASH +___ + } + $code .= <<___; + cmp \$0,$IA1 + jl .L_partial_incomplete_${rndsuffix} +___ + + # ;; GHASH computation for the last <16 Byte block + &GHASH_MUL($AAD_HASH, $XTMP2, $XTMP5, $XTMP6, $XTMP7); + + $code .= <<___; + movq \$0, ($PBLOCK_LEN) + # ;; Set $LENGTH to be the number of bytes to write out + mov $LENGTH,$IA0 + mov \$16,$LENGTH + sub $IA0,$LENGTH + jmp .L_enc_dec_done_${rndsuffix} + +.L_partial_incomplete_${rndsuffix}: +___ + if ($win64) { + $code .= <<___; + mov $PLAIN_CIPH_LEN,$IA0 + add $IA0,($PBLOCK_LEN) +___ + } else { + $code .= "add $PLAIN_CIPH_LEN,($PBLOCK_LEN)\n"; + } + $code .= <<___; + mov $PLAIN_CIPH_LEN,$LENGTH + +.L_enc_dec_done_${rndsuffix}: + # ;; output encrypted Bytes + + lea byte_len_to_mask_table(%rip),$IA0 + kmovw ($IA0,$LENGTH,2),$MASKREG + vmovdqu64 $AAD_HASH,$CTX_OFFSET_AadHash($GCM128_CTX) +___ + + if ($ENC_DEC eq "ENC") { + $code .= <<___; + # ;; shuffle XTMP1 back to output as ciphertext + vpshufb SHUF_MASK(%rip),$XTMP1,$XTMP1 + vpshufb $XTMP3,$XTMP1,$XTMP1 +___ + } + $code .= <<___; + mov $CIPH_PLAIN_OUT,$IA0 + vmovdqu8 $XTMP1,($IA0){$MASKREG} +.L_partial_block_done_${rndsuffix}: +___ +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;; Ciphers 1 to 16 blocks and prepares them for later GHASH compute operation +sub INITIAL_BLOCKS_PARTIAL_CIPHER { + my $AES_KEYS = $_[0]; # [in] key pointer + my $GCM128_CTX = $_[1]; # [in] context pointer + my $CIPH_PLAIN_OUT = $_[2]; # [in] text output pointer + my $PLAIN_CIPH_IN = $_[3]; # [in] text input pointer + my $LENGTH = $_[4]; # [in/clobbered] length in bytes + my $DATA_OFFSET = $_[5]; # [in/out] current data offset (updated) + my $NUM_BLOCKS = $_[6]; # [in] can only be 1, 2, 3, 4, 5, ..., 15 or 16 (not 0) + my $CTR = $_[7]; # [in/out] current counter value + my $ENC_DEC = $_[8]; # [in] cipher direction (ENC/DEC) + my $DAT0 = $_[9]; # [out] ZMM with cipher text shuffled for GHASH + my $DAT1 = $_[10]; # [out] ZMM with cipher text shuffled for GHASH + my $DAT2 = $_[11]; # [out] ZMM with cipher text shuffled for GHASH + my $DAT3 = $_[12]; # [out] ZMM with cipher text shuffled for GHASH + my $LAST_CIPHER_BLK = $_[13]; # [out] XMM to put ciphered counter block partially xor'ed with text + my $LAST_GHASH_BLK = $_[14]; # [out] XMM to put last cipher text block shuffled for GHASH + my $CTR0 = $_[15]; # [clobbered] ZMM temporary + my $CTR1 = $_[16]; # [clobbered] ZMM temporary + my $CTR2 = $_[17]; # [clobbered] ZMM temporary + my $CTR3 = $_[18]; # [clobbered] ZMM temporary + my $ZT1 = $_[19]; # [clobbered] ZMM temporary + my $IA0 = $_[20]; # [clobbered] GP temporary + my $IA1 = $_[21]; # [clobbered] GP temporary + my $MASKREG = $_[22]; # [clobbered] mask register + my $SHUFMASK = $_[23]; # [out] ZMM loaded with BE/LE shuffle mask + + if ($NUM_BLOCKS == 1) { + $code .= "vmovdqa64 SHUF_MASK(%rip),@{[XWORD($SHUFMASK)]}\n"; + } elsif ($NUM_BLOCKS == 2) { + $code .= "vmovdqa64 SHUF_MASK(%rip),@{[YWORD($SHUFMASK)]}\n"; + } else { + $code .= "vmovdqa64 SHUF_MASK(%rip),$SHUFMASK\n"; + } + + # ;; prepare AES counter blocks + if ($NUM_BLOCKS == 1) { + $code .= "vpaddd ONE(%rip),$CTR,@{[XWORD($CTR0)]}\n"; + } elsif ($NUM_BLOCKS == 2) { + $code .= <<___; + vshufi64x2 \$0,@{[YWORD($CTR)]},@{[YWORD($CTR)]},@{[YWORD($CTR0)]} + vpaddd ddq_add_1234(%rip),@{[YWORD($CTR0)]},@{[YWORD($CTR0)]} +___ + } else { + $code .= <<___; + vshufi64x2 \$0,@{[ZWORD($CTR)]},@{[ZWORD($CTR)]},@{[ZWORD($CTR)]} + vpaddd ddq_add_1234(%rip),@{[ZWORD($CTR)]},$CTR0 +___ + if ($NUM_BLOCKS > 4) { + $code .= "vpaddd ddq_add_5678(%rip),@{[ZWORD($CTR)]},$CTR1\n"; + } + if ($NUM_BLOCKS > 8) { + $code .= "vpaddd ddq_add_8888(%rip),$CTR0,$CTR2\n"; + } + if ($NUM_BLOCKS > 12) { + $code .= "vpaddd ddq_add_8888(%rip),$CTR1,$CTR3\n"; + } + } + + # ;; get load/store mask + $code .= <<___; + lea byte64_len_to_mask_table(%rip),$IA0 + mov $LENGTH,$IA1 +___ + if ($NUM_BLOCKS > 12) { + $code .= "sub \$`3*64`,$IA1\n"; + } elsif ($NUM_BLOCKS > 8) { + $code .= "sub \$`2*64`,$IA1\n"; + } elsif ($NUM_BLOCKS > 4) { + $code .= "sub \$`1*64`,$IA1\n"; + } + $code .= "kmovq ($IA0,$IA1,8),$MASKREG\n"; + + # ;; extract new counter value + # ;; shuffle the counters for AES rounds + if ($NUM_BLOCKS <= 4) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$CTR0,$CTR\n"; + } elsif ($NUM_BLOCKS <= 8) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$CTR1,$CTR\n"; + } elsif ($NUM_BLOCKS <= 12) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$CTR2,$CTR\n"; + } else { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$CTR3,$CTR\n"; + } + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vpshufb", $CTR0, $CTR1, $CTR2, $CTR3, $CTR0, + $CTR1, $CTR2, $CTR3, $SHUFMASK, $SHUFMASK, $SHUFMASK, $SHUFMASK); + + # ;; load plain/cipher text + &ZMM_LOAD_MASKED_BLOCKS_0_16($NUM_BLOCKS, $PLAIN_CIPH_IN, $DATA_OFFSET, $DAT0, $DAT1, $DAT2, $DAT3, $MASKREG); + + # ;; AES rounds and XOR with plain/cipher text + foreach my $j (0 .. ($NROUNDS + 1)) { + $code .= "vbroadcastf64x2 `($j * 16)`($AES_KEYS),$ZT1\n"; + &ZMM_AESENC_ROUND_BLOCKS_0_16($CTR0, $CTR1, $CTR2, $CTR3, $ZT1, $j, + $DAT0, $DAT1, $DAT2, $DAT3, $NUM_BLOCKS, $NROUNDS); + } + + # ;; retrieve the last cipher counter block (partially XOR'ed with text) + # ;; - this is needed for partial block cases + if ($NUM_BLOCKS <= 4) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$CTR0,$LAST_CIPHER_BLK\n"; + } elsif ($NUM_BLOCKS <= 8) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$CTR1,$LAST_CIPHER_BLK\n"; + } elsif ($NUM_BLOCKS <= 12) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$CTR2,$LAST_CIPHER_BLK\n"; + } else { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$CTR3,$LAST_CIPHER_BLK\n"; + } + + # ;; write cipher/plain text back to output and + $code .= "mov $CIPH_PLAIN_OUT,$IA0\n"; + &ZMM_STORE_MASKED_BLOCKS_0_16($NUM_BLOCKS, $IA0, $DATA_OFFSET, $CTR0, $CTR1, $CTR2, $CTR3, $MASKREG); + + # ;; zero bytes outside the mask before hashing + if ($NUM_BLOCKS <= 4) { + $code .= "vmovdqu8 $CTR0,${CTR0}{$MASKREG}{z}\n"; + } elsif ($NUM_BLOCKS <= 8) { + $code .= "vmovdqu8 $CTR1,${CTR1}{$MASKREG}{z}\n"; + } elsif ($NUM_BLOCKS <= 12) { + $code .= "vmovdqu8 $CTR2,${CTR2}{$MASKREG}{z}\n"; + } else { + $code .= "vmovdqu8 $CTR3,${CTR3}{$MASKREG}{z}\n"; + } + + # ;; Shuffle the cipher text blocks for hashing part + # ;; ZT5 and ZT6 are expected outputs with blocks for hashing + if ($ENC_DEC eq "DEC") { + + # ;; Decrypt case + # ;; - cipher blocks are in ZT5 & ZT6 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vpshufb", $DAT0, $DAT1, $DAT2, $DAT3, $DAT0, + $DAT1, $DAT2, $DAT3, $SHUFMASK, $SHUFMASK, $SHUFMASK, $SHUFMASK); + } else { + + # ;; Encrypt case + # ;; - cipher blocks are in CTR0-CTR3 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vpshufb", $DAT0, $DAT1, $DAT2, $DAT3, $CTR0, + $CTR1, $CTR2, $CTR3, $SHUFMASK, $SHUFMASK, $SHUFMASK, $SHUFMASK); + } + + # ;; Extract the last block for partials and multi_call cases + if ($NUM_BLOCKS <= 4) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS-1)`,$DAT0,$LAST_GHASH_BLK\n"; + } elsif ($NUM_BLOCKS <= 8) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS-5)`,$DAT1,$LAST_GHASH_BLK\n"; + } elsif ($NUM_BLOCKS <= 12) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS-9)`,$DAT2,$LAST_GHASH_BLK\n"; + } else { + $code .= "vextracti32x4 \$`($NUM_BLOCKS-13)`,$DAT3,$LAST_GHASH_BLK\n"; + } + +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;; Computes GHASH on 1 to 16 blocks +sub INITIAL_BLOCKS_PARTIAL_GHASH { + my $AES_KEYS = $_[0]; # [in] key pointer + my $GCM128_CTX = $_[1]; # [in] context pointer + my $LENGTH = $_[2]; # [in/clobbered] length in bytes + my $NUM_BLOCKS = $_[3]; # [in] can only be 1, 2, 3, 4, 5, ..., 15 or 16 (not 0) + my $HASH_IN_OUT = $_[4]; # [in/out] XMM ghash in/out value + my $ENC_DEC = $_[5]; # [in] cipher direction (ENC/DEC) + my $DAT0 = $_[6]; # [in] ZMM with cipher text shuffled for GHASH + my $DAT1 = $_[7]; # [in] ZMM with cipher text shuffled for GHASH + my $DAT2 = $_[8]; # [in] ZMM with cipher text shuffled for GHASH + my $DAT3 = $_[9]; # [in] ZMM with cipher text shuffled for GHASH + my $LAST_CIPHER_BLK = $_[10]; # [in] XMM with ciphered counter block partially xor'ed with text + my $LAST_GHASH_BLK = $_[11]; # [in] XMM with last cipher text block shuffled for GHASH + my $ZT0 = $_[12]; # [clobbered] ZMM temporary + my $ZT1 = $_[13]; # [clobbered] ZMM temporary + my $ZT2 = $_[14]; # [clobbered] ZMM temporary + my $ZT3 = $_[15]; # [clobbered] ZMM temporary + my $ZT4 = $_[16]; # [clobbered] ZMM temporary + my $ZT5 = $_[17]; # [clobbered] ZMM temporary + my $ZT6 = $_[18]; # [clobbered] ZMM temporary + my $ZT7 = $_[19]; # [clobbered] ZMM temporary + my $ZT8 = $_[20]; # [clobbered] ZMM temporary + my $PBLOCK_LEN = $_[21]; # [in] partial block length + my $GH = $_[22]; # [in] ZMM with hi product part + my $GM = $_[23]; # [in] ZMM with mid prodcut part + my $GL = $_[24]; # [in] ZMM with lo product part + + my $rndsuffix = &random_string(); + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;;; - Hash all but the last partial block of data + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + + # ;; update data offset + if ($NUM_BLOCKS > 1) { + + # ;; The final block of data may be <16B + $code .= "sub \$16 * ($NUM_BLOCKS - 1),$LENGTH\n"; + } + + if ($NUM_BLOCKS < 16) { + $code .= <<___; + # ;; NOTE: the 'jl' is always taken for num_initial_blocks = 16. + # ;; This is run in the context of GCM_ENC_DEC_SMALL for length < 256. + cmp \$16,$LENGTH + jl .L_small_initial_partial_block_${rndsuffix} + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;;; Handle a full length final block - encrypt and hash all blocks + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + + sub \$16,$LENGTH + movq \$0,($PBLOCK_LEN) +___ + + # ;; Hash all of the data + if (scalar(@_) == 22) { + + # ;; start GHASH compute + &GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, + $ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $NUM_BLOCKS); + } elsif (scalar(@_) == 25) { + + # ;; continue GHASH compute + &GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, + $ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $NUM_BLOCKS, $GH, $GM, $GL); + } + $code .= "jmp .L_small_initial_compute_done_${rndsuffix}\n"; + } + + $code .= <<___; +.L_small_initial_partial_block_${rndsuffix}: + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;;; Handle ghash for a <16B final block + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + + # ;; As it's an init / update / finalize series we need to leave the + # ;; last block if it's less than a full block of data. + + mov $LENGTH,($PBLOCK_LEN) + vmovdqu64 $LAST_CIPHER_BLK,$CTX_OFFSET_PEncBlock($GCM128_CTX) +___ + + my $k = ($NUM_BLOCKS - 1); + my $last_block_to_hash = 1; + if (($NUM_BLOCKS > $last_block_to_hash)) { + + # ;; ZT12-ZT20 - temporary registers + if (scalar(@_) == 22) { + + # ;; start GHASH compute + &GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, + $ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $k); + } elsif (scalar(@_) == 25) { + + # ;; continue GHASH compute + &GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, + $ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $k, $GH, $GM, $GL); + } + + # ;; just fall through no jmp needed + } else { + + if (scalar(@_) == 25) { + $code .= <<___; + # ;; Reduction is required in this case. + # ;; Integrate GM into GH and GL. + vpsrldq \$8,$GM,$ZT0 + vpslldq \$8,$GM,$ZT1 + vpxorq $ZT0,$GH,$GH + vpxorq $ZT1,$GL,$GL +___ + + # ;; Add GH and GL 128-bit words horizontally + &VHPXORI4x128($GH, $ZT0); + &VHPXORI4x128($GL, $ZT1); + + # ;; 256-bit to 128-bit reduction + $code .= "vmovdqa64 POLY2(%rip),@{[XWORD($ZT0)]}\n"; + &VCLMUL_REDUCE(&XWORD($HASH_IN_OUT), &XWORD($ZT0), &XWORD($GH), &XWORD($GL), &XWORD($ZT1), &XWORD($ZT2)); + } + $code .= <<___; + # ;; Record that a reduction is not needed - + # ;; In this case no hashes are computed because there + # ;; is only one initial block and it is < 16B in length. + # ;; We only need to check if a reduction is needed if + # ;; initial_blocks == 1 and init/update/final is being used. + # ;; In this case we may just have a partial block, and that + # ;; gets hashed in finalize. + + # ;; The hash should end up in HASH_IN_OUT. + # ;; The only way we should get here is if there is + # ;; a partial block of data, so xor that into the hash. + vpxorq $LAST_GHASH_BLK,$HASH_IN_OUT,$HASH_IN_OUT + # ;; The result is in $HASH_IN_OUT + jmp .L_after_reduction_${rndsuffix} +___ + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;;; After GHASH reduction + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + + $code .= ".L_small_initial_compute_done_${rndsuffix}:\n"; + + # ;; If using init/update/finalize, we need to xor any partial block data + # ;; into the hash. + if ($NUM_BLOCKS > 1) { + + # ;; NOTE: for $NUM_BLOCKS = 0 the xor never takes place + if ($NUM_BLOCKS != 16) { + $code .= <<___; + # ;; NOTE: for $NUM_BLOCKS = 16, $LENGTH, stored in [PBlockLen] is never zero + or $LENGTH,$LENGTH + je .L_after_reduction_${rndsuffix} +___ + } + $code .= "vpxorq $LAST_GHASH_BLK,$HASH_IN_OUT,$HASH_IN_OUT\n"; + } + + $code .= ".L_after_reduction_${rndsuffix}:\n"; + + # ;; Final hash is now in HASH_IN_OUT +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;; INITIAL_BLOCKS_PARTIAL macro with support for a partial final block. +# ;; It may look similar to INITIAL_BLOCKS but its usage is different: +# ;; - first encrypts/decrypts required number of blocks and then +# ;; ghashes these blocks +# ;; - Small packets or left over data chunks (<256 bytes) +# ;; - Remaining data chunks below 256 bytes (multi buffer code) +# ;; +# ;; num_initial_blocks is expected to include the partial final block +# ;; in the count. +sub INITIAL_BLOCKS_PARTIAL { + my $AES_KEYS = $_[0]; # [in] key pointer + my $GCM128_CTX = $_[1]; # [in] context pointer + my $CIPH_PLAIN_OUT = $_[2]; # [in] text output pointer + my $PLAIN_CIPH_IN = $_[3]; # [in] text input pointer + my $LENGTH = $_[4]; # [in/clobbered] length in bytes + my $DATA_OFFSET = $_[5]; # [in/out] current data offset (updated) + my $NUM_BLOCKS = $_[6]; # [in] can only be 1, 2, 3, 4, 5, ..., 15 or 16 (not 0) + my $CTR = $_[7]; # [in/out] current counter value + my $HASH_IN_OUT = $_[8]; # [in/out] XMM ghash in/out value + my $ENC_DEC = $_[9]; # [in] cipher direction (ENC/DEC) + my $CTR0 = $_[10]; # [clobbered] ZMM temporary + my $CTR1 = $_[11]; # [clobbered] ZMM temporary + my $CTR2 = $_[12]; # [clobbered] ZMM temporary + my $CTR3 = $_[13]; # [clobbered] ZMM temporary + my $DAT0 = $_[14]; # [clobbered] ZMM temporary + my $DAT1 = $_[15]; # [clobbered] ZMM temporary + my $DAT2 = $_[16]; # [clobbered] ZMM temporary + my $DAT3 = $_[17]; # [clobbered] ZMM temporary + my $LAST_CIPHER_BLK = $_[18]; # [clobbered] ZMM temporary + my $LAST_GHASH_BLK = $_[19]; # [clobbered] ZMM temporary + my $ZT0 = $_[20]; # [clobbered] ZMM temporary + my $ZT1 = $_[21]; # [clobbered] ZMM temporary + my $ZT2 = $_[22]; # [clobbered] ZMM temporary + my $ZT3 = $_[23]; # [clobbered] ZMM temporary + my $ZT4 = $_[24]; # [clobbered] ZMM temporary + my $IA0 = $_[25]; # [clobbered] GP temporary + my $IA1 = $_[26]; # [clobbered] GP temporary + my $MASKREG = $_[27]; # [clobbered] mask register + my $SHUFMASK = $_[28]; # [clobbered] ZMM for BE/LE shuffle mask + my $PBLOCK_LEN = $_[29]; # [in] partial block length + + &INITIAL_BLOCKS_PARTIAL_CIPHER( + $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, + $LENGTH, $DATA_OFFSET, $NUM_BLOCKS, $CTR, + $ENC_DEC, $DAT0, $DAT1, $DAT2, + $DAT3, &XWORD($LAST_CIPHER_BLK), &XWORD($LAST_GHASH_BLK), $CTR0, + $CTR1, $CTR2, $CTR3, $ZT0, + $IA0, $IA1, $MASKREG, $SHUFMASK); + + &INITIAL_BLOCKS_PARTIAL_GHASH($AES_KEYS, $GCM128_CTX, $LENGTH, $NUM_BLOCKS, $HASH_IN_OUT, $ENC_DEC, $DAT0, + $DAT1, $DAT2, $DAT3, &XWORD($LAST_CIPHER_BLK), + &XWORD($LAST_GHASH_BLK), $CTR0, $CTR1, $CTR2, $CTR3, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, $PBLOCK_LEN); +} + +# ;; =========================================================================== +# ;; Stitched GHASH of 16 blocks (with reduction) with encryption of N blocks +# ;; followed with GHASH of the N blocks. +sub GHASH_16_ENCRYPT_N_GHASH_N { + my $AES_KEYS = $_[0]; # [in] key pointer + my $GCM128_CTX = $_[1]; # [in] context pointer + my $CIPH_PLAIN_OUT = $_[2]; # [in] pointer to output buffer + my $PLAIN_CIPH_IN = $_[3]; # [in] pointer to input buffer + my $DATA_OFFSET = $_[4]; # [in] data offset + my $LENGTH = $_[5]; # [in] data length + my $CTR_BE = $_[6]; # [in/out] ZMM counter blocks (last 4) in big-endian + my $CTR_CHECK = $_[7]; # [in/out] GP with 8-bit counter for overflow check + my $HASHKEY_OFFSET = $_[8]; # [in] numerical offset for the highest hash key + # (can be in form of register or numerical value) + my $GHASHIN_BLK_OFFSET = $_[9]; # [in] numerical offset for GHASH blocks in + my $SHFMSK = $_[10]; # [in] ZMM with byte swap mask for pshufb + my $B00_03 = $_[11]; # [clobbered] temporary ZMM + my $B04_07 = $_[12]; # [clobbered] temporary ZMM + my $B08_11 = $_[13]; # [clobbered] temporary ZMM + my $B12_15 = $_[14]; # [clobbered] temporary ZMM + my $GH1H_UNUSED = $_[15]; # [clobbered] temporary ZMM + my $GH1L = $_[16]; # [clobbered] temporary ZMM + my $GH1M = $_[17]; # [clobbered] temporary ZMM + my $GH1T = $_[18]; # [clobbered] temporary ZMM + my $GH2H = $_[19]; # [clobbered] temporary ZMM + my $GH2L = $_[20]; # [clobbered] temporary ZMM + my $GH2M = $_[21]; # [clobbered] temporary ZMM + my $GH2T = $_[22]; # [clobbered] temporary ZMM + my $GH3H = $_[23]; # [clobbered] temporary ZMM + my $GH3L = $_[24]; # [clobbered] temporary ZMM + my $GH3M = $_[25]; # [clobbered] temporary ZMM + my $GH3T = $_[26]; # [clobbered] temporary ZMM + my $AESKEY1 = $_[27]; # [clobbered] temporary ZMM + my $AESKEY2 = $_[28]; # [clobbered] temporary ZMM + my $GHKEY1 = $_[29]; # [clobbered] temporary ZMM + my $GHKEY2 = $_[30]; # [clobbered] temporary ZMM + my $GHDAT1 = $_[31]; # [clobbered] temporary ZMM + my $GHDAT2 = $_[32]; # [clobbered] temporary ZMM + my $ZT01 = $_[33]; # [clobbered] temporary ZMM + my $ADDBE_4x4 = $_[34]; # [in] ZMM with 4x128bits 4 in big-endian + my $ADDBE_1234 = $_[35]; # [in] ZMM with 4x128bits 1, 2, 3 and 4 in big-endian + my $GHASH_TYPE = $_[36]; # [in] "start", "start_reduce", "mid", "end_reduce" + my $TO_REDUCE_L = $_[37]; # [in] ZMM for low 4x128-bit GHASH sum + my $TO_REDUCE_H = $_[38]; # [in] ZMM for hi 4x128-bit GHASH sum + my $TO_REDUCE_M = $_[39]; # [in] ZMM for medium 4x128-bit GHASH sum + my $ENC_DEC = $_[40]; # [in] cipher direction + my $HASH_IN_OUT = $_[41]; # [in/out] XMM ghash in/out value + my $IA0 = $_[42]; # [clobbered] GP temporary + my $IA1 = $_[43]; # [clobbered] GP temporary + my $MASKREG = $_[44]; # [clobbered] mask register + my $NUM_BLOCKS = $_[45]; # [in] numerical value with number of blocks to be encrypted/ghashed (1 to 16) + my $PBLOCK_LEN = $_[46]; # [in] partial block length + + die "GHASH_16_ENCRYPT_N_GHASH_N: num_blocks is out of bounds = $NUM_BLOCKS\n" + if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0); + + my $rndsuffix = &random_string(); + + my $GH1H = $HASH_IN_OUT; + + # ; this is to avoid additional move in do_reduction case + + my $LAST_GHASH_BLK = $GH1L; + my $LAST_CIPHER_BLK = $GH1T; + + my $RED_POLY = $GH2T; + my $RED_P1 = $GH2L; + my $RED_T1 = $GH2H; + my $RED_T2 = $GH2M; + + my $DATA1 = $GH3H; + my $DATA2 = $GH3L; + my $DATA3 = $GH3M; + my $DATA4 = $GH3T; + + # ;; do reduction after the 16 blocks ? + my $do_reduction = 0; + + # ;; is 16 block chunk a start? + my $is_start = 0; + + if ($GHASH_TYPE eq "start_reduce") { + $is_start = 1; + $do_reduction = 1; + } + + if ($GHASH_TYPE eq "start") { + $is_start = 1; + } + + if ($GHASH_TYPE eq "end_reduce") { + $do_reduction = 1; + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; - get load/store mask + # ;; - load plain/cipher text + # ;; get load/store mask + $code .= <<___; + lea byte64_len_to_mask_table(%rip),$IA0 + mov $LENGTH,$IA1 +___ + if ($NUM_BLOCKS > 12) { + $code .= "sub \$`3*64`,$IA1\n"; + } elsif ($NUM_BLOCKS > 8) { + $code .= "sub \$`2*64`,$IA1\n"; + } elsif ($NUM_BLOCKS > 4) { + $code .= "sub \$`1*64`,$IA1\n"; + } + $code .= "kmovq ($IA0,$IA1,8),$MASKREG\n"; + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; prepare counter blocks + + $code .= <<___; + cmp \$`(256 - $NUM_BLOCKS)`,@{[DWORD($CTR_CHECK)]} + jae .L_16_blocks_overflow_${rndsuffix} +___ + + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vpaddd", $B00_03, $B04_07, $B08_11, $B12_15, $CTR_BE, + $B00_03, $B04_07, $B08_11, $ADDBE_1234, $ADDBE_4x4, $ADDBE_4x4, $ADDBE_4x4); + $code .= <<___; + jmp .L_16_blocks_ok_${rndsuffix} + +.L_16_blocks_overflow_${rndsuffix}: + vpshufb $SHFMSK,$CTR_BE,$CTR_BE + vpaddd ddq_add_1234(%rip),$CTR_BE,$B00_03 +___ + if ($NUM_BLOCKS > 4) { + $code .= <<___; + vmovdqa64 ddq_add_4444(%rip),$B12_15 + vpaddd $B12_15,$B00_03,$B04_07 +___ + } + if ($NUM_BLOCKS > 8) { + $code .= "vpaddd $B12_15,$B04_07,$B08_11\n"; + } + if ($NUM_BLOCKS > 12) { + $code .= "vpaddd $B12_15,$B08_11,$B12_15\n"; + } + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vpshufb", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK); + $code .= <<___; +.L_16_blocks_ok_${rndsuffix}: + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; - pre-load constants + # ;; - add current hash into the 1st block + vbroadcastf64x2 `(16 * 0)`($AES_KEYS),$AESKEY1 +___ + if ($is_start != 0) { + $code .= "vpxorq `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$HASH_IN_OUT,$GHDAT1\n"; + } else { + $code .= "vmovdqa64 `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$GHDAT1\n"; + } + + $code .= "vmovdqu64 @{[EffectiveAddress(\"%rsp\",$HASHKEY_OFFSET,0*64)]},$GHKEY1\n"; + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; save counter for the next round + # ;; increment counter overflow check register + if ($NUM_BLOCKS <= 4) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$B00_03,@{[XWORD($CTR_BE)]}\n"; + } elsif ($NUM_BLOCKS <= 8) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$B04_07,@{[XWORD($CTR_BE)]}\n"; + } elsif ($NUM_BLOCKS <= 12) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$B08_11,@{[XWORD($CTR_BE)]}\n"; + } else { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$B12_15,@{[XWORD($CTR_BE)]}\n"; + } + $code .= "vshufi64x2 \$0b00000000,$CTR_BE,$CTR_BE,$CTR_BE\n"; + + $code .= <<___; + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; pre-load constants + vbroadcastf64x2 `(16 * 1)`($AES_KEYS),$AESKEY2 + vmovdqu64 @{[EffectiveAddress("%rsp",$HASHKEY_OFFSET,1*64)]},$GHKEY2 + vmovdqa64 `$GHASHIN_BLK_OFFSET + (1*64)`(%rsp),$GHDAT2 +___ + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; stitch AES rounds with GHASH + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 0 - ARK + + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vpxorq", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1); + $code .= "vbroadcastf64x2 `(16 * 2)`($AES_KEYS),$AESKEY1\n"; + + $code .= <<___; + # ;;================================================== + # ;; GHASH 4 blocks (15 to 12) + vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH1H # ; a1*b1 + vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH1L # ; a0*b0 + vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH1M # ; a1*b0 + vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH1T # ; a0*b1 + vmovdqu64 @{[EffectiveAddress("%rsp",$HASHKEY_OFFSET,2*64)]},$GHKEY1 + vmovdqa64 `$GHASHIN_BLK_OFFSET + (2*64)`(%rsp),$GHDAT1 +___ + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 1 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2); + $code .= "vbroadcastf64x2 `(16 * 3)`($AES_KEYS),$AESKEY2\n"; + + $code .= <<___; + # ;; ================================================= + # ;; GHASH 4 blocks (11 to 8) + vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1 + vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0 + vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1 + vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0 + vmovdqu64 @{[EffectiveAddress("%rsp",$HASHKEY_OFFSET,3*64)]},$GHKEY2 + vmovdqa64 `$GHASHIN_BLK_OFFSET + (3*64)`(%rsp),$GHDAT2 +___ + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 2 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1); + $code .= "vbroadcastf64x2 `(16 * 4)`($AES_KEYS),$AESKEY1\n"; + + $code .= <<___; + # ;; ================================================= + # ;; GHASH 4 blocks (7 to 4) + vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH3M # ; a0*b1 + vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH3T # ; a1*b0 + vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH3H # ; a1*b1 + vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH3L # ; a0*b0 +___ + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES rounds 3 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2); + $code .= "vbroadcastf64x2 `(16 * 5)`($AES_KEYS),$AESKEY2\n"; + + $code .= <<___; + # ;; ================================================= + # ;; Gather (XOR) GHASH for 12 blocks + vpternlogq \$0x96,$GH3H,$GH2H,$GH1H + vpternlogq \$0x96,$GH3L,$GH2L,$GH1L + vpternlogq \$0x96,$GH3T,$GH2T,$GH1T + vpternlogq \$0x96,$GH3M,$GH2M,$GH1M +___ + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES rounds 4 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1); + $code .= "vbroadcastf64x2 `(16 * 6)`($AES_KEYS),$AESKEY1\n"; + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; load plain/cipher text + &ZMM_LOAD_MASKED_BLOCKS_0_16($NUM_BLOCKS, $PLAIN_CIPH_IN, $DATA_OFFSET, $DATA1, $DATA2, $DATA3, $DATA4, $MASKREG); + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES rounds 5 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2); + $code .= "vbroadcastf64x2 `(16 * 7)`($AES_KEYS),$AESKEY2\n"; + + $code .= <<___; + # ;; ================================================= + # ;; GHASH 4 blocks (3 to 0) + vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1 + vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0 + vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1 + vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0 +___ + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 6 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1); + $code .= "vbroadcastf64x2 `(16 * 8)`($AES_KEYS),$AESKEY1\n"; + + # ;; ================================================= + # ;; gather GHASH in GH1L (low), GH1H (high), GH1M (mid) + # ;; - add GH2[MTLH] to GH1[MTLH] + $code .= "vpternlogq \$0x96,$GH2T,$GH1T,$GH1M\n"; + if ($do_reduction != 0) { + + if ($is_start != 0) { + $code .= "vpxorq $GH2M,$GH1M,$GH1M\n"; + } else { + $code .= <<___; + vpternlogq \$0x96,$GH2H,$TO_REDUCE_H,$GH1H + vpternlogq \$0x96,$GH2L,$TO_REDUCE_L,$GH1L + vpternlogq \$0x96,$GH2M,$TO_REDUCE_M,$GH1M +___ + } + + } else { + + # ;; Update H/M/L hash sums if not carrying reduction + if ($is_start != 0) { + $code .= <<___; + vpxorq $GH2H,$GH1H,$TO_REDUCE_H + vpxorq $GH2L,$GH1L,$TO_REDUCE_L + vpxorq $GH2M,$GH1M,$TO_REDUCE_M +___ + } else { + $code .= <<___; + vpternlogq \$0x96,$GH2H,$GH1H,$TO_REDUCE_H + vpternlogq \$0x96,$GH2L,$GH1L,$TO_REDUCE_L + vpternlogq \$0x96,$GH2M,$GH1M,$TO_REDUCE_M +___ + } + + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 7 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2); + $code .= "vbroadcastf64x2 `(16 * 9)`($AES_KEYS),$AESKEY2\n"; + + # ;; ================================================= + # ;; prepare mid sum for adding to high & low + # ;; load polynomial constant for reduction + if ($do_reduction != 0) { + $code .= <<___; + vpsrldq \$8,$GH1M,$GH2M + vpslldq \$8,$GH1M,$GH1M + + vmovdqa64 POLY2(%rip),@{[XWORD($RED_POLY)]} +___ + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 8 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1); + $code .= "vbroadcastf64x2 `(16 * 10)`($AES_KEYS),$AESKEY1\n"; + + # ;; ================================================= + # ;; Add mid product to high and low + if ($do_reduction != 0) { + if ($is_start != 0) { + $code .= <<___; + vpternlogq \$0x96,$GH2M,$GH2H,$GH1H # ; TH = TH1 + TH2 + TM>>64 + vpternlogq \$0x96,$GH1M,$GH2L,$GH1L # ; TL = TL1 + TL2 + TM<<64 +___ + } else { + $code .= <<___; + vpxorq $GH2M,$GH1H,$GH1H # ; TH = TH1 + TM>>64 + vpxorq $GH1M,$GH1L,$GH1L # ; TL = TL1 + TM<<64 +___ + } + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 9 + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2); + + # ;; ================================================= + # ;; horizontal xor of low and high 4x128 + if ($do_reduction != 0) { + &VHPXORI4x128($GH1H, $GH2H); + &VHPXORI4x128($GH1L, $GH2L); + } + + if (($NROUNDS >= 11)) { + $code .= "vbroadcastf64x2 `(16 * 11)`($AES_KEYS),$AESKEY2\n"; + } + + # ;; ================================================= + # ;; first phase of reduction + if ($do_reduction != 0) { + $code .= <<___; + vpclmulqdq \$0x01,@{[XWORD($GH1L)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_P1)]} + vpslldq \$8,@{[XWORD($RED_P1)]},@{[XWORD($RED_P1)]} # ; shift-L 2 DWs + vpxorq @{[XWORD($RED_P1)]},@{[XWORD($GH1L)]},@{[XWORD($RED_P1)]} # ; first phase of the reduct +___ + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES rounds up to 11 (AES192) or 13 (AES256) + # ;; AES128 is done + if (($NROUNDS >= 11)) { + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1); + $code .= "vbroadcastf64x2 `(16 * 12)`($AES_KEYS),$AESKEY1\n"; + + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2); + if (($NROUNDS == 13)) { + $code .= "vbroadcastf64x2 `(16 * 13)`($AES_KEYS),$AESKEY2\n"; + + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1); + $code .= "vbroadcastf64x2 `(16 * 14)`($AES_KEYS),$AESKEY1\n"; + + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2); + } + } + + # ;; ================================================= + # ;; second phase of the reduction + if ($do_reduction != 0) { + $code .= <<___; + vpclmulqdq \$0x00,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T1)]} + vpsrldq \$4,@{[XWORD($RED_T1)]},@{[XWORD($RED_T1)]} # ; shift-R 1-DW to obtain 2-DWs shift-R + vpclmulqdq \$0x10,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T2)]} + vpslldq \$4,@{[XWORD($RED_T2)]},@{[XWORD($RED_T2)]} # ; shift-L 1-DW for result without shifts + # ;; GH1H = GH1H + RED_T1 + RED_T2 + vpternlogq \$0x96,@{[XWORD($RED_T1)]},@{[XWORD($RED_T2)]},@{[XWORD($GH1H)]} +___ + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; the last AES round + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vaesenclast", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1); + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; XOR against plain/cipher text + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vpxorq", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03, + $B04_07, $B08_11, $B12_15, $DATA1, $DATA2, $DATA3, $DATA4); + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; retrieve the last cipher counter block (partially XOR'ed with text) + # ;; - this is needed for partial block cases + if ($NUM_BLOCKS <= 4) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$B00_03,@{[XWORD($LAST_CIPHER_BLK)]}\n"; + } elsif ($NUM_BLOCKS <= 8) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$B04_07,@{[XWORD($LAST_CIPHER_BLK)]}\n"; + } elsif ($NUM_BLOCKS <= 12) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$B08_11,@{[XWORD($LAST_CIPHER_BLK)]}\n"; + } else { + $code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$B12_15,@{[XWORD($LAST_CIPHER_BLK)]}\n"; + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; store cipher/plain text + $code .= "mov $CIPH_PLAIN_OUT,$IA0\n"; + &ZMM_STORE_MASKED_BLOCKS_0_16($NUM_BLOCKS, $IA0, $DATA_OFFSET, $B00_03, $B04_07, $B08_11, $B12_15, $MASKREG); + + # ;; ================================================= + # ;; shuffle cipher text blocks for GHASH computation + if ($ENC_DEC eq "ENC") { + + # ;; zero bytes outside the mask before hashing + if ($NUM_BLOCKS <= 4) { + $code .= "vmovdqu8 $B00_03,${B00_03}{$MASKREG}{z}\n"; + } elsif ($NUM_BLOCKS <= 8) { + $code .= "vmovdqu8 $B04_07,${B04_07}{$MASKREG}{z}\n"; + } elsif ($NUM_BLOCKS <= 12) { + $code .= "vmovdqu8 $B08_11,${B08_11}{$MASKREG}{z}\n"; + } else { + $code .= "vmovdqu8 $B12_15,${B12_15}{$MASKREG}{z}\n"; + } + + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vpshufb", $DATA1, $DATA2, $DATA3, $DATA4, $B00_03, + $B04_07, $B08_11, $B12_15, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK); + } else { + + # ;; zero bytes outside the mask before hashing + if ($NUM_BLOCKS <= 4) { + $code .= "vmovdqu8 $DATA1,${DATA1}{$MASKREG}{z}\n"; + } elsif ($NUM_BLOCKS <= 8) { + $code .= "vmovdqu8 $DATA2,${DATA2}{$MASKREG}{z}\n"; + } elsif ($NUM_BLOCKS <= 12) { + $code .= "vmovdqu8 $DATA3,${DATA3}{$MASKREG}{z}\n"; + } else { + $code .= "vmovdqu8 $DATA4,${DATA4}{$MASKREG}{z}\n"; + } + + &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16( + $NUM_BLOCKS, "vpshufb", $DATA1, $DATA2, $DATA3, $DATA4, $DATA1, + $DATA2, $DATA3, $DATA4, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK); + } + + # ;; ================================================= + # ;; Extract the last block for partial / multi_call cases + if ($NUM_BLOCKS <= 4) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS-1)`,$DATA1,@{[XWORD($LAST_GHASH_BLK)]}\n"; + } elsif ($NUM_BLOCKS <= 8) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS-5)`,$DATA2,@{[XWORD($LAST_GHASH_BLK)]}\n"; + } elsif ($NUM_BLOCKS <= 12) { + $code .= "vextracti32x4 \$`($NUM_BLOCKS-9)`,$DATA3,@{[XWORD($LAST_GHASH_BLK)]}\n"; + } else { + $code .= "vextracti32x4 \$`($NUM_BLOCKS-13)`,$DATA4,@{[XWORD($LAST_GHASH_BLK)]}\n"; + } + + if ($do_reduction != 0) { + + # ;; GH1H holds reduced hash value + # ;; - normally do "vmovdqa64 &XWORD($GH1H), &XWORD($HASH_IN_OUT)" + # ;; - register rename trick obsoletes the above move + } + + # ;; ================================================= + # ;; GHASH last N blocks + # ;; - current hash value in HASH_IN_OUT or + # ;; product parts in TO_REDUCE_H/M/L + # ;; - DATA1-DATA4 include blocks for GHASH + + if ($do_reduction == 0) { + &INITIAL_BLOCKS_PARTIAL_GHASH( + $AES_KEYS, $GCM128_CTX, $LENGTH, $NUM_BLOCKS, + &XWORD($HASH_IN_OUT), $ENC_DEC, $DATA1, $DATA2, + $DATA3, $DATA4, &XWORD($LAST_CIPHER_BLK), &XWORD($LAST_GHASH_BLK), + $B00_03, $B04_07, $B08_11, $B12_15, + $GHDAT1, $GHDAT2, $AESKEY1, $AESKEY2, + $GHKEY1, $PBLOCK_LEN, $TO_REDUCE_H, $TO_REDUCE_M, + $TO_REDUCE_L); + } else { + &INITIAL_BLOCKS_PARTIAL_GHASH( + $AES_KEYS, $GCM128_CTX, $LENGTH, $NUM_BLOCKS, + &XWORD($HASH_IN_OUT), $ENC_DEC, $DATA1, $DATA2, + $DATA3, $DATA4, &XWORD($LAST_CIPHER_BLK), &XWORD($LAST_GHASH_BLK), + $B00_03, $B04_07, $B08_11, $B12_15, + $GHDAT1, $GHDAT2, $AESKEY1, $AESKEY2, + $GHKEY1, $PBLOCK_LEN); + } +} + +# ;; =========================================================================== +# ;; =========================================================================== +# ;; Stitched GHASH of 16 blocks (with reduction) with encryption of N blocks +# ;; followed with GHASH of the N blocks. +sub GCM_ENC_DEC_LAST { + my $AES_KEYS = $_[0]; # [in] key pointer + my $GCM128_CTX = $_[1]; # [in] context pointer + my $CIPH_PLAIN_OUT = $_[2]; # [in] pointer to output buffer + my $PLAIN_CIPH_IN = $_[3]; # [in] pointer to input buffer + my $DATA_OFFSET = $_[4]; # [in] data offset + my $LENGTH = $_[5]; # [in/clobbered] data length + my $CTR_BE = $_[6]; # [in/out] ZMM counter blocks (last 4) in big-endian + my $CTR_CHECK = $_[7]; # [in/out] GP with 8-bit counter for overflow check + my $HASHKEY_OFFSET = $_[8]; # [in] numerical offset for the highest hash key + # (can be register or numerical offset) + my $GHASHIN_BLK_OFFSET = $_[9]; # [in] numerical offset for GHASH blocks in + my $SHFMSK = $_[10]; # [in] ZMM with byte swap mask for pshufb + my $ZT00 = $_[11]; # [clobbered] temporary ZMM + my $ZT01 = $_[12]; # [clobbered] temporary ZMM + my $ZT02 = $_[13]; # [clobbered] temporary ZMM + my $ZT03 = $_[14]; # [clobbered] temporary ZMM + my $ZT04 = $_[15]; # [clobbered] temporary ZMM + my $ZT05 = $_[16]; # [clobbered] temporary ZMM + my $ZT06 = $_[17]; # [clobbered] temporary ZMM + my $ZT07 = $_[18]; # [clobbered] temporary ZMM + my $ZT08 = $_[19]; # [clobbered] temporary ZMM + my $ZT09 = $_[20]; # [clobbered] temporary ZMM + my $ZT10 = $_[21]; # [clobbered] temporary ZMM + my $ZT11 = $_[22]; # [clobbered] temporary ZMM + my $ZT12 = $_[23]; # [clobbered] temporary ZMM + my $ZT13 = $_[24]; # [clobbered] temporary ZMM + my $ZT14 = $_[25]; # [clobbered] temporary ZMM + my $ZT15 = $_[26]; # [clobbered] temporary ZMM + my $ZT16 = $_[27]; # [clobbered] temporary ZMM + my $ZT17 = $_[28]; # [clobbered] temporary ZMM + my $ZT18 = $_[29]; # [clobbered] temporary ZMM + my $ZT19 = $_[30]; # [clobbered] temporary ZMM + my $ZT20 = $_[31]; # [clobbered] temporary ZMM + my $ZT21 = $_[32]; # [clobbered] temporary ZMM + my $ZT22 = $_[33]; # [clobbered] temporary ZMM + my $ADDBE_4x4 = $_[34]; # [in] ZMM with 4x128bits 4 in big-endian + my $ADDBE_1234 = $_[35]; # [in] ZMM with 4x128bits 1, 2, 3 and 4 in big-endian + my $GHASH_TYPE = $_[36]; # [in] "start", "start_reduce", "mid", "end_reduce" + my $TO_REDUCE_L = $_[37]; # [in] ZMM for low 4x128-bit GHASH sum + my $TO_REDUCE_H = $_[38]; # [in] ZMM for hi 4x128-bit GHASH sum + my $TO_REDUCE_M = $_[39]; # [in] ZMM for medium 4x128-bit GHASH sum + my $ENC_DEC = $_[40]; # [in] cipher direction + my $HASH_IN_OUT = $_[41]; # [in/out] XMM ghash in/out value + my $IA0 = $_[42]; # [clobbered] GP temporary + my $IA1 = $_[43]; # [clobbered] GP temporary + my $MASKREG = $_[44]; # [clobbered] mask register + my $PBLOCK_LEN = $_[45]; # [in] partial block length + + my $rndsuffix = &random_string(); + + $code .= <<___; + mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]} + add \$15,@{[DWORD($IA0)]} + shr \$4,@{[DWORD($IA0)]} + je .L_last_num_blocks_is_0_${rndsuffix} + + cmp \$8,@{[DWORD($IA0)]} + je .L_last_num_blocks_is_8_${rndsuffix} + jb .L_last_num_blocks_is_7_1_${rndsuffix} + + + cmp \$12,@{[DWORD($IA0)]} + je .L_last_num_blocks_is_12_${rndsuffix} + jb .L_last_num_blocks_is_11_9_${rndsuffix} + + # ;; 16, 15, 14 or 13 + cmp \$15,@{[DWORD($IA0)]} + je .L_last_num_blocks_is_15_${rndsuffix} + ja .L_last_num_blocks_is_16_${rndsuffix} + cmp \$14,@{[DWORD($IA0)]} + je .L_last_num_blocks_is_14_${rndsuffix} + jmp .L_last_num_blocks_is_13_${rndsuffix} + +.L_last_num_blocks_is_11_9_${rndsuffix}: + # ;; 11, 10 or 9 + cmp \$10,@{[DWORD($IA0)]} + je .L_last_num_blocks_is_10_${rndsuffix} + ja .L_last_num_blocks_is_11_${rndsuffix} + jmp .L_last_num_blocks_is_9_${rndsuffix} + +.L_last_num_blocks_is_7_1_${rndsuffix}: + cmp \$4,@{[DWORD($IA0)]} + je .L_last_num_blocks_is_4_${rndsuffix} + jb .L_last_num_blocks_is_3_1_${rndsuffix} + # ;; 7, 6 or 5 + cmp \$6,@{[DWORD($IA0)]} + ja .L_last_num_blocks_is_7_${rndsuffix} + je .L_last_num_blocks_is_6_${rndsuffix} + jmp .L_last_num_blocks_is_5_${rndsuffix} + +.L_last_num_blocks_is_3_1_${rndsuffix}: + # ;; 3, 2 or 1 + cmp \$2,@{[DWORD($IA0)]} + ja .L_last_num_blocks_is_3_${rndsuffix} + je .L_last_num_blocks_is_2_${rndsuffix} +___ + + # ;; fall through for `jmp .L_last_num_blocks_is_1` + + # ;; Use rep to generate different block size variants + # ;; - one block size has to be the first one + for my $num_blocks (1 .. 16) { + $code .= ".L_last_num_blocks_is_${num_blocks}_${rndsuffix}:\n"; + &GHASH_16_ENCRYPT_N_GHASH_N( + $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, + $LENGTH, $CTR_BE, $CTR_CHECK, $HASHKEY_OFFSET, $GHASHIN_BLK_OFFSET, + $SHFMSK, $ZT00, $ZT01, $ZT02, $ZT03, + $ZT04, $ZT05, $ZT06, $ZT07, $ZT08, + $ZT09, $ZT10, $ZT11, $ZT12, $ZT13, + $ZT14, $ZT15, $ZT16, $ZT17, $ZT18, + $ZT19, $ZT20, $ZT21, $ZT22, $ADDBE_4x4, + $ADDBE_1234, $GHASH_TYPE, $TO_REDUCE_L, $TO_REDUCE_H, $TO_REDUCE_M, + $ENC_DEC, $HASH_IN_OUT, $IA0, $IA1, $MASKREG, + $num_blocks, $PBLOCK_LEN); + + $code .= "jmp .L_last_blocks_done_${rndsuffix}\n"; + } + + $code .= ".L_last_num_blocks_is_0_${rndsuffix}:\n"; + + # ;; if there is 0 blocks to cipher then there are only 16 blocks for ghash and reduction + # ;; - convert mid into end_reduce + # ;; - convert start into start_reduce + if ($GHASH_TYPE eq "mid") { + $GHASH_TYPE = "end_reduce"; + } + if ($GHASH_TYPE eq "start") { + $GHASH_TYPE = "start_reduce"; + } + + &GHASH_16($GHASH_TYPE, $TO_REDUCE_H, $TO_REDUCE_M, $TO_REDUCE_L, "%rsp", + $GHASHIN_BLK_OFFSET, 0, "%rsp", $HASHKEY_OFFSET, 0, $HASH_IN_OUT, $ZT00, $ZT01, + $ZT02, $ZT03, $ZT04, $ZT05, $ZT06, $ZT07, $ZT08, $ZT09); + + $code .= ".L_last_blocks_done_${rndsuffix}:\n"; +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;; Main GCM macro stitching cipher with GHASH +# ;; - operates on single stream +# ;; - encrypts 16 blocks at a time +# ;; - ghash the 16 previously encrypted ciphertext blocks +# ;; - no partial block or multi_call handling here +sub GHASH_16_ENCRYPT_16_PARALLEL { + my $AES_KEYS = $_[0]; # [in] key pointer + my $CIPH_PLAIN_OUT = $_[1]; # [in] pointer to output buffer + my $PLAIN_CIPH_IN = $_[2]; # [in] pointer to input buffer + my $DATA_OFFSET = $_[3]; # [in] data offset + my $CTR_BE = $_[4]; # [in/out] ZMM counter blocks (last 4) in big-endian + my $CTR_CHECK = $_[5]; # [in/out] GP with 8-bit counter for overflow check + my $HASHKEY_OFFSET = $_[6]; # [in] numerical offset for the highest hash key (hash key index value) + my $AESOUT_BLK_OFFSET = $_[7]; # [in] numerical offset for AES-CTR out + my $GHASHIN_BLK_OFFSET = $_[8]; # [in] numerical offset for GHASH blocks in + my $SHFMSK = $_[9]; # [in] ZMM with byte swap mask for pshufb + my $ZT1 = $_[10]; # [clobbered] temporary ZMM (cipher) + my $ZT2 = $_[11]; # [clobbered] temporary ZMM (cipher) + my $ZT3 = $_[12]; # [clobbered] temporary ZMM (cipher) + my $ZT4 = $_[13]; # [clobbered] temporary ZMM (cipher) + my $ZT5 = $_[14]; # [clobbered/out] temporary ZMM or GHASH OUT (final_reduction) + my $ZT6 = $_[15]; # [clobbered] temporary ZMM (cipher) + my $ZT7 = $_[16]; # [clobbered] temporary ZMM (cipher) + my $ZT8 = $_[17]; # [clobbered] temporary ZMM (cipher) + my $ZT9 = $_[18]; # [clobbered] temporary ZMM (cipher) + my $ZT10 = $_[19]; # [clobbered] temporary ZMM (ghash) + my $ZT11 = $_[20]; # [clobbered] temporary ZMM (ghash) + my $ZT12 = $_[21]; # [clobbered] temporary ZMM (ghash) + my $ZT13 = $_[22]; # [clobbered] temporary ZMM (ghash) + my $ZT14 = $_[23]; # [clobbered] temporary ZMM (ghash) + my $ZT15 = $_[24]; # [clobbered] temporary ZMM (ghash) + my $ZT16 = $_[25]; # [clobbered] temporary ZMM (ghash) + my $ZT17 = $_[26]; # [clobbered] temporary ZMM (ghash) + my $ZT18 = $_[27]; # [clobbered] temporary ZMM (ghash) + my $ZT19 = $_[28]; # [clobbered] temporary ZMM + my $ZT20 = $_[29]; # [clobbered] temporary ZMM + my $ZT21 = $_[30]; # [clobbered] temporary ZMM + my $ZT22 = $_[31]; # [clobbered] temporary ZMM + my $ZT23 = $_[32]; # [clobbered] temporary ZMM + my $ADDBE_4x4 = $_[33]; # [in] ZMM with 4x128bits 4 in big-endian + my $ADDBE_1234 = $_[34]; # [in] ZMM with 4x128bits 1, 2, 3 and 4 in big-endian + my $TO_REDUCE_L = $_[35]; # [in/out] ZMM for low 4x128-bit GHASH sum + my $TO_REDUCE_H = $_[36]; # [in/out] ZMM for hi 4x128-bit GHASH sum + my $TO_REDUCE_M = $_[37]; # [in/out] ZMM for medium 4x128-bit GHASH sum + my $DO_REDUCTION = $_[38]; # [in] "no_reduction", "final_reduction", "first_time" + my $ENC_DEC = $_[39]; # [in] cipher direction + my $DATA_DISPL = $_[40]; # [in] fixed numerical data displacement/offset + my $GHASH_IN = $_[41]; # [in] current GHASH value or "no_ghash_in" + my $IA0 = $_[42]; # [clobbered] temporary GPR + + my $B00_03 = $ZT1; + my $B04_07 = $ZT2; + my $B08_11 = $ZT3; + my $B12_15 = $ZT4; + + my $GH1H = $ZT5; + + # ; @note: do not change this mapping + my $GH1L = $ZT6; + my $GH1M = $ZT7; + my $GH1T = $ZT8; + + my $GH2H = $ZT9; + my $GH2L = $ZT10; + my $GH2M = $ZT11; + my $GH2T = $ZT12; + + my $RED_POLY = $GH2T; + my $RED_P1 = $GH2L; + my $RED_T1 = $GH2H; + my $RED_T2 = $GH2M; + + my $GH3H = $ZT13; + my $GH3L = $ZT14; + my $GH3M = $ZT15; + my $GH3T = $ZT16; + + my $DATA1 = $ZT13; + my $DATA2 = $ZT14; + my $DATA3 = $ZT15; + my $DATA4 = $ZT16; + + my $AESKEY1 = $ZT17; + my $AESKEY2 = $ZT18; + + my $GHKEY1 = $ZT19; + my $GHKEY2 = $ZT20; + my $GHDAT1 = $ZT21; + my $GHDAT2 = $ZT22; + + my $rndsuffix = &random_string(); + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; prepare counter blocks + + $code .= <<___; + cmpb \$`(256 - 16)`,@{[BYTE($CTR_CHECK)]} + jae .L_16_blocks_overflow_${rndsuffix} + vpaddd $ADDBE_1234,$CTR_BE,$B00_03 + vpaddd $ADDBE_4x4,$B00_03,$B04_07 + vpaddd $ADDBE_4x4,$B04_07,$B08_11 + vpaddd $ADDBE_4x4,$B08_11,$B12_15 + jmp .L_16_blocks_ok_${rndsuffix} +.L_16_blocks_overflow_${rndsuffix}: + vpshufb $SHFMSK,$CTR_BE,$CTR_BE + vmovdqa64 ddq_add_4444(%rip),$B12_15 + vpaddd ddq_add_1234(%rip),$CTR_BE,$B00_03 + vpaddd $B12_15,$B00_03,$B04_07 + vpaddd $B12_15,$B04_07,$B08_11 + vpaddd $B12_15,$B08_11,$B12_15 + vpshufb $SHFMSK,$B00_03,$B00_03 + vpshufb $SHFMSK,$B04_07,$B04_07 + vpshufb $SHFMSK,$B08_11,$B08_11 + vpshufb $SHFMSK,$B12_15,$B12_15 +.L_16_blocks_ok_${rndsuffix}: +___ + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; pre-load constants + $code .= "vbroadcastf64x2 `(16 * 0)`($AES_KEYS),$AESKEY1\n"; + if ($GHASH_IN ne "no_ghash_in") { + $code .= "vpxorq `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$GHASH_IN,$GHDAT1\n"; + } else { + $code .= "vmovdqa64 `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$GHDAT1\n"; + } + + $code .= <<___; + vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (0*4)),"%rsp")]},$GHKEY1 + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; save counter for the next round + # ;; increment counter overflow check register + vshufi64x2 \$0b11111111,$B12_15,$B12_15,$CTR_BE + addb \$16,@{[BYTE($CTR_CHECK)]} + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; pre-load constants + vbroadcastf64x2 `(16 * 1)`($AES_KEYS),$AESKEY2 + vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (1*4)),"%rsp")]},$GHKEY2 + vmovdqa64 `$GHASHIN_BLK_OFFSET + (1*64)`(%rsp),$GHDAT2 + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; stitch AES rounds with GHASH + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 0 - ARK + + vpxorq $AESKEY1,$B00_03,$B00_03 + vpxorq $AESKEY1,$B04_07,$B04_07 + vpxorq $AESKEY1,$B08_11,$B08_11 + vpxorq $AESKEY1,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 2)`($AES_KEYS),$AESKEY1 + + # ;;================================================== + # ;; GHASH 4 blocks (15 to 12) + vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH1H # ; a1*b1 + vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH1L # ; a0*b0 + vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH1M # ; a1*b0 + vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH1T # ; a0*b1 + vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (2*4)),"%rsp")]},$GHKEY1 + vmovdqa64 `$GHASHIN_BLK_OFFSET + (2*64)`(%rsp),$GHDAT1 + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 1 + vaesenc $AESKEY2,$B00_03,$B00_03 + vaesenc $AESKEY2,$B04_07,$B04_07 + vaesenc $AESKEY2,$B08_11,$B08_11 + vaesenc $AESKEY2,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 3)`($AES_KEYS),$AESKEY2 + + # ;; ================================================= + # ;; GHASH 4 blocks (11 to 8) + vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1 + vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0 + vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1 + vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0 + vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (3*4)),"%rsp")]},$GHKEY2 + vmovdqa64 `$GHASHIN_BLK_OFFSET + (3*64)`(%rsp),$GHDAT2 + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 2 + vaesenc $AESKEY1,$B00_03,$B00_03 + vaesenc $AESKEY1,$B04_07,$B04_07 + vaesenc $AESKEY1,$B08_11,$B08_11 + vaesenc $AESKEY1,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 4)`($AES_KEYS),$AESKEY1 + + # ;; ================================================= + # ;; GHASH 4 blocks (7 to 4) + vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH3M # ; a0*b1 + vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH3T # ; a1*b0 + vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH3H # ; a1*b1 + vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH3L # ; a0*b0 + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES rounds 3 + vaesenc $AESKEY2,$B00_03,$B00_03 + vaesenc $AESKEY2,$B04_07,$B04_07 + vaesenc $AESKEY2,$B08_11,$B08_11 + vaesenc $AESKEY2,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 5)`($AES_KEYS),$AESKEY2 + + # ;; ================================================= + # ;; Gather (XOR) GHASH for 12 blocks + vpternlogq \$0x96,$GH3H,$GH2H,$GH1H + vpternlogq \$0x96,$GH3L,$GH2L,$GH1L + vpternlogq \$0x96,$GH3T,$GH2T,$GH1T + vpternlogq \$0x96,$GH3M,$GH2M,$GH1M + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES rounds 4 + vaesenc $AESKEY1,$B00_03,$B00_03 + vaesenc $AESKEY1,$B04_07,$B04_07 + vaesenc $AESKEY1,$B08_11,$B08_11 + vaesenc $AESKEY1,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 6)`($AES_KEYS),$AESKEY1 + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; load plain/cipher text (recycle GH3xx registers) + vmovdqu8 `$DATA_DISPL + (0 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA1 + vmovdqu8 `$DATA_DISPL + (1 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA2 + vmovdqu8 `$DATA_DISPL + (2 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA3 + vmovdqu8 `$DATA_DISPL + (3 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA4 + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES rounds 5 + vaesenc $AESKEY2,$B00_03,$B00_03 + vaesenc $AESKEY2,$B04_07,$B04_07 + vaesenc $AESKEY2,$B08_11,$B08_11 + vaesenc $AESKEY2,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 7)`($AES_KEYS),$AESKEY2 + + # ;; ================================================= + # ;; GHASH 4 blocks (3 to 0) + vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1 + vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0 + vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1 + vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0 + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 6 + vaesenc $AESKEY1,$B00_03,$B00_03 + vaesenc $AESKEY1,$B04_07,$B04_07 + vaesenc $AESKEY1,$B08_11,$B08_11 + vaesenc $AESKEY1,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 8)`($AES_KEYS),$AESKEY1 +___ + + # ;; ================================================= + # ;; gather GHASH in GH1L (low) and GH1H (high) + if ($DO_REDUCTION eq "first_time") { + $code .= <<___; + vpternlogq \$0x96,$GH2T,$GH1T,$GH1M # ; TM + vpxorq $GH2M,$GH1M,$TO_REDUCE_M # ; TM + vpxorq $GH2H,$GH1H,$TO_REDUCE_H # ; TH + vpxorq $GH2L,$GH1L,$TO_REDUCE_L # ; TL +___ + } + if ($DO_REDUCTION eq "no_reduction") { + $code .= <<___; + vpternlogq \$0x96,$GH2T,$GH1T,$GH1M # ; TM + vpternlogq \$0x96,$GH2M,$GH1M,$TO_REDUCE_M # ; TM + vpternlogq \$0x96,$GH2H,$GH1H,$TO_REDUCE_H # ; TH + vpternlogq \$0x96,$GH2L,$GH1L,$TO_REDUCE_L # ; TL +___ + } + if ($DO_REDUCTION eq "final_reduction") { + $code .= <<___; + # ;; phase 1: add mid products together + # ;; also load polynomial constant for reduction + vpternlogq \$0x96,$GH2T,$GH1T,$GH1M # ; TM + vpternlogq \$0x96,$GH2M,$TO_REDUCE_M,$GH1M + + vpsrldq \$8,$GH1M,$GH2M + vpslldq \$8,$GH1M,$GH1M + + vmovdqa64 POLY2(%rip),@{[XWORD($RED_POLY)]} +___ + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 7 + $code .= <<___; + vaesenc $AESKEY2,$B00_03,$B00_03 + vaesenc $AESKEY2,$B04_07,$B04_07 + vaesenc $AESKEY2,$B08_11,$B08_11 + vaesenc $AESKEY2,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 9)`($AES_KEYS),$AESKEY2 +___ + + # ;; ================================================= + # ;; Add mid product to high and low + if ($DO_REDUCTION eq "final_reduction") { + $code .= <<___; + vpternlogq \$0x96,$GH2M,$GH2H,$GH1H # ; TH = TH1 + TH2 + TM>>64 + vpxorq $TO_REDUCE_H,$GH1H,$GH1H + vpternlogq \$0x96,$GH1M,$GH2L,$GH1L # ; TL = TL1 + TL2 + TM<<64 + vpxorq $TO_REDUCE_L,$GH1L,$GH1L +___ + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 8 + $code .= <<___; + vaesenc $AESKEY1,$B00_03,$B00_03 + vaesenc $AESKEY1,$B04_07,$B04_07 + vaesenc $AESKEY1,$B08_11,$B08_11 + vaesenc $AESKEY1,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 10)`($AES_KEYS),$AESKEY1 +___ + + # ;; ================================================= + # ;; horizontal xor of low and high 4x128 + if ($DO_REDUCTION eq "final_reduction") { + &VHPXORI4x128($GH1H, $GH2H); + &VHPXORI4x128($GH1L, $GH2L); + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES round 9 + $code .= <<___; + vaesenc $AESKEY2,$B00_03,$B00_03 + vaesenc $AESKEY2,$B04_07,$B04_07 + vaesenc $AESKEY2,$B08_11,$B08_11 + vaesenc $AESKEY2,$B12_15,$B12_15 +___ + if (($NROUNDS >= 11)) { + $code .= "vbroadcastf64x2 `(16 * 11)`($AES_KEYS),$AESKEY2\n"; + } + + # ;; ================================================= + # ;; first phase of reduction + if ($DO_REDUCTION eq "final_reduction") { + $code .= <<___; + vpclmulqdq \$0x01,@{[XWORD($GH1L)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_P1)]} + vpslldq \$8,@{[XWORD($RED_P1)]},@{[XWORD($RED_P1)]} # ; shift-L 2 DWs + vpxorq @{[XWORD($RED_P1)]},@{[XWORD($GH1L)]},@{[XWORD($RED_P1)]} # ; first phase of the reduct +___ + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; AES rounds up to 11 (AES192) or 13 (AES256) + # ;; AES128 is done + if (($NROUNDS >= 11)) { + $code .= <<___; + vaesenc $AESKEY1,$B00_03,$B00_03 + vaesenc $AESKEY1,$B04_07,$B04_07 + vaesenc $AESKEY1,$B08_11,$B08_11 + vaesenc $AESKEY1,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 12)`($AES_KEYS),$AESKEY1 + + vaesenc $AESKEY2,$B00_03,$B00_03 + vaesenc $AESKEY2,$B04_07,$B04_07 + vaesenc $AESKEY2,$B08_11,$B08_11 + vaesenc $AESKEY2,$B12_15,$B12_15 +___ + if (($NROUNDS == 13)) { + $code .= <<___; + vbroadcastf64x2 `(16 * 13)`($AES_KEYS),$AESKEY2 + + vaesenc $AESKEY1,$B00_03,$B00_03 + vaesenc $AESKEY1,$B04_07,$B04_07 + vaesenc $AESKEY1,$B08_11,$B08_11 + vaesenc $AESKEY1,$B12_15,$B12_15 + vbroadcastf64x2 `(16 * 14)`($AES_KEYS),$AESKEY1 + + vaesenc $AESKEY2,$B00_03,$B00_03 + vaesenc $AESKEY2,$B04_07,$B04_07 + vaesenc $AESKEY2,$B08_11,$B08_11 + vaesenc $AESKEY2,$B12_15,$B12_15 +___ + } + } + + # ;; ================================================= + # ;; second phase of the reduction + if ($DO_REDUCTION eq "final_reduction") { + $code .= <<___; + vpclmulqdq \$0x00,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T1)]} + vpsrldq \$4,@{[XWORD($RED_T1)]},@{[XWORD($RED_T1)]} # ; shift-R 1-DW to obtain 2-DWs shift-R + vpclmulqdq \$0x10,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T2)]} + vpslldq \$4,@{[XWORD($RED_T2)]},@{[XWORD($RED_T2)]} # ; shift-L 1-DW for result without shifts + # ;; GH1H = GH1H x RED_T1 x RED_T2 + vpternlogq \$0x96,@{[XWORD($RED_T1)]},@{[XWORD($RED_T2)]},@{[XWORD($GH1H)]} +___ + } + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; the last AES round + $code .= <<___; + vaesenclast $AESKEY1,$B00_03,$B00_03 + vaesenclast $AESKEY1,$B04_07,$B04_07 + vaesenclast $AESKEY1,$B08_11,$B08_11 + vaesenclast $AESKEY1,$B12_15,$B12_15 + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; XOR against plain/cipher text + vpxorq $DATA1,$B00_03,$B00_03 + vpxorq $DATA2,$B04_07,$B04_07 + vpxorq $DATA3,$B08_11,$B08_11 + vpxorq $DATA4,$B12_15,$B12_15 + + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; store cipher/plain text + mov $CIPH_PLAIN_OUT,$IA0 + vmovdqu8 $B00_03,`$DATA_DISPL + (0 * 64)`($IA0,$DATA_OFFSET,1) + vmovdqu8 $B04_07,`$DATA_DISPL + (1 * 64)`($IA0,$DATA_OFFSET,1) + vmovdqu8 $B08_11,`$DATA_DISPL + (2 * 64)`($IA0,$DATA_OFFSET,1) + vmovdqu8 $B12_15,`$DATA_DISPL + (3 * 64)`($IA0,$DATA_OFFSET,1) +___ + + # ;; ================================================= + # ;; shuffle cipher text blocks for GHASH computation + if ($ENC_DEC eq "ENC") { + $code .= <<___; + vpshufb $SHFMSK,$B00_03,$B00_03 + vpshufb $SHFMSK,$B04_07,$B04_07 + vpshufb $SHFMSK,$B08_11,$B08_11 + vpshufb $SHFMSK,$B12_15,$B12_15 +___ + } else { + $code .= <<___; + vpshufb $SHFMSK,$DATA1,$B00_03 + vpshufb $SHFMSK,$DATA2,$B04_07 + vpshufb $SHFMSK,$DATA3,$B08_11 + vpshufb $SHFMSK,$DATA4,$B12_15 +___ + } + + # ;; ================================================= + # ;; store shuffled cipher text for ghashing + $code .= <<___; + vmovdqa64 $B00_03,`$AESOUT_BLK_OFFSET + (0*64)`(%rsp) + vmovdqa64 $B04_07,`$AESOUT_BLK_OFFSET + (1*64)`(%rsp) + vmovdqa64 $B08_11,`$AESOUT_BLK_OFFSET + (2*64)`(%rsp) + vmovdqa64 $B12_15,`$AESOUT_BLK_OFFSET + (3*64)`(%rsp) +___ +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; Encryption of a single block +sub ENCRYPT_SINGLE_BLOCK { + my $AES_KEY = $_[0]; # ; [in] + my $XMM0 = $_[1]; # ; [in/out] + my $GPR1 = $_[2]; # ; [clobbered] + + my $rndsuffix = &random_string(); + + $code .= <<___; + # ; load number of rounds from AES_KEY structure (offset in bytes is + # ; size of the |rd_key| buffer) + mov `4*15*4`($AES_KEY),@{[DWORD($GPR1)]} + cmp \$9,@{[DWORD($GPR1)]} + je .Laes_128_${rndsuffix} + cmp \$11,@{[DWORD($GPR1)]} + je .Laes_192_${rndsuffix} + cmp \$13,@{[DWORD($GPR1)]} + je .Laes_256_${rndsuffix} + jmp .Lexit_aes_${rndsuffix} +___ + for my $keylen (sort keys %aes_rounds) { + my $nr = $aes_rounds{$keylen}; + $code .= <<___; +.align 32 +.Laes_${keylen}_${rndsuffix}: +___ + $code .= "vpxorq `16*0`($AES_KEY),$XMM0, $XMM0\n\n"; + for (my $i = 1; $i <= $nr; $i++) { + $code .= "vaesenc `16*$i`($AES_KEY),$XMM0,$XMM0\n\n"; + } + $code .= <<___; + vaesenclast `16*($nr+1)`($AES_KEY),$XMM0,$XMM0 + jmp .Lexit_aes_${rndsuffix} +___ + } + $code .= ".Lexit_aes_${rndsuffix}:\n\n"; +} + +sub CALC_J0 { + my $GCM128_CTX = $_[0]; #; [in] Pointer to GCM context + my $IV = $_[1]; #; [in] Pointer to IV + my $IV_LEN = $_[2]; #; [in] IV length + my $J0 = $_[3]; #; [out] XMM reg to contain J0 + my $ZT0 = $_[4]; #; [clobbered] ZMM register + my $ZT1 = $_[5]; #; [clobbered] ZMM register + my $ZT2 = $_[6]; #; [clobbered] ZMM register + my $ZT3 = $_[7]; #; [clobbered] ZMM register + my $ZT4 = $_[8]; #; [clobbered] ZMM register + my $ZT5 = $_[9]; #; [clobbered] ZMM register + my $ZT6 = $_[10]; #; [clobbered] ZMM register + my $ZT7 = $_[11]; #; [clobbered] ZMM register + my $ZT8 = $_[12]; #; [clobbered] ZMM register + my $ZT9 = $_[13]; #; [clobbered] ZMM register + my $ZT10 = $_[14]; #; [clobbered] ZMM register + my $ZT11 = $_[15]; #; [clobbered] ZMM register + my $ZT12 = $_[16]; #; [clobbered] ZMM register + my $ZT13 = $_[17]; #; [clobbered] ZMM register + my $ZT14 = $_[18]; #; [clobbered] ZMM register + my $ZT15 = $_[19]; #; [clobbered] ZMM register + my $ZT16 = $_[20]; #; [clobbered] ZMM register + my $T1 = $_[21]; #; [clobbered] GP register + my $T2 = $_[22]; #; [clobbered] GP register + my $T3 = $_[23]; #; [clobbered] GP register + my $MASKREG = $_[24]; #; [clobbered] mask register + + # ;; J0 = GHASH(IV || 0s+64 || len(IV)64) + # ;; s = 16 * RoundUp(len(IV)/16) - len(IV) */ + + # ;; Calculate GHASH of (IV || 0s) + $code .= "vpxor $J0,$J0,$J0\n"; + &CALC_AAD_HASH($IV, $IV_LEN, $J0, $GCM128_CTX, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, + $ZT5, $ZT6, $ZT7, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT13, $ZT14, $ZT15, $ZT16, $T1, $T2, $T3, $MASKREG); + + # ;; Calculate GHASH of last 16-byte block (0 || len(IV)64) + $code .= <<___; + mov $IV_LEN,$T1 + shl \$3,$T1 # ; IV length in bits + vmovq $T1,@{[XWORD($ZT2)]} + + # ;; Might need shuffle of ZT2 + vpxorq $J0,@{[XWORD($ZT2)]},$J0 + + vmovdqu64 @{[HashKeyByIdx(1,$GCM128_CTX)]},@{[XWORD($ZT0)]} +___ + &GHASH_MUL($J0, @{[XWORD($ZT0)]}, @{[XWORD($ZT1)]}, @{[XWORD($ZT2)]}, @{[XWORD($ZT3)]}); + + $code .= "vpshufb SHUF_MASK(%rip),$J0,$J0 # ; perform a 16Byte swap\n"; +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; GCM_INIT_IV performs an initialization of gcm128_ctx struct to prepare for +# ;;; encoding/decoding. +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +sub GCM_INIT_IV { + my $AES_KEYS = $_[0]; # [in] AES key schedule + my $GCM128_CTX = $_[1]; # [in/out] GCM context + my $IV = $_[2]; # [in] IV pointer + my $IV_LEN = $_[3]; # [in] IV length + my $GPR1 = $_[4]; # [clobbered] GP register + my $GPR2 = $_[5]; # [clobbered] GP register + my $GPR3 = $_[6]; # [clobbered] GP register + my $MASKREG = $_[7]; # [clobbered] mask register + my $CUR_COUNT = $_[8]; # [out] XMM with current counter + my $ZT0 = $_[9]; # [clobbered] ZMM register + my $ZT1 = $_[10]; # [clobbered] ZMM register + my $ZT2 = $_[11]; # [clobbered] ZMM register + my $ZT3 = $_[12]; # [clobbered] ZMM register + my $ZT4 = $_[13]; # [clobbered] ZMM register + my $ZT5 = $_[14]; # [clobbered] ZMM register + my $ZT6 = $_[15]; # [clobbered] ZMM register + my $ZT7 = $_[16]; # [clobbered] ZMM register + my $ZT8 = $_[17]; # [clobbered] ZMM register + my $ZT9 = $_[18]; # [clobbered] ZMM register + my $ZT10 = $_[19]; # [clobbered] ZMM register + my $ZT11 = $_[20]; # [clobbered] ZMM register + my $ZT12 = $_[21]; # [clobbered] ZMM register + my $ZT13 = $_[22]; # [clobbered] ZMM register + my $ZT14 = $_[23]; # [clobbered] ZMM register + my $ZT15 = $_[24]; # [clobbered] ZMM register + my $ZT16 = $_[25]; # [clobbered] ZMM register + + my $ZT0x = $ZT0; + $ZT0x =~ s/zmm/xmm/; + + $code .= <<___; + cmp \$12,$IV_LEN + je iv_len_12_init_IV +___ + + # ;; IV is different than 12 bytes + &CALC_J0($GCM128_CTX, $IV, $IV_LEN, $CUR_COUNT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, $ZT5, $ZT6, $ZT7, + $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT13, $ZT14, $ZT15, $ZT16, $GPR1, $GPR2, $GPR3, $MASKREG); + $code .= <<___; + jmp skip_iv_len_12_init_IV +iv_len_12_init_IV: # ;; IV is 12 bytes + # ;; read 12 IV bytes and pad with 0x00000001 + vmovdqu8 ONEf(%rip),$CUR_COUNT + mov $IV,$GPR2 + mov \$0x0000000000000fff,@{[DWORD($GPR1)]} + kmovq $GPR1,$MASKREG + vmovdqu8 ($GPR2),${CUR_COUNT}{$MASKREG} # ; ctr = IV | 0x1 +skip_iv_len_12_init_IV: + vmovdqu $CUR_COUNT,$ZT0x +___ + &ENCRYPT_SINGLE_BLOCK($AES_KEYS, "$ZT0x", "$GPR1"); # ; E(K, Y0) + $code .= <<___; + vmovdqu $ZT0x,`$CTX_OFFSET_EK0`($GCM128_CTX) # ; save EK0 for finalization stage + + # ;; store IV as counter in LE format + vpshufb SHUF_MASK(%rip),$CUR_COUNT,$CUR_COUNT + vmovdqu $CUR_COUNT,`$CTX_OFFSET_CurCount`($GCM128_CTX) # ; save current counter Yi +___ +} + +sub GCM_UPDATE_AAD { + my $GCM128_CTX = $_[0]; # [in] GCM context pointer + my $A_IN = $_[1]; # [in] AAD pointer + my $A_LEN = $_[2]; # [in] AAD length in bytes + my $GPR1 = $_[3]; # [clobbered] GP register + my $GPR2 = $_[4]; # [clobbered] GP register + my $GPR3 = $_[5]; # [clobbered] GP register + my $MASKREG = $_[6]; # [clobbered] mask register + my $AAD_HASH = $_[7]; # [out] XMM for AAD_HASH value + my $ZT0 = $_[8]; # [clobbered] ZMM register + my $ZT1 = $_[9]; # [clobbered] ZMM register + my $ZT2 = $_[10]; # [clobbered] ZMM register + my $ZT3 = $_[11]; # [clobbered] ZMM register + my $ZT4 = $_[12]; # [clobbered] ZMM register + my $ZT5 = $_[13]; # [clobbered] ZMM register + my $ZT6 = $_[14]; # [clobbered] ZMM register + my $ZT7 = $_[15]; # [clobbered] ZMM register + my $ZT8 = $_[16]; # [clobbered] ZMM register + my $ZT9 = $_[17]; # [clobbered] ZMM register + my $ZT10 = $_[18]; # [clobbered] ZMM register + my $ZT11 = $_[19]; # [clobbered] ZMM register + my $ZT12 = $_[20]; # [clobbered] ZMM register + my $ZT13 = $_[21]; # [clobbered] ZMM register + my $ZT14 = $_[22]; # [clobbered] ZMM register + my $ZT15 = $_[23]; # [clobbered] ZMM register + my $ZT16 = $_[24]; # [clobbered] ZMM register + + # ; load current hash + $code .= "vmovdqu64 $CTX_OFFSET_AadHash($GCM128_CTX),$AAD_HASH\n"; + + &CALC_AAD_HASH($A_IN, $A_LEN, $AAD_HASH, $GCM128_CTX, $ZT0, $ZT1, $ZT2, + $ZT3, $ZT4, $ZT5, $ZT6, $ZT7, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT13, + $ZT14, $ZT15, $ZT16, $GPR1, $GPR2, $GPR3, $MASKREG); + + # ; load current hash + $code .= "vmovdqu64 $AAD_HASH,$CTX_OFFSET_AadHash($GCM128_CTX)\n"; +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; Cipher and ghash of payloads shorter than 256 bytes +# ;;; - number of blocks in the message comes as argument +# ;;; - depending on the number of blocks an optimized variant of +# ;;; INITIAL_BLOCKS_PARTIAL is invoked +sub GCM_ENC_DEC_SMALL { + my $AES_KEYS = $_[0]; # [in] key pointer + my $GCM128_CTX = $_[1]; # [in] context pointer + my $CIPH_PLAIN_OUT = $_[2]; # [in] output buffer + my $PLAIN_CIPH_IN = $_[3]; # [in] input buffer + my $PLAIN_CIPH_LEN = $_[4]; # [in] buffer length + my $ENC_DEC = $_[5]; # [in] cipher direction + my $DATA_OFFSET = $_[6]; # [in] data offset + my $LENGTH = $_[7]; # [in] data length + my $NUM_BLOCKS = $_[8]; # [in] number of blocks to process 1 to 16 + my $CTR = $_[9]; # [in/out] XMM counter block + my $HASH_IN_OUT = $_[10]; # [in/out] XMM GHASH value + my $ZTMP0 = $_[11]; # [clobbered] ZMM register + my $ZTMP1 = $_[12]; # [clobbered] ZMM register + my $ZTMP2 = $_[13]; # [clobbered] ZMM register + my $ZTMP3 = $_[14]; # [clobbered] ZMM register + my $ZTMP4 = $_[15]; # [clobbered] ZMM register + my $ZTMP5 = $_[16]; # [clobbered] ZMM register + my $ZTMP6 = $_[17]; # [clobbered] ZMM register + my $ZTMP7 = $_[18]; # [clobbered] ZMM register + my $ZTMP8 = $_[19]; # [clobbered] ZMM register + my $ZTMP9 = $_[20]; # [clobbered] ZMM register + my $ZTMP10 = $_[21]; # [clobbered] ZMM register + my $ZTMP11 = $_[22]; # [clobbered] ZMM register + my $ZTMP12 = $_[23]; # [clobbered] ZMM register + my $ZTMP13 = $_[24]; # [clobbered] ZMM register + my $ZTMP14 = $_[25]; # [clobbered] ZMM register + my $IA0 = $_[26]; # [clobbered] GP register + my $IA1 = $_[27]; # [clobbered] GP register + my $MASKREG = $_[28]; # [clobbered] mask register + my $SHUFMASK = $_[29]; # [in] ZMM with BE/LE shuffle mask + my $PBLOCK_LEN = $_[30]; # [in] partial block length + + my $rndsuffix = &random_string(); + + $code .= <<___; + cmp \$8,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_8_${rndsuffix} + jl .L_small_initial_num_blocks_is_7_1_${rndsuffix} + + + cmp \$12,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_12_${rndsuffix} + jl .L_small_initial_num_blocks_is_11_9_${rndsuffix} + + # ;; 16, 15, 14 or 13 + cmp \$16,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_16_${rndsuffix} + cmp \$15,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_15_${rndsuffix} + cmp \$14,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_14_${rndsuffix} + jmp .L_small_initial_num_blocks_is_13_${rndsuffix} + +.L_small_initial_num_blocks_is_11_9_${rndsuffix}: + # ;; 11, 10 or 9 + cmp \$11,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_11_${rndsuffix} + cmp \$10,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_10_${rndsuffix} + jmp .L_small_initial_num_blocks_is_9_${rndsuffix} + +.L_small_initial_num_blocks_is_7_1_${rndsuffix}: + cmp \$4,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_4_${rndsuffix} + jl .L_small_initial_num_blocks_is_3_1_${rndsuffix} + # ;; 7, 6 or 5 + cmp \$7,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_7_${rndsuffix} + cmp \$6,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_6_${rndsuffix} + jmp .L_small_initial_num_blocks_is_5_${rndsuffix} + +.L_small_initial_num_blocks_is_3_1_${rndsuffix}: + # ;; 3, 2 or 1 + cmp \$3,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_3_${rndsuffix} + cmp \$2,$NUM_BLOCKS + je .L_small_initial_num_blocks_is_2_${rndsuffix} + + # ;; for $NUM_BLOCKS == 1, just fall through and no 'jmp' needed + + # ;; Generation of different block size variants + # ;; - one block size has to be the first one +___ + + for (my $num_blocks = 1; $num_blocks <= 16; $num_blocks++) { + $code .= ".L_small_initial_num_blocks_is_${num_blocks}_${rndsuffix}:\n"; + &INITIAL_BLOCKS_PARTIAL( + $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $LENGTH, $DATA_OFFSET, + $num_blocks, $CTR, $HASH_IN_OUT, $ENC_DEC, $ZTMP0, $ZTMP1, + $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, + $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13, + $ZTMP14, $IA0, $IA1, $MASKREG, $SHUFMASK, $PBLOCK_LEN); + + if ($num_blocks != 16) { + $code .= "jmp .L_small_initial_blocks_encrypted_${rndsuffix}\n"; + } + } + + $code .= ".L_small_initial_blocks_encrypted_${rndsuffix}:\n"; +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ; GCM_ENC_DEC Encrypts/Decrypts given data. Assumes that the passed gcm128_context +# ; struct has been initialized by GCM_INIT_IV +# ; Requires the input data be at least 1 byte long because of READ_SMALL_INPUT_DATA. +# ; Clobbers rax, r10-r15, and zmm0-zmm31, k1 +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +sub GCM_ENC_DEC { + my $AES_KEYS = $_[0]; # [in] AES Key schedule + my $GCM128_CTX = $_[1]; # [in] context pointer + my $PBLOCK_LEN = $_[2]; # [in] length of partial block at the moment of previous update + my $PLAIN_CIPH_IN = $_[3]; # [in] input buffer pointer + my $PLAIN_CIPH_LEN = $_[4]; # [in] buffer length + my $CIPH_PLAIN_OUT = $_[5]; # [in] output buffer pointer + my $ENC_DEC = $_[6]; # [in] cipher direction + + my $IA0 = "%r10"; + my $IA1 = "%r12"; + my $IA2 = "%r13"; + my $IA3 = "%r15"; + my $IA4 = "%r11"; + my $IA5 = "%rax"; + my $IA6 = "%rbx"; + my $IA7 = "%r14"; + + my $LENGTH = $win64 ? $IA2 : $PLAIN_CIPH_LEN; + + my $CTR_CHECK = $IA3; + my $DATA_OFFSET = $IA4; + my $HASHK_PTR = $IA6; + + my $HKEYS_READY = $IA7; + + my $CTR_BLOCKz = "%zmm2"; + my $CTR_BLOCKx = "%xmm2"; + + # ; hardcoded in GCM_INIT + + my $AAD_HASHz = "%zmm14"; + my $AAD_HASHx = "%xmm14"; + + # ; hardcoded in GCM_COMPLETE + + my $ZTMP0 = "%zmm0"; + my $ZTMP1 = "%zmm3"; + my $ZTMP2 = "%zmm4"; + my $ZTMP3 = "%zmm5"; + my $ZTMP4 = "%zmm6"; + my $ZTMP5 = "%zmm7"; + my $ZTMP6 = "%zmm10"; + my $ZTMP7 = "%zmm11"; + my $ZTMP8 = "%zmm12"; + my $ZTMP9 = "%zmm13"; + my $ZTMP10 = "%zmm15"; + my $ZTMP11 = "%zmm16"; + my $ZTMP12 = "%zmm17"; + + my $ZTMP13 = "%zmm19"; + my $ZTMP14 = "%zmm20"; + my $ZTMP15 = "%zmm21"; + my $ZTMP16 = "%zmm30"; + my $ZTMP17 = "%zmm31"; + my $ZTMP18 = "%zmm1"; + my $ZTMP19 = "%zmm18"; + my $ZTMP20 = "%zmm8"; + my $ZTMP21 = "%zmm22"; + my $ZTMP22 = "%zmm23"; + + my $GH = "%zmm24"; + my $GL = "%zmm25"; + my $GM = "%zmm26"; + my $SHUF_MASK = "%zmm29"; + + # ; Unused in the small packet path + my $ADDBE_4x4 = "%zmm27"; + my $ADDBE_1234 = "%zmm28"; + + my $MASKREG = "%k1"; + + my $rndsuffix = &random_string(); + + # ;; reduction every 48 blocks, depth 32 blocks + # ;; @note 48 blocks is the maximum capacity of the stack frame + my $big_loop_nblocks = 48; + my $big_loop_depth = 32; + + # ;;; Macro flow depending on packet size + # ;;; - LENGTH <= 16 blocks + # ;;; - cipher followed by hashing (reduction) + # ;;; - 16 blocks < LENGTH < 32 blocks + # ;;; - cipher 16 blocks + # ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction) + # ;;; - 32 blocks < LENGTH < 48 blocks + # ;;; - cipher 2 x 16 blocks + # ;;; - hash 16 blocks + # ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction) + # ;;; - LENGTH >= 48 blocks + # ;;; - cipher 2 x 16 blocks + # ;;; - while (data_to_cipher >= 48 blocks): + # ;;; - cipher 16 blocks & hash 16 blocks + # ;;; - cipher 16 blocks & hash 16 blocks + # ;;; - cipher 16 blocks & hash 16 blocks (reduction) + # ;;; - if (data_to_cipher >= 32 blocks): + # ;;; - cipher 16 blocks & hash 16 blocks + # ;;; - cipher 16 blocks & hash 16 blocks + # ;;; - hash 16 blocks (reduction) + # ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction) + # ;;; - elif (data_to_cipher >= 16 blocks): + # ;;; - cipher 16 blocks & hash 16 blocks + # ;;; - hash 16 blocks + # ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction) + # ;;; - else: + # ;;; - hash 16 blocks + # ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction) + + if ($win64) { + $code .= "cmpq \$0,$PLAIN_CIPH_LEN\n"; + } else { + $code .= "or $PLAIN_CIPH_LEN,$PLAIN_CIPH_LEN\n"; + } + $code .= "je .L_enc_dec_done_${rndsuffix}\n"; + + # Length value from context $CTX_OFFSET_InLen`($GCM128_CTX) is updated in + # 'providers/implementations/ciphers/cipher_aes_gcm_hw_vaes_avx512.inc' + + $code .= "xor $HKEYS_READY, $HKEYS_READY\n"; + $code .= "vmovdqu64 `$CTX_OFFSET_AadHash`($GCM128_CTX),$AAD_HASHx\n"; + + # ;; Used for the update flow - if there was a previous partial + # ;; block fill the remaining bytes here. + &PARTIAL_BLOCK( + $GCM128_CTX, $PBLOCK_LEN, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $PLAIN_CIPH_LEN, + $DATA_OFFSET, $AAD_HASHx, $ENC_DEC, $IA0, $IA1, + $IA2, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, + $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $MASKREG); + + $code .= "vmovdqu64 `$CTX_OFFSET_CurCount`($GCM128_CTX),$CTR_BLOCKx\n"; + + # ;; Save the amount of data left to process in $LENGTH + # ;; NOTE: PLAIN_CIPH_LEN is a register on linux; + if ($win64) { + $code .= "mov $PLAIN_CIPH_LEN,$LENGTH\n"; + } + + # ;; There may be no more data if it was consumed in the partial block. + $code .= <<___; + sub $DATA_OFFSET,$LENGTH + je .L_enc_dec_done_${rndsuffix} +___ + + $code .= <<___; + cmp \$`(16 * 16)`,$LENGTH + jbe .L_message_below_equal_16_blocks_${rndsuffix} + + vmovdqa64 SHUF_MASK(%rip),$SHUF_MASK + vmovdqa64 ddq_addbe_4444(%rip),$ADDBE_4x4 + vmovdqa64 ddq_addbe_1234(%rip),$ADDBE_1234 + + # ;; start the pipeline + # ;; - 32 blocks aes-ctr + # ;; - 16 blocks ghash + aes-ctr + + # ;; set up CTR_CHECK + vmovd $CTR_BLOCKx,@{[DWORD($CTR_CHECK)]} + and \$255,@{[DWORD($CTR_CHECK)]} + # ;; in LE format after init, convert to BE + vshufi64x2 \$0,$CTR_BLOCKz,$CTR_BLOCKz,$CTR_BLOCKz + vpshufb $SHUF_MASK,$CTR_BLOCKz,$CTR_BLOCKz +___ + + # ;; ==== AES-CTR - first 16 blocks + my $aesout_offset = ($STACK_LOCAL_OFFSET + (0 * 16)); + my $data_in_out_offset = 0; + &INITIAL_BLOCKS_16( + $PLAIN_CIPH_IN, $CIPH_PLAIN_OUT, $AES_KEYS, $DATA_OFFSET, "no_ghash", $CTR_BLOCKz, + $CTR_CHECK, $ADDBE_4x4, $ADDBE_1234, $ZTMP0, $ZTMP1, $ZTMP2, + $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, + $SHUF_MASK, $ENC_DEC, $aesout_offset, $data_in_out_offset, $IA0); + + &precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, + "first16"); + + $code .= <<___; + cmp \$`(32 * 16)`,$LENGTH + jb .L_message_below_32_blocks_${rndsuffix} +___ + + # ;; ==== AES-CTR - next 16 blocks + $aesout_offset = ($STACK_LOCAL_OFFSET + (16 * 16)); + $data_in_out_offset = (16 * 16); + &INITIAL_BLOCKS_16( + $PLAIN_CIPH_IN, $CIPH_PLAIN_OUT, $AES_KEYS, $DATA_OFFSET, "no_ghash", $CTR_BLOCKz, + $CTR_CHECK, $ADDBE_4x4, $ADDBE_1234, $ZTMP0, $ZTMP1, $ZTMP2, + $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, + $SHUF_MASK, $ENC_DEC, $aesout_offset, $data_in_out_offset, $IA0); + + &precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, + "last32"); + $code .= "mov \$1,$HKEYS_READY\n"; + + $code .= <<___; + add \$`(32 * 16)`,$DATA_OFFSET + sub \$`(32 * 16)`,$LENGTH + + cmp \$`($big_loop_nblocks * 16)`,$LENGTH + jb .L_no_more_big_nblocks_${rndsuffix} +___ + + # ;; ==== + # ;; ==== AES-CTR + GHASH - 48 blocks loop + # ;; ==== + $code .= ".L_encrypt_big_nblocks_${rndsuffix}:\n"; + + # ;; ==== AES-CTR + GHASH - 16 blocks, start + $aesout_offset = ($STACK_LOCAL_OFFSET + (32 * 16)); + $data_in_out_offset = (0 * 16); + my $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16)); + &GHASH_16_ENCRYPT_16_PARALLEL( + $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK, + 48, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1, + $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, + $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13, + $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19, + $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL, + $GH, $GM, "first_time", $ENC_DEC, $data_in_out_offset, $AAD_HASHz, + $IA0); + + # ;; ==== AES-CTR + GHASH - 16 blocks, no reduction + $aesout_offset = ($STACK_LOCAL_OFFSET + (0 * 16)); + $data_in_out_offset = (16 * 16); + $ghashin_offset = ($STACK_LOCAL_OFFSET + (16 * 16)); + &GHASH_16_ENCRYPT_16_PARALLEL( + $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK, + 32, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1, + $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, + $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13, + $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19, + $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL, + $GH, $GM, "no_reduction", $ENC_DEC, $data_in_out_offset, "no_ghash_in", + $IA0); + + # ;; ==== AES-CTR + GHASH - 16 blocks, reduction + $aesout_offset = ($STACK_LOCAL_OFFSET + (16 * 16)); + $data_in_out_offset = (32 * 16); + $ghashin_offset = ($STACK_LOCAL_OFFSET + (32 * 16)); + &GHASH_16_ENCRYPT_16_PARALLEL( + $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK, + 16, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1, + $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, + $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13, + $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19, + $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL, + $GH, $GM, "final_reduction", $ENC_DEC, $data_in_out_offset, "no_ghash_in", + $IA0); + + # ;; === xor cipher block 0 with GHASH (ZT4) + $code .= <<___; + vmovdqa64 $ZTMP4,$AAD_HASHz + + add \$`($big_loop_nblocks * 16)`,$DATA_OFFSET + sub \$`($big_loop_nblocks * 16)`,$LENGTH + cmp \$`($big_loop_nblocks * 16)`,$LENGTH + jae .L_encrypt_big_nblocks_${rndsuffix} + +.L_no_more_big_nblocks_${rndsuffix}: + + cmp \$`(32 * 16)`,$LENGTH + jae .L_encrypt_32_blocks_${rndsuffix} + + cmp \$`(16 * 16)`,$LENGTH + jae .L_encrypt_16_blocks_${rndsuffix} +___ + + # ;; ===================================================== + # ;; ===================================================== + # ;; ==== GHASH 1 x 16 blocks + # ;; ==== GHASH 1 x 16 blocks (reduction) & encrypt N blocks + # ;; ==== then GHASH N blocks + $code .= ".L_encrypt_0_blocks_ghash_32_${rndsuffix}:\n"; + + # ;; calculate offset to the right hash key + $code .= <<___; +mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]} +and \$~15,@{[DWORD($IA0)]} +mov \$`@{[HashKeyOffsetByIdx(32,"frame")]}`,@{[DWORD($HASHK_PTR)]} +sub @{[DWORD($IA0)]},@{[DWORD($HASHK_PTR)]} +___ + + # ;; ==== GHASH 32 blocks and follow with reduction + &GHASH_16("start", $GH, $GM, $GL, "%rsp", $STACK_LOCAL_OFFSET, (0 * 16), + "%rsp", $HASHK_PTR, 0, $AAD_HASHz, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, $ZTMP9); + + # ;; ==== GHASH 1 x 16 blocks with reduction + cipher and ghash on the reminder + $ghashin_offset = ($STACK_LOCAL_OFFSET + (16 * 16)); + $code .= "add \$`(16 * 16)`,@{[DWORD($HASHK_PTR)]}\n"; + &GCM_ENC_DEC_LAST( + $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $LENGTH, + $CTR_BLOCKz, $CTR_CHECK, $HASHK_PTR, $ghashin_offset, $SHUF_MASK, $ZTMP0, + $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, + $ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, + $ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, + $ZTMP19, $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, + "mid", $GL, $GH, $GM, $ENC_DEC, $AAD_HASHz, + $IA0, $IA5, $MASKREG, $PBLOCK_LEN); + + $code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n"; + $code .= "jmp .L_ghash_done_${rndsuffix}\n"; + + # ;; ===================================================== + # ;; ===================================================== + # ;; ==== GHASH & encrypt 1 x 16 blocks + # ;; ==== GHASH & encrypt 1 x 16 blocks + # ;; ==== GHASH 1 x 16 blocks (reduction) + # ;; ==== GHASH 1 x 16 blocks (reduction) & encrypt N blocks + # ;; ==== then GHASH N blocks + $code .= ".L_encrypt_32_blocks_${rndsuffix}:\n"; + + # ;; ==== AES-CTR + GHASH - 16 blocks, start + $aesout_offset = ($STACK_LOCAL_OFFSET + (32 * 16)); + $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16)); + $data_in_out_offset = (0 * 16); + &GHASH_16_ENCRYPT_16_PARALLEL( + $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK, + 48, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1, + $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, + $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13, + $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19, + $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL, + $GH, $GM, "first_time", $ENC_DEC, $data_in_out_offset, $AAD_HASHz, + $IA0); + + # ;; ==== AES-CTR + GHASH - 16 blocks, no reduction + $aesout_offset = ($STACK_LOCAL_OFFSET + (0 * 16)); + $ghashin_offset = ($STACK_LOCAL_OFFSET + (16 * 16)); + $data_in_out_offset = (16 * 16); + &GHASH_16_ENCRYPT_16_PARALLEL( + $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK, + 32, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1, + $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, + $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13, + $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19, + $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL, + $GH, $GM, "no_reduction", $ENC_DEC, $data_in_out_offset, "no_ghash_in", + $IA0); + + # ;; ==== GHASH 16 blocks with reduction + &GHASH_16( + "end_reduce", $GH, $GM, $GL, "%rsp", $STACK_LOCAL_OFFSET, (32 * 16), + "%rsp", &HashKeyOffsetByIdx(16, "frame"), + 0, $AAD_HASHz, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, $ZTMP9); + + # ;; ==== GHASH 1 x 16 blocks with reduction + cipher and ghash on the reminder + $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16)); + $code .= <<___; + sub \$`(32 * 16)`,$LENGTH + add \$`(32 * 16)`,$DATA_OFFSET +___ + + # ;; calculate offset to the right hash key + $code .= "mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]}\n"; + $code .= <<___; + and \$~15,@{[DWORD($IA0)]} + mov \$`@{[HashKeyOffsetByIdx(16,"frame")]}`,@{[DWORD($HASHK_PTR)]} + sub @{[DWORD($IA0)]},@{[DWORD($HASHK_PTR)]} +___ + &GCM_ENC_DEC_LAST( + $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $LENGTH, + $CTR_BLOCKz, $CTR_CHECK, $HASHK_PTR, $ghashin_offset, $SHUF_MASK, $ZTMP0, + $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, + $ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, + $ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, + $ZTMP19, $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, + "start", $GL, $GH, $GM, $ENC_DEC, $AAD_HASHz, + $IA0, $IA5, $MASKREG, $PBLOCK_LEN); + + $code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n"; + $code .= "jmp .L_ghash_done_${rndsuffix}\n"; + + # ;; ===================================================== + # ;; ===================================================== + # ;; ==== GHASH & encrypt 16 blocks (done before) + # ;; ==== GHASH 1 x 16 blocks + # ;; ==== GHASH 1 x 16 blocks (reduction) & encrypt N blocks + # ;; ==== then GHASH N blocks + $code .= ".L_encrypt_16_blocks_${rndsuffix}:\n"; + + # ;; ==== AES-CTR + GHASH - 16 blocks, start + $aesout_offset = ($STACK_LOCAL_OFFSET + (32 * 16)); + $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16)); + $data_in_out_offset = (0 * 16); + &GHASH_16_ENCRYPT_16_PARALLEL( + $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK, + 48, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1, + $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, + $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13, + $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19, + $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL, + $GH, $GM, "first_time", $ENC_DEC, $data_in_out_offset, $AAD_HASHz, + $IA0); + + # ;; ==== GHASH 1 x 16 blocks + &GHASH_16( + "mid", $GH, $GM, $GL, "%rsp", $STACK_LOCAL_OFFSET, (16 * 16), + "%rsp", &HashKeyOffsetByIdx(32, "frame"), + 0, "no_hash_input", $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, $ZTMP9); + + # ;; ==== GHASH 1 x 16 blocks with reduction + cipher and ghash on the reminder + $ghashin_offset = ($STACK_LOCAL_OFFSET + (32 * 16)); + $code .= <<___; + sub \$`(16 * 16)`,$LENGTH + add \$`(16 * 16)`,$DATA_OFFSET +___ + &GCM_ENC_DEC_LAST( + $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, + $DATA_OFFSET, $LENGTH, $CTR_BLOCKz, $CTR_CHECK, + &HashKeyOffsetByIdx(16, "frame"), $ghashin_offset, $SHUF_MASK, $ZTMP0, + $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, + $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, + $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, + $ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16, + $ZTMP17, $ZTMP18, $ZTMP19, $ZTMP20, + $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, + "end_reduce", $GL, $GH, $GM, + $ENC_DEC, $AAD_HASHz, $IA0, $IA5, + $MASKREG, $PBLOCK_LEN); + + $code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n"; + $code .= <<___; + jmp .L_ghash_done_${rndsuffix} + +.L_message_below_32_blocks_${rndsuffix}: + # ;; 32 > number of blocks > 16 + + sub \$`(16 * 16)`,$LENGTH + add \$`(16 * 16)`,$DATA_OFFSET +___ + $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16)); + + # ;; calculate offset to the right hash key + $code .= "mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]}\n"; + + &precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, + "mid16"); + $code .= "mov \$1,$HKEYS_READY\n"; + + $code .= <<___; +and \$~15,@{[DWORD($IA0)]} +mov \$`@{[HashKeyOffsetByIdx(16,"frame")]}`,@{[DWORD($HASHK_PTR)]} +sub @{[DWORD($IA0)]},@{[DWORD($HASHK_PTR)]} +___ + + &GCM_ENC_DEC_LAST( + $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $LENGTH, + $CTR_BLOCKz, $CTR_CHECK, $HASHK_PTR, $ghashin_offset, $SHUF_MASK, $ZTMP0, + $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, + $ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, + $ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, + $ZTMP19, $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, + "start", $GL, $GH, $GM, $ENC_DEC, $AAD_HASHz, + $IA0, $IA5, $MASKREG, $PBLOCK_LEN); + + $code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n"; + $code .= <<___; + jmp .L_ghash_done_${rndsuffix} + +.L_message_below_equal_16_blocks_${rndsuffix}: + # ;; Determine how many blocks to process + # ;; - process one additional block if there is a partial block + mov @{[DWORD($LENGTH)]},@{[DWORD($IA1)]} + add \$15,@{[DWORD($IA1)]} + shr \$4, @{[DWORD($IA1)]} # ; $IA1 can be in the range from 0 to 16 +___ + &GCM_ENC_DEC_SMALL( + $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $PLAIN_CIPH_LEN, $ENC_DEC, + $DATA_OFFSET, $LENGTH, $IA1, $CTR_BLOCKx, $AAD_HASHx, $ZTMP0, + $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, + $ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, + $ZTMP13, $ZTMP14, $IA0, $IA3, $MASKREG, $SHUF_MASK, + $PBLOCK_LEN); + + # ;; fall through to exit + + $code .= ".L_ghash_done_${rndsuffix}:\n"; + + # ;; save the last counter block + $code .= "vmovdqu64 $CTR_BLOCKx,`$CTX_OFFSET_CurCount`($GCM128_CTX)\n"; + $code .= <<___; + vmovdqu64 $AAD_HASHx,`$CTX_OFFSET_AadHash`($GCM128_CTX) +.L_enc_dec_done_${rndsuffix}: +___ +} + +# ;;; =========================================================================== +# ;;; Encrypt/decrypt the initial 16 blocks +sub INITIAL_BLOCKS_16 { + my $IN = $_[0]; # [in] input buffer + my $OUT = $_[1]; # [in] output buffer + my $AES_KEYS = $_[2]; # [in] pointer to expanded keys + my $DATA_OFFSET = $_[3]; # [in] data offset + my $GHASH = $_[4]; # [in] ZMM with AAD (low 128 bits) + my $CTR = $_[5]; # [in] ZMM with CTR BE blocks 4x128 bits + my $CTR_CHECK = $_[6]; # [in/out] GPR with counter overflow check + my $ADDBE_4x4 = $_[7]; # [in] ZMM 4x128bits with value 4 (big endian) + my $ADDBE_1234 = $_[8]; # [in] ZMM 4x128bits with values 1, 2, 3 & 4 (big endian) + my $T0 = $_[9]; # [clobered] temporary ZMM register + my $T1 = $_[10]; # [clobered] temporary ZMM register + my $T2 = $_[11]; # [clobered] temporary ZMM register + my $T3 = $_[12]; # [clobered] temporary ZMM register + my $T4 = $_[13]; # [clobered] temporary ZMM register + my $T5 = $_[14]; # [clobered] temporary ZMM register + my $T6 = $_[15]; # [clobered] temporary ZMM register + my $T7 = $_[16]; # [clobered] temporary ZMM register + my $T8 = $_[17]; # [clobered] temporary ZMM register + my $SHUF_MASK = $_[18]; # [in] ZMM with BE/LE shuffle mask + my $ENC_DEC = $_[19]; # [in] ENC (encrypt) or DEC (decrypt) selector + my $BLK_OFFSET = $_[20]; # [in] stack frame offset to ciphered blocks + my $DATA_DISPL = $_[21]; # [in] fixed numerical data displacement/offset + my $IA0 = $_[22]; # [clobered] temporary GP register + + my $B00_03 = $T5; + my $B04_07 = $T6; + my $B08_11 = $T7; + my $B12_15 = $T8; + + my $rndsuffix = &random_string(); + + my $stack_offset = $BLK_OFFSET; + $code .= <<___; + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;; prepare counter blocks + + cmpb \$`(256 - 16)`,@{[BYTE($CTR_CHECK)]} + jae .L_next_16_overflow_${rndsuffix} + vpaddd $ADDBE_1234,$CTR,$B00_03 + vpaddd $ADDBE_4x4,$B00_03,$B04_07 + vpaddd $ADDBE_4x4,$B04_07,$B08_11 + vpaddd $ADDBE_4x4,$B08_11,$B12_15 + jmp .L_next_16_ok_${rndsuffix} +.L_next_16_overflow_${rndsuffix}: + vpshufb $SHUF_MASK,$CTR,$CTR + vmovdqa64 ddq_add_4444(%rip),$B12_15 + vpaddd ddq_add_1234(%rip),$CTR,$B00_03 + vpaddd $B12_15,$B00_03,$B04_07 + vpaddd $B12_15,$B04_07,$B08_11 + vpaddd $B12_15,$B08_11,$B12_15 + vpshufb $SHUF_MASK,$B00_03,$B00_03 + vpshufb $SHUF_MASK,$B04_07,$B04_07 + vpshufb $SHUF_MASK,$B08_11,$B08_11 + vpshufb $SHUF_MASK,$B12_15,$B12_15 +.L_next_16_ok_${rndsuffix}: + vshufi64x2 \$0b11111111,$B12_15,$B12_15,$CTR + addb \$16,@{[BYTE($CTR_CHECK)]} + # ;; === load 16 blocks of data + vmovdqu8 `$DATA_DISPL + (64*0)`($IN,$DATA_OFFSET,1),$T0 + vmovdqu8 `$DATA_DISPL + (64*1)`($IN,$DATA_OFFSET,1),$T1 + vmovdqu8 `$DATA_DISPL + (64*2)`($IN,$DATA_OFFSET,1),$T2 + vmovdqu8 `$DATA_DISPL + (64*3)`($IN,$DATA_OFFSET,1),$T3 + + # ;; move to AES encryption rounds + vbroadcastf64x2 `(16*0)`($AES_KEYS),$T4 + vpxorq $T4,$B00_03,$B00_03 + vpxorq $T4,$B04_07,$B04_07 + vpxorq $T4,$B08_11,$B08_11 + vpxorq $T4,$B12_15,$B12_15 +___ + foreach (1 .. ($NROUNDS)) { + $code .= <<___; + vbroadcastf64x2 `(16*$_)`($AES_KEYS),$T4 + vaesenc $T4,$B00_03,$B00_03 + vaesenc $T4,$B04_07,$B04_07 + vaesenc $T4,$B08_11,$B08_11 + vaesenc $T4,$B12_15,$B12_15 +___ + } + $code .= <<___; + vbroadcastf64x2 `(16*($NROUNDS+1))`($AES_KEYS),$T4 + vaesenclast $T4,$B00_03,$B00_03 + vaesenclast $T4,$B04_07,$B04_07 + vaesenclast $T4,$B08_11,$B08_11 + vaesenclast $T4,$B12_15,$B12_15 + + # ;; xor against text + vpxorq $T0,$B00_03,$B00_03 + vpxorq $T1,$B04_07,$B04_07 + vpxorq $T2,$B08_11,$B08_11 + vpxorq $T3,$B12_15,$B12_15 + + # ;; store + mov $OUT, $IA0 + vmovdqu8 $B00_03,`$DATA_DISPL + (64*0)`($IA0,$DATA_OFFSET,1) + vmovdqu8 $B04_07,`$DATA_DISPL + (64*1)`($IA0,$DATA_OFFSET,1) + vmovdqu8 $B08_11,`$DATA_DISPL + (64*2)`($IA0,$DATA_OFFSET,1) + vmovdqu8 $B12_15,`$DATA_DISPL + (64*3)`($IA0,$DATA_OFFSET,1) +___ + if ($ENC_DEC eq "DEC") { + $code .= <<___; + # ;; decryption - cipher text needs to go to GHASH phase + vpshufb $SHUF_MASK,$T0,$B00_03 + vpshufb $SHUF_MASK,$T1,$B04_07 + vpshufb $SHUF_MASK,$T2,$B08_11 + vpshufb $SHUF_MASK,$T3,$B12_15 +___ + } else { + $code .= <<___; + # ;; encryption + vpshufb $SHUF_MASK,$B00_03,$B00_03 + vpshufb $SHUF_MASK,$B04_07,$B04_07 + vpshufb $SHUF_MASK,$B08_11,$B08_11 + vpshufb $SHUF_MASK,$B12_15,$B12_15 +___ + } + + if ($GHASH ne "no_ghash") { + $code .= <<___; + # ;; === xor cipher block 0 with GHASH for the next GHASH round + vpxorq $GHASH,$B00_03,$B00_03 +___ + } + $code .= <<___; + vmovdqa64 $B00_03,`$stack_offset + (0 * 64)`(%rsp) + vmovdqa64 $B04_07,`$stack_offset + (1 * 64)`(%rsp) + vmovdqa64 $B08_11,`$stack_offset + (2 * 64)`(%rsp) + vmovdqa64 $B12_15,`$stack_offset + (3 * 64)`(%rsp) +___ +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ; GCM_COMPLETE Finishes ghash calculation +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +sub GCM_COMPLETE { + my $GCM128_CTX = $_[0]; + my $PBLOCK_LEN = $_[1]; + + my $rndsuffix = &random_string(); + + $code .= <<___; + vmovdqu @{[HashKeyByIdx(1,$GCM128_CTX)]},%xmm2 + vmovdqu $CTX_OFFSET_EK0($GCM128_CTX),%xmm3 # ; xmm3 = E(K,Y0) +___ + + $code .= <<___; + vmovdqu `$CTX_OFFSET_AadHash`($GCM128_CTX),%xmm4 + + # ;; Process the final partial block. + cmp \$0,$PBLOCK_LEN + je .L_partial_done_${rndsuffix} +___ + + # ;GHASH computation for the last <16 Byte block + &GHASH_MUL("%xmm4", "%xmm2", "%xmm0", "%xmm16", "%xmm17"); + + $code .= <<___; +.L_partial_done_${rndsuffix}: + vmovq `$CTX_OFFSET_InLen`($GCM128_CTX), %xmm5 + vpinsrq \$1, `$CTX_OFFSET_AadLen`($GCM128_CTX), %xmm5, %xmm5 # ; xmm5 = len(A)||len(C) + vpsllq \$3, %xmm5, %xmm5 # ; convert bytes into bits + + vpxor %xmm5,%xmm4,%xmm4 +___ + + &GHASH_MUL("%xmm4", "%xmm2", "%xmm0", "%xmm16", "%xmm17"); + + $code .= <<___; + vpshufb SHUF_MASK(%rip),%xmm4,%xmm4 # ; perform a 16Byte swap + vpxor %xmm4,%xmm3,%xmm3 + +.L_return_T_${rndsuffix}: + vmovdqu %xmm3,`$CTX_OFFSET_AadHash`($GCM128_CTX) +___ +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;;; Functions definitions +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +$code .= ".text\n"; +{ + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + # ;void ossl_aes_gcm_init_avx512 / + # ; (const void *aes_keys, + # ; void *gcm128ctx) + # ; + # ; Precomputes hashkey table for GHASH optimization. + # ; Leaf function (does not allocate stack space, does not use non-volatile registers). + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + $code .= <<___; +.globl ossl_aes_gcm_init_avx512 +.type ossl_aes_gcm_init_avx512,\@abi-omnipotent +.align 32 +ossl_aes_gcm_init_avx512: +.cfi_startproc + endbranch +___ + if ($CHECK_FUNCTION_ARGUMENTS) { + $code .= <<___; + # ;; Check aes_keys != NULL + test $arg1,$arg1 + jz .Labort_init + + # ;; Check gcm128ctx != NULL + test $arg2,$arg2 + jz .Labort_init +___ + } + $code .= "vpxorq %xmm16,%xmm16,%xmm16\n"; + &ENCRYPT_SINGLE_BLOCK("$arg1", "%xmm16", "%rax"); # ; xmm16 = HashKey + $code .= <<___; + vpshufb SHUF_MASK(%rip),%xmm16,%xmm16 + # ;;; PRECOMPUTATION of HashKey<<1 mod poly from the HashKey ;;; + vmovdqa64 %xmm16,%xmm2 + vpsllq \$1,%xmm16,%xmm16 + vpsrlq \$63,%xmm2,%xmm2 + vmovdqa %xmm2,%xmm1 + vpslldq \$8,%xmm2,%xmm2 + vpsrldq \$8,%xmm1,%xmm1 + vporq %xmm2,%xmm16,%xmm16 + # ;reduction + vpshufd \$0b00100100,%xmm1,%xmm2 + vpcmpeqd TWOONE(%rip),%xmm2,%xmm2 + vpand POLY(%rip),%xmm2,%xmm2 + vpxorq %xmm2,%xmm16,%xmm16 # ; xmm16 holds the HashKey<<1 mod poly + # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + vmovdqu64 %xmm16,@{[HashKeyByIdx(1,$arg2)]} # ; store HashKey<<1 mod poly +___ + &PRECOMPUTE("$arg2", "%xmm16", "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5"); + if ($CLEAR_SCRATCH_REGISTERS) { + &clear_scratch_gps_asm(); + &clear_scratch_zmms_asm(); + } else { + $code .= "vzeroupper\n"; + } + $code .= <<___; +.Labort_init: +ret +.cfi_endproc +.size ossl_aes_gcm_init_avx512, .-ossl_aes_gcm_init_avx512 +___ +} + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;void ossl_aes_gcm_setiv_avx512 +# ; (const void *aes_keys, +# ; void *gcm128ctx, +# ; const unsigned char *iv, +# ; size_t ivlen) +# ; +# ; Computes E(K,Y0) for finalization, updates current counter Yi in gcm128_context structure. +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +$code .= <<___; +.globl ossl_aes_gcm_setiv_avx512 +.type ossl_aes_gcm_setiv_avx512,\@abi-omnipotent +.align 32 +ossl_aes_gcm_setiv_avx512: +.cfi_startproc +.Lsetiv_seh_begin: + endbranch +___ +if ($CHECK_FUNCTION_ARGUMENTS) { + $code .= <<___; + # ;; Check aes_keys != NULL + test $arg1,$arg1 + jz .Labort_setiv + + # ;; Check gcm128ctx != NULL + test $arg2,$arg2 + jz .Labort_setiv + + # ;; Check iv != NULL + test $arg3,$arg3 + jz .Labort_setiv + + # ;; Check ivlen != 0 + test $arg4,$arg4 + jz .Labort_setiv +___ +} + +# ; NOTE: code before PROLOG() must not modify any registers +&PROLOG( + 1, # allocate stack space for hkeys + 0, # do not allocate stack space for AES blocks + "setiv"); +&GCM_INIT_IV( + "$arg1", "$arg2", "$arg3", "$arg4", "%r10", "%r11", "%r12", "%k1", "%xmm2", "%zmm1", + "%zmm11", "%zmm3", "%zmm4", "%zmm5", "%zmm6", "%zmm7", "%zmm8", "%zmm9", "%zmm10", "%zmm12", + "%zmm13", "%zmm15", "%zmm16", "%zmm17", "%zmm18", "%zmm19"); +&EPILOG( + 1, # hkeys were allocated + $arg4); +$code .= <<___; +.Labort_setiv: +ret +.Lsetiv_seh_end: +.cfi_endproc +.size ossl_aes_gcm_setiv_avx512, .-ossl_aes_gcm_setiv_avx512 +___ + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;void ossl_aes_gcm_update_aad_avx512 +# ; (unsigned char *gcm128ctx, +# ; const unsigned char *aad, +# ; size_t aadlen) +# ; +# ; Updates AAD hash in gcm128_context structure. +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +$code .= <<___; +.globl ossl_aes_gcm_update_aad_avx512 +.type ossl_aes_gcm_update_aad_avx512,\@abi-omnipotent +.align 32 +ossl_aes_gcm_update_aad_avx512: +.cfi_startproc +.Lghash_seh_begin: + endbranch +___ +if ($CHECK_FUNCTION_ARGUMENTS) { + $code .= <<___; + # ;; Check gcm128ctx != NULL + test $arg1,$arg1 + jz .Lexit_update_aad + + # ;; Check aad != NULL + test $arg2,$arg2 + jz .Lexit_update_aad + + # ;; Check aadlen != 0 + test $arg3,$arg3 + jz .Lexit_update_aad +___ +} + +# ; NOTE: code before PROLOG() must not modify any registers +&PROLOG( + 1, # allocate stack space for hkeys, + 0, # do not allocate stack space for AES blocks + "ghash"); +&GCM_UPDATE_AAD( + "$arg1", "$arg2", "$arg3", "%r10", "%r11", "%r12", "%k1", "%xmm14", "%zmm1", "%zmm11", + "%zmm3", "%zmm4", "%zmm5", "%zmm6", "%zmm7", "%zmm8", "%zmm9", "%zmm10", "%zmm12", "%zmm13", + "%zmm15", "%zmm16", "%zmm17", "%zmm18", "%zmm19"); +&EPILOG( + 1, # hkeys were allocated + $arg3); +$code .= <<___; +.Lexit_update_aad: +ret +.Lghash_seh_end: +.cfi_endproc +.size ossl_aes_gcm_update_aad_avx512, .-ossl_aes_gcm_update_aad_avx512 +___ + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;void ossl_aes_gcm_encrypt_avx512 +# ; (const void* aes_keys, +# ; void *gcm128ctx, +# ; unsigned int *pblocklen, +# ; const unsigned char *in, +# ; size_t len, +# ; unsigned char *out); +# ; +# ; Performs encryption of data |in| of len |len|, and stores the output in |out|. +# ; Stores encrypted partial block (if any) in gcm128ctx and its length in |pblocklen|. +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +$code .= <<___; +.globl ossl_aes_gcm_encrypt_avx512 +.type ossl_aes_gcm_encrypt_avx512,\@abi-omnipotent +.align 32 +ossl_aes_gcm_encrypt_avx512: +.cfi_startproc +.Lencrypt_seh_begin: + endbranch +___ + +# ; NOTE: code before PROLOG() must not modify any registers +&PROLOG( + 1, # allocate stack space for hkeys + 1, # allocate stack space for AES blocks + "encrypt"); +if ($CHECK_FUNCTION_ARGUMENTS) { + $code .= <<___; + # ;; Check aes_keys != NULL + test $arg1,$arg1 + jz .Lexit_gcm_encrypt + + # ;; Check gcm128ctx != NULL + test $arg2,$arg2 + jz .Lexit_gcm_encrypt + + # ;; Check pblocklen != NULL + test $arg3,$arg3 + jz .Lexit_gcm_encrypt + + # ;; Check in != NULL + test $arg4,$arg4 + jz .Lexit_gcm_encrypt + + # ;; Check if len != 0 + cmp \$0,$arg5 + jz .Lexit_gcm_encrypt + + # ;; Check out != NULL + cmp \$0,$arg6 + jz .Lexit_gcm_encrypt +___ +} +$code .= <<___; + # ; load number of rounds from AES_KEY structure (offset in bytes is + # ; size of the |rd_key| buffer) + mov `4*15*4`($arg1),%eax + cmp \$9,%eax + je .Laes_gcm_encrypt_128_avx512 + cmp \$11,%eax + je .Laes_gcm_encrypt_192_avx512 + cmp \$13,%eax + je .Laes_gcm_encrypt_256_avx512 + xor %eax,%eax + jmp .Lexit_gcm_encrypt +___ +for my $keylen (sort keys %aes_rounds) { + $NROUNDS = $aes_rounds{$keylen}; + $code .= <<___; +.align 32 +.Laes_gcm_encrypt_${keylen}_avx512: +___ + &GCM_ENC_DEC("$arg1", "$arg2", "$arg3", "$arg4", "$arg5", "$arg6", "ENC"); + $code .= "jmp .Lexit_gcm_encrypt\n"; +} +$code .= ".Lexit_gcm_encrypt:\n"; +&EPILOG(1, $arg5); +$code .= <<___; +ret +.Lencrypt_seh_end: +.cfi_endproc +.size ossl_aes_gcm_encrypt_avx512, .-ossl_aes_gcm_encrypt_avx512 +___ + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;void ossl_aes_gcm_decrypt_avx512 +# ; (const void* keys, +# ; void *gcm128ctx, +# ; unsigned int *pblocklen, +# ; const unsigned char *in, +# ; size_t len, +# ; unsigned char *out); +# ; +# ; Performs decryption of data |in| of len |len|, and stores the output in |out|. +# ; Stores decrypted partial block (if any) in gcm128ctx and its length in |pblocklen|. +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +$code .= <<___; +.globl ossl_aes_gcm_decrypt_avx512 +.type ossl_aes_gcm_decrypt_avx512,\@abi-omnipotent +.align 32 +ossl_aes_gcm_decrypt_avx512: +.cfi_startproc +.Ldecrypt_seh_begin: + endbranch +___ + +# ; NOTE: code before PROLOG() must not modify any registers +&PROLOG( + 1, # allocate stack space for hkeys + 1, # allocate stack space for AES blocks + "decrypt"); +if ($CHECK_FUNCTION_ARGUMENTS) { + $code .= <<___; + # ;; Check keys != NULL + test $arg1,$arg1 + jz .Lexit_gcm_decrypt + + # ;; Check gcm128ctx != NULL + test $arg2,$arg2 + jz .Lexit_gcm_decrypt + + # ;; Check pblocklen != NULL + test $arg3,$arg3 + jz .Lexit_gcm_decrypt + + # ;; Check in != NULL + test $arg4,$arg4 + jz .Lexit_gcm_decrypt + + # ;; Check if len != 0 + cmp \$0,$arg5 + jz .Lexit_gcm_decrypt + + # ;; Check out != NULL + cmp \$0,$arg6 + jz .Lexit_gcm_decrypt +___ +} +$code .= <<___; + # ; load number of rounds from AES_KEY structure (offset in bytes is + # ; size of the |rd_key| buffer) + mov `4*15*4`($arg1),%eax + cmp \$9,%eax + je .Laes_gcm_decrypt_128_avx512 + cmp \$11,%eax + je .Laes_gcm_decrypt_192_avx512 + cmp \$13,%eax + je .Laes_gcm_decrypt_256_avx512 + xor %eax,%eax + jmp .Lexit_gcm_decrypt +___ +for my $keylen (sort keys %aes_rounds) { + $NROUNDS = $aes_rounds{$keylen}; + $code .= <<___; +.align 32 +.Laes_gcm_decrypt_${keylen}_avx512: +___ + &GCM_ENC_DEC("$arg1", "$arg2", "$arg3", "$arg4", "$arg5", "$arg6", "DEC"); + $code .= "jmp .Lexit_gcm_decrypt\n"; +} +$code .= ".Lexit_gcm_decrypt:\n"; +&EPILOG(1, $arg5); +$code .= <<___; +ret +.Ldecrypt_seh_end: +.cfi_endproc +.size ossl_aes_gcm_decrypt_avx512, .-ossl_aes_gcm_decrypt_avx512 +___ + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;void ossl_aes_gcm_finalize_vaes_avx512 +# ; (void *gcm128ctx, +# ; unsigned int pblocklen); +# ; +# ; Finalizes encryption / decryption +# ; Leaf function (does not allocate stack space, does not use non-volatile registers). +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +$code .= <<___; +.globl ossl_aes_gcm_finalize_avx512 +.type ossl_aes_gcm_finalize_avx512,\@abi-omnipotent +.align 32 +ossl_aes_gcm_finalize_avx512: +.cfi_startproc + endbranch +___ +if ($CHECK_FUNCTION_ARGUMENTS) { + $code .= <<___; + # ;; Check gcm128ctx != NULL + test $arg1,$arg1 + jz .Labort_finalize +___ +} + +&GCM_COMPLETE("$arg1", "$arg2"); + +$code .= <<___; +.Labort_finalize: +ret +.cfi_endproc +.size ossl_aes_gcm_finalize_avx512, .-ossl_aes_gcm_finalize_avx512 +___ + +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ;void ossl_gcm_gmult_avx512(u64 Xi[2], +# ; const void* gcm128ctx) +# ; +# ; Leaf function (does not allocate stack space, does not use non-volatile registers). +# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +$code .= <<___; +.globl ossl_gcm_gmult_avx512 +.hidden ossl_gcm_gmult_avx512 +.type ossl_gcm_gmult_avx512,\@abi-omnipotent +.align 32 +ossl_gcm_gmult_avx512: +.cfi_startproc + endbranch +___ +if ($CHECK_FUNCTION_ARGUMENTS) { + $code .= <<___; + # ;; Check Xi != NULL + test $arg1,$arg1 + jz .Labort_gmult + + # ;; Check gcm128ctx != NULL + test $arg2,$arg2 + jz .Labort_gmult +___ +} +$code .= "vmovdqu64 ($arg1),%xmm1\n"; +$code .= "vmovdqu64 @{[HashKeyByIdx(1,$arg2)]},%xmm2\n"; + +&GHASH_MUL("%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5"); + +$code .= "vmovdqu64 %xmm1,($arg1)\n"; +if ($CLEAR_SCRATCH_REGISTERS) { + &clear_scratch_gps_asm(); + &clear_scratch_zmms_asm(); +} else { + $code .= "vzeroupper\n"; +} +$code .= <<___; +.Labort_gmult: +ret +.cfi_endproc +.size ossl_gcm_gmult_avx512, .-ossl_gcm_gmult_avx512 +___ + +if ($win64) { + + # Add unwind metadata for SEH. + + # See https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=msvc-160 + my $UWOP_PUSH_NONVOL = 0; + my $UWOP_ALLOC_LARGE = 1; + my $UWOP_SET_FPREG = 3; + my $UWOP_SAVE_XMM128 = 8; + my %UWOP_REG_NUMBER = ( + rax => 0, + rcx => 1, + rdx => 2, + rbx => 3, + rsp => 4, + rbp => 5, + rsi => 6, + rdi => 7, + map(("r$_" => $_), (8 .. 15))); + + $code .= <<___; +.section .pdata +.align 4 + .rva .Lsetiv_seh_begin + .rva .Lsetiv_seh_end + .rva .Lsetiv_seh_info + + .rva .Lghash_seh_begin + .rva .Lghash_seh_end + .rva .Lghash_seh_info + + .rva .Lencrypt_seh_begin + .rva .Lencrypt_seh_end + .rva .Lencrypt_seh_info + + .rva .Ldecrypt_seh_begin + .rva .Ldecrypt_seh_end + .rva .Ldecrypt_seh_info + +.section .xdata +___ + + foreach my $func_name ("setiv", "ghash", "encrypt", "decrypt") { + $code .= <<___; +.align 8 +.L${func_name}_seh_info: + .byte 1 # version 1, no flags + .byte \$L\$${func_name}_seh_prolog_end-\$L\$${func_name}_seh_begin + .byte 31 # num_slots = 1*8 + 2 + 1 + 2*10 + # FR = rbp; Offset from RSP = $XMM_STORAGE scaled on 16 + .byte @{[$UWOP_REG_NUMBER{rbp} | (($XMM_STORAGE / 16 ) << 4)]} +___ + + # Metadata for %xmm15-%xmm6 + # Occupy 2 slots each + for (my $reg_idx = 15; $reg_idx >= 6; $reg_idx--) { + + # Scaled-by-16 stack offset + my $xmm_reg_offset = ($reg_idx - 6); + $code .= <<___; + .byte \$L\$${func_name}_seh_save_xmm${reg_idx}-\$L\$${func_name}_seh_begin + .byte @{[$UWOP_SAVE_XMM128 | (${reg_idx} << 4)]} + .value $xmm_reg_offset +___ + } + + $code .= <<___; + # Frame pointer (occupy 1 slot) + .byte \$L\$${func_name}_seh_setfp-\$L\$${func_name}_seh_begin + .byte $UWOP_SET_FPREG + + # Occupy 2 slots, as stack allocation < 512K, but > 128 bytes + .byte \$L\$${func_name}_seh_allocstack_xmm-\$L\$${func_name}_seh_begin + .byte $UWOP_ALLOC_LARGE + .value `($XMM_STORAGE + 8) / 8` +___ + + # Metadata for GPR regs + # Occupy 1 slot each + foreach my $reg ("rsi", "rdi", "r15", "r14", "r13", "r12", "rbp", "rbx") { + $code .= <<___; + .byte \$L\$${func_name}_seh_push_${reg}-\$L\$${func_name}_seh_begin + .byte @{[$UWOP_PUSH_NONVOL | ($UWOP_REG_NUMBER{$reg} << 4)]} +___ + } + } +} + +$code .= <<___; +.data +.align 16 +POLY: .quad 0x0000000000000001, 0xC200000000000000 + +.align 64 +POLY2: + .quad 0x00000001C2000000, 0xC200000000000000 + .quad 0x00000001C2000000, 0xC200000000000000 + .quad 0x00000001C2000000, 0xC200000000000000 + .quad 0x00000001C2000000, 0xC200000000000000 + +.align 16 +TWOONE: .quad 0x0000000000000001, 0x0000000100000000 + +# ;;; Order of these constants should not change. +# ;;; More specifically, ALL_F should follow SHIFT_MASK, and ZERO should follow ALL_F +.align 64 +SHUF_MASK: + .quad 0x08090A0B0C0D0E0F, 0x0001020304050607 + .quad 0x08090A0B0C0D0E0F, 0x0001020304050607 + .quad 0x08090A0B0C0D0E0F, 0x0001020304050607 + .quad 0x08090A0B0C0D0E0F, 0x0001020304050607 + +.align 16 +SHIFT_MASK: + .quad 0x0706050403020100, 0x0f0e0d0c0b0a0908 + +ALL_F: + .quad 0xffffffffffffffff, 0xffffffffffffffff + +ZERO: + .quad 0x0000000000000000, 0x0000000000000000 + +.align 16 +ONE: + .quad 0x0000000000000001, 0x0000000000000000 + +.align 16 +ONEf: + .quad 0x0000000000000000, 0x0100000000000000 + +.align 64 +ddq_add_1234: + .quad 0x0000000000000001, 0x0000000000000000 + .quad 0x0000000000000002, 0x0000000000000000 + .quad 0x0000000000000003, 0x0000000000000000 + .quad 0x0000000000000004, 0x0000000000000000 + +.align 64 +ddq_add_5678: + .quad 0x0000000000000005, 0x0000000000000000 + .quad 0x0000000000000006, 0x0000000000000000 + .quad 0x0000000000000007, 0x0000000000000000 + .quad 0x0000000000000008, 0x0000000000000000 + +.align 64 +ddq_add_4444: + .quad 0x0000000000000004, 0x0000000000000000 + .quad 0x0000000000000004, 0x0000000000000000 + .quad 0x0000000000000004, 0x0000000000000000 + .quad 0x0000000000000004, 0x0000000000000000 + +.align 64 +ddq_add_8888: + .quad 0x0000000000000008, 0x0000000000000000 + .quad 0x0000000000000008, 0x0000000000000000 + .quad 0x0000000000000008, 0x0000000000000000 + .quad 0x0000000000000008, 0x0000000000000000 + +.align 64 +ddq_addbe_1234: + .quad 0x0000000000000000, 0x0100000000000000 + .quad 0x0000000000000000, 0x0200000000000000 + .quad 0x0000000000000000, 0x0300000000000000 + .quad 0x0000000000000000, 0x0400000000000000 + +.align 64 +ddq_addbe_4444: + .quad 0x0000000000000000, 0x0400000000000000 + .quad 0x0000000000000000, 0x0400000000000000 + .quad 0x0000000000000000, 0x0400000000000000 + .quad 0x0000000000000000, 0x0400000000000000 + +.align 64 +byte_len_to_mask_table: + .value 0x0000, 0x0001, 0x0003, 0x0007 + .value 0x000f, 0x001f, 0x003f, 0x007f + .value 0x00ff, 0x01ff, 0x03ff, 0x07ff + .value 0x0fff, 0x1fff, 0x3fff, 0x7fff + .value 0xffff + +.align 64 +byte64_len_to_mask_table: + .quad 0x0000000000000000, 0x0000000000000001 + .quad 0x0000000000000003, 0x0000000000000007 + .quad 0x000000000000000f, 0x000000000000001f + .quad 0x000000000000003f, 0x000000000000007f + .quad 0x00000000000000ff, 0x00000000000001ff + .quad 0x00000000000003ff, 0x00000000000007ff + .quad 0x0000000000000fff, 0x0000000000001fff + .quad 0x0000000000003fff, 0x0000000000007fff + .quad 0x000000000000ffff, 0x000000000001ffff + .quad 0x000000000003ffff, 0x000000000007ffff + .quad 0x00000000000fffff, 0x00000000001fffff + .quad 0x00000000003fffff, 0x00000000007fffff + .quad 0x0000000000ffffff, 0x0000000001ffffff + .quad 0x0000000003ffffff, 0x0000000007ffffff + .quad 0x000000000fffffff, 0x000000001fffffff + .quad 0x000000003fffffff, 0x000000007fffffff + .quad 0x00000000ffffffff, 0x00000001ffffffff + .quad 0x00000003ffffffff, 0x00000007ffffffff + .quad 0x0000000fffffffff, 0x0000001fffffffff + .quad 0x0000003fffffffff, 0x0000007fffffffff + .quad 0x000000ffffffffff, 0x000001ffffffffff + .quad 0x000003ffffffffff, 0x000007ffffffffff + .quad 0x00000fffffffffff, 0x00001fffffffffff + .quad 0x00003fffffffffff, 0x00007fffffffffff + .quad 0x0000ffffffffffff, 0x0001ffffffffffff + .quad 0x0003ffffffffffff, 0x0007ffffffffffff + .quad 0x000fffffffffffff, 0x001fffffffffffff + .quad 0x003fffffffffffff, 0x007fffffffffffff + .quad 0x00ffffffffffffff, 0x01ffffffffffffff + .quad 0x03ffffffffffffff, 0x07ffffffffffffff + .quad 0x0fffffffffffffff, 0x1fffffffffffffff + .quad 0x3fffffffffffffff, 0x7fffffffffffffff + .quad 0xffffffffffffffff +___ + +} else { +# Fallback for old assembler +$code .= <<___; +.text +.globl ossl_vaes_vpclmulqdq_capable +.type ossl_vaes_vpclmulqdq_capable,\@abi-omnipotent +ossl_vaes_vpclmulqdq_capable: + xor %eax,%eax + ret +.size ossl_vaes_vpclmulqdq_capable, .-ossl_vaes_vpclmulqdq_capable + +.globl ossl_aes_gcm_init_avx512 +.globl ossl_aes_gcm_setiv_avx512 +.globl ossl_aes_gcm_update_aad_avx512 +.globl ossl_aes_gcm_encrypt_avx512 +.globl ossl_aes_gcm_decrypt_avx512 +.globl ossl_aes_gcm_finalize_avx512 +.globl ossl_gcm_gmult_avx512 + +.type ossl_aes_gcm_init_avx512,\@abi-omnipotent +ossl_aes_gcm_init_avx512: +ossl_aes_gcm_setiv_avx512: +ossl_aes_gcm_update_aad_avx512: +ossl_aes_gcm_encrypt_avx512: +ossl_aes_gcm_decrypt_avx512: +ossl_aes_gcm_finalize_avx512: +ossl_gcm_gmult_avx512: + .byte 0x0f,0x0b # ud2 + ret +.size ossl_aes_gcm_init_avx512, .-ossl_aes_gcm_init_avx512 +___ +} + +$code =~ s/\`([^\`]*)\`/eval $1/gem; +print $code; +close STDOUT or die "error closing STDOUT: $!"; diff --git a/crypto/modes/build.info b/crypto/modes/build.info index 3166cdc2a6..d7c0207d79 100644 --- a/crypto/modes/build.info +++ b/crypto/modes/build.info @@ -4,7 +4,7 @@ $MODESASM= IF[{- !$disabled{asm} -}] $MODESASM_x86=ghash-x86.s $MODESDEF_x86=GHASH_ASM - $MODESASM_x86_64=ghash-x86_64.s aesni-gcm-x86_64.s + $MODESASM_x86_64=ghash-x86_64.s aesni-gcm-x86_64.s aes-gcm-avx512.s $MODESDEF_x86_64=GHASH_ASM # ghash-ia64.s doesn't work on VMS @@ -66,6 +66,7 @@ GENERATE[ghash-ia64.s]=asm/ghash-ia64.pl GENERATE[ghash-x86.s]=asm/ghash-x86.pl GENERATE[ghash-x86_64.s]=asm/ghash-x86_64.pl GENERATE[aesni-gcm-x86_64.s]=asm/aesni-gcm-x86_64.pl +GENERATE[aes-gcm-avx512.s]=asm/aes-gcm-avx512.pl GENERATE[ghash-sparcv9.S]=asm/ghash-sparcv9.pl INCLUDE[ghash-sparcv9.o]=.. GENERATE[ghash-alpha.S]=asm/ghash-alpha.pl |