summaryrefslogtreecommitdiffstats
path: root/crypto/modes
diff options
context:
space:
mode:
authorAndrey Matyukov <andrey.matyukov@intel.com>2021-06-09 23:38:40 +0200
committerTomas Mraz <tomas@openssl.org>2022-02-10 15:10:12 +0100
commit63b996e752ac698186c38177232280e6515d571b (patch)
tree3459936d5b244fffd86273289f9c35e23f76230b /crypto/modes
parentFix outdated comments (diff)
downloadopenssl-63b996e752ac698186c38177232280e6515d571b.tar.xz
openssl-63b996e752ac698186c38177232280e6515d571b.zip
AES-GCM enabled with AVX512 vAES and vPCLMULQDQ.
Vectorized 'stitched' encrypt + ghash implementation of AES-GCM enabled with AVX512 vAES and vPCLMULQDQ instructions (available starting Intel's IceLake micro-architecture). The performance details for representative IceLake Server and Client platforms are shown below Performance data: OpenSSL Speed KBs/Sec Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz (1Core/1Thread) Payload in Bytes 16 64 256 1024 8192 16384 AES-128-GCM Baseline 478708.27 1118296.96 2428092.52 3518199.4 4172355.99 4235762.07 Patched 534613.95 2009345.55 3775588.15 5059517.64 8476794.88 8941541.79 Speedup 1.12 1.80 1.55 1.44 2.03 2.11 AES-256-GCM Baseline 399237.27 961699.9 2136377.65 2979889.15 3554823.37 3617757.5 Patched 475948.13 1720128.51 3462407.12 4696832.2 7532013.16 7924953.91 Speedup 1.19 1.79 1.62 1.58 2.12 2.19 Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz (1Core/1Thread) Payload in Bytes 16 64 256 1024 8192 16384 AES-128-GCM Baseline 259128.54 570756.43 1362554.16 1990654.57 2359128.88 2401671.58 Patched 292139.47 1079320.95 2001974.63 2829007.46 4510318.59 4705314.41 Speedup 1.13 1.89 1.47 1.42 1.91 1.96 AES-256-GCM Baseline 236000.34 550506.76 1234638.08 1716734.57 2011255.6 2028099.99 Patched 247256.32 919731.34 1773270.43 2553239.55 3953115.14 4111227.29 Speedup 1.05 1.67 1.44 1.49 1.97 2.03 Reviewed-by: TJ O'Dwyer, Marcel Cornu, Pablo de Lara Reviewed-by: Paul Dale <pauli@openssl.org> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/17239)
Diffstat (limited to 'crypto/modes')
-rw-r--r--crypto/modes/asm/aes-gcm-avx512.pl4975
-rw-r--r--crypto/modes/build.info3
2 files changed, 4977 insertions, 1 deletions
diff --git a/crypto/modes/asm/aes-gcm-avx512.pl b/crypto/modes/asm/aes-gcm-avx512.pl
new file mode 100644
index 0000000000..1c7ee8769a
--- /dev/null
+++ b/crypto/modes/asm/aes-gcm-avx512.pl
@@ -0,0 +1,4975 @@
+# Copyright 2021 The OpenSSL Project Authors. All Rights Reserved.
+# Copyright (c) 2021, Intel Corporation. All Rights Reserved.
+#
+# Licensed under the Apache License 2.0 (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+#
+#
+# This implementation is based on the AES-GCM code (AVX512VAES + VPCLMULQDQ)
+# from Intel(R) Multi-Buffer Crypto for IPsec Library v1.1
+# (https://github.com/intel/intel-ipsec-mb).
+# Original author is Tomasz Kantecki <tomasz.kantecki@intel.com>.
+#
+# References:
+# [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on
+# Intel Architecture Processors. August, 2010.
+# [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on
+# Intel Architecture Processors. October, 2012.
+# [3] Shay Gueron et. al. Intel Carry-Less Multiplication Instruction and its
+# Usage for Computing the GCM Mode. May, 2010.
+#
+#
+# December 2021
+#
+# Initial release.
+#
+# GCM128_CONTEXT structure has storage for 16 hkeys only, but this
+# implementation can use up to 48. To avoid extending the context size,
+# precompute and store in the context first 16 hkeys only, and compute the rest
+# on demand keeping them in the local frame.
+#
+#======================================================================
+# $output is the last argument if it looks like a file (it has an extension)
+# $flavour is the first argument if it doesn't look like a file
+$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
+$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
+
+$win64 = 0;
+$win64 = 1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
+
+$avx512vaes = 0;
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/;
+$dir = $1;
+($xlate = "${dir}x86_64-xlate.pl" and -f $xlate)
+ or ($xlate = "${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate)
+ or die "can't locate x86_64-xlate.pl";
+
+if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
+ $avx512vaes = ($1 >= 2.30);
+}
+
+if (!$avx512vaes
+ && $win64
+ && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/)
+ && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/)
+{
+ $avx512vaes = ($1 == 2.13 && $2 >= 3) + ($1 >= 2.14);
+}
+
+if (!$avx512vaes && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
+ $avx512vaes = ($2 >= 7.0);
+}
+
+open OUT, "| \"$^X\" \"$xlate\" $flavour \"$output\""
+ or die "can't call $xlate: $!";
+*STDOUT = *OUT;
+
+#======================================================================
+if ($avx512vaes>0) { #<<<
+
+$code .= <<___;
+.extern OPENSSL_ia32cap_P
+.globl ossl_vaes_vpclmulqdq_capable
+.type ossl_vaes_vpclmulqdq_capable,\@abi-omnipotent
+.align 32
+ossl_vaes_vpclmulqdq_capable:
+ mov OPENSSL_ia32cap_P+8(%rip), %rcx
+ # avx512vpclmulqdq + avx512vaes + avx512vl + avx512bw + avx512dq + avx512f
+ mov \$`1<<42|1<<41|1<<31|1<<30|1<<17|1<<16`,%rdx
+ xor %eax,%eax
+ and %rdx,%rcx
+ cmp %rdx,%rcx
+ cmove %rcx,%rax
+ ret
+.size ossl_vaes_vpclmulqdq_capable, .-ossl_vaes_vpclmulqdq_capable
+___
+
+# ; Mapping key length -> AES rounds count
+my %aes_rounds = (
+ 128 => 9,
+ 192 => 11,
+ 256 => 13);
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; Code generation control switches
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+# ; ABI-aware zeroing of volatile registers in EPILOG().
+# ; Disabled due to performance reasons.
+my $CLEAR_SCRATCH_REGISTERS = 0;
+
+# ; Zero HKeys storage from the stack if they are stored there
+my $CLEAR_HKEYS_STORAGE_ON_EXIT = 1;
+
+# ; Enable / disable check of function arguments for null pointer
+# ; Currently disabled, as this check is handled outside.
+my $CHECK_FUNCTION_ARGUMENTS = 0;
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; Global constants
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+# AES block size in bytes
+my $AES_BLOCK_SIZE = 16;
+
+# Storage capacity in elements
+my $HKEYS_STORAGE_CAPACITY = 48;
+my $LOCAL_STORAGE_CAPACITY = 48;
+my $HKEYS_CONTEXT_CAPACITY = 16;
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; Stack frame definition
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+# (1) -> +64(Win)/+48(Lin)-byte space for pushed GPRs
+# (2) -> +8-byte space for 16-byte alignment of XMM storage
+# (3) -> Frame pointer (%RBP)
+# (4) -> +160-byte XMM storage (Windows only, zero on Linux)
+# (5) -> +48-byte space for 64-byte alignment of %RSP from p.8
+# (6) -> +768-byte LOCAL storage (optional, can be omitted in some functions)
+# (7) -> +768-byte HKEYS storage
+# (8) -> Stack pointer (%RSP) aligned on 64-byte boundary
+
+my $GP_STORAGE = $win64 ? 8 * 8 : 8 * 6; # ; space for saved non-volatile GP registers (pushed on stack)
+my $XMM_STORAGE = $win64 ? (10 * 16) : 0; # ; space for saved XMM registers
+my $HKEYS_STORAGE = ($HKEYS_STORAGE_CAPACITY * $AES_BLOCK_SIZE); # ; space for HKeys^i, i=1..48
+my $LOCAL_STORAGE = ($LOCAL_STORAGE_CAPACITY * $AES_BLOCK_SIZE); # ; space for up to 48 AES blocks
+
+my $STACK_HKEYS_OFFSET = 0;
+my $STACK_LOCAL_OFFSET = ($STACK_HKEYS_OFFSET + $HKEYS_STORAGE);
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; Function arguments abstraction
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+my ($arg1, $arg2, $arg3, $arg4, $arg5, $arg6, $arg7, $arg8, $arg9, $arg10, $arg11);
+
+# ; This implementation follows the convention: for non-leaf functions (they
+# ; must call PROLOG) %rbp is used as a frame pointer, and has fixed offset from
+# ; the function entry: $GP_STORAGE + [8 bytes alignment (Windows only)]. This
+# ; helps to facilitate SEH handlers writing.
+#
+# ; Leaf functions here do not use more than 4 input arguments.
+if ($win64) {
+ $arg1 = "%rcx";
+ $arg2 = "%rdx";
+ $arg3 = "%r8";
+ $arg4 = "%r9";
+ $arg5 = "`$GP_STORAGE + 8 + 8*5`(%rbp)"; # +8 - alignment bytes
+ $arg6 = "`$GP_STORAGE + 8 + 8*6`(%rbp)";
+ $arg7 = "`$GP_STORAGE + 8 + 8*7`(%rbp)";
+ $arg8 = "`$GP_STORAGE + 8 + 8*8`(%rbp)";
+ $arg9 = "`$GP_STORAGE + 8 + 8*9`(%rbp)";
+ $arg10 = "`$GP_STORAGE + 8 + 8*10`(%rbp)";
+ $arg11 = "`$GP_STORAGE + 8 + 8*11`(%rbp)";
+} else {
+ $arg1 = "%rdi";
+ $arg2 = "%rsi";
+ $arg3 = "%rdx";
+ $arg4 = "%rcx";
+ $arg5 = "%r8";
+ $arg6 = "%r9";
+ $arg7 = "`$GP_STORAGE + 8*1`(%rbp)";
+ $arg8 = "`$GP_STORAGE + 8*2`(%rbp)";
+ $arg9 = "`$GP_STORAGE + 8*3`(%rbp)";
+ $arg10 = "`$GP_STORAGE + 8*4`(%rbp)";
+ $arg11 = "`$GP_STORAGE + 8*5`(%rbp)";
+}
+
+# ; Offsets in gcm128_context structure (see include/crypto/modes.h)
+my $CTX_OFFSET_CurCount = (16 * 0); # ; (Yi) Current counter for generation of encryption key
+my $CTX_OFFSET_PEncBlock = (16 * 1); # ; (repurposed EKi field) Partial block buffer
+my $CTX_OFFSET_EK0 = (16 * 2); # ; (EK0) Encrypted Y0 counter (see gcm spec notation)
+my $CTX_OFFSET_AadLen = (16 * 3); # ; (len.u[0]) Length of Hash which has been input
+my $CTX_OFFSET_InLen = ((16 * 3) + 8); # ; (len.u[1]) Length of input data which will be encrypted or decrypted
+my $CTX_OFFSET_AadHash = (16 * 4); # ; (Xi) Current hash
+my $CTX_OFFSET_HTable = (16 * 6); # ; (Htable) Precomputed table (allows 16 values)
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; Helper functions
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+# ; Generates "random" local labels
+sub random_string() {
+ my @chars = ('a' .. 'z', 'A' .. 'Z', '0' .. '9', '_');
+ my $length = 15;
+ my $str;
+ map { $str .= $chars[rand(33)] } 1 .. $length;
+ return $str;
+}
+
+sub BYTE {
+ my ($reg) = @_;
+ if ($reg =~ /%r[abcd]x/i) {
+ $reg =~ s/%r([abcd])x/%${1}l/i;
+ } elsif ($reg =~ /%r[sdb][ip]/i) {
+ $reg =~ s/%r([sdb][ip])/%${1}l/i;
+ } elsif ($reg =~ /%r[0-9]{1,2}/i) {
+ $reg =~ s/%(r[0-9]{1,2})/%${1}b/i;
+ } else {
+ die "BYTE: unknown register: $reg\n";
+ }
+ return $reg;
+}
+
+sub WORD {
+ my ($reg) = @_;
+ if ($reg =~ /%r[abcdsdb][xip]/i) {
+ $reg =~ s/%r([abcdsdb])([xip])/%${1}${2}/i;
+ } elsif ($reg =~ /%r[0-9]{1,2}/) {
+ $reg =~ s/%(r[0-9]{1,2})/%${1}w/i;
+ } else {
+ die "WORD: unknown register: $reg\n";
+ }
+ return $reg;
+}
+
+sub DWORD {
+ my ($reg) = @_;
+ if ($reg =~ /%r[abcdsdb][xip]/i) {
+ $reg =~ s/%r([abcdsdb])([xip])/%e${1}${2}/i;
+ } elsif ($reg =~ /%r[0-9]{1,2}/i) {
+ $reg =~ s/%(r[0-9]{1,2})/%${1}d/i;
+ } else {
+ die "DWORD: unknown register: $reg\n";
+ }
+ return $reg;
+}
+
+sub XWORD {
+ my ($reg) = @_;
+ if ($reg =~ /%[xyz]mm/i) {
+ $reg =~ s/%[xyz]mm/%xmm/i;
+ } else {
+ die "XWORD: unknown register: $reg\n";
+ }
+ return $reg;
+}
+
+sub YWORD {
+ my ($reg) = @_;
+ if ($reg =~ /%[xyz]mm/i) {
+ $reg =~ s/%[xyz]mm/%ymm/i;
+ } else {
+ die "YWORD: unknown register: $reg\n";
+ }
+ return $reg;
+}
+
+sub ZWORD {
+ my ($reg) = @_;
+ if ($reg =~ /%[xyz]mm/i) {
+ $reg =~ s/%[xyz]mm/%zmm/i;
+ } else {
+ die "ZWORD: unknown register: $reg\n";
+ }
+ return $reg;
+}
+
+# ; Helper function to construct effective address based on two kinds of
+# ; offsets: numerical or located in the register
+sub EffectiveAddress {
+ my ($base, $offset, $displacement) = @_;
+ $displacement = 0 if (!$displacement);
+
+ if ($offset =~ /^\d+\z/) { # numerical offset
+ return "`$offset + $displacement`($base)";
+ } else { # offset resides in register
+ return "$displacement($base,$offset,1)";
+ }
+}
+
+# ; Provides memory location of corresponding HashKey power
+sub HashKeyByIdx {
+ my ($idx, $base) = @_;
+ my $base_str = ($base eq "%rsp") ? "frame" : "context";
+
+ my $offset = &HashKeyOffsetByIdx($idx, $base_str);
+ return "$offset($base)";
+}
+
+# ; Provides offset (in bytes) of corresponding HashKey power from the highest key in the storage
+sub HashKeyOffsetByIdx {
+ my ($idx, $base) = @_;
+ die "HashKeyOffsetByIdx: base should be either 'frame' or 'context'; base = $base"
+ if (($base ne "frame") && ($base ne "context"));
+
+ my $offset_base;
+ my $offset_idx;
+ if ($base eq "frame") { # frame storage
+ die "HashKeyOffsetByIdx: idx out of bounds (1..48)! idx = $idx\n" if ($idx > $HKEYS_STORAGE_CAPACITY || $idx < 1);
+ $offset_base = $STACK_HKEYS_OFFSET;
+ $offset_idx = ($AES_BLOCK_SIZE * ($HKEYS_STORAGE_CAPACITY - $idx));
+ } else { # context storage
+ die "HashKeyOffsetByIdx: idx out of bounds (1..16)! idx = $idx\n" if ($idx > $HKEYS_CONTEXT_CAPACITY || $idx < 1);
+ $offset_base = $CTX_OFFSET_HTable;
+ $offset_idx = ($AES_BLOCK_SIZE * ($HKEYS_CONTEXT_CAPACITY - $idx));
+ }
+ return $offset_base + $offset_idx;
+}
+
+# ; Creates local frame and does back up of non-volatile registers.
+# ; Holds stack unwinding directives.
+sub PROLOG {
+ my ($need_hkeys_stack_storage, $need_aes_stack_storage, $func_name) = @_;
+
+ my $DYNAMIC_STACK_ALLOC_SIZE = 0;
+ my $DYNAMIC_STACK_ALLOC_ALIGNMENT_SPACE = $win64 ? 48 : 52;
+
+ if ($need_hkeys_stack_storage) {
+ $DYNAMIC_STACK_ALLOC_SIZE += $HKEYS_STORAGE;
+ }
+
+ if ($need_aes_stack_storage) {
+ if (!$need_hkeys_stack_storage) {
+ die "PROLOG: unsupported case - aes storage without hkeys one";
+ }
+ $DYNAMIC_STACK_ALLOC_SIZE += $LOCAL_STORAGE;
+ }
+
+ $code .= <<___;
+ push %rbx
+.cfi_push %rbx
+.L${func_name}_seh_push_rbx:
+ push %rbp
+.cfi_push %rbp
+.L${func_name}_seh_push_rbp:
+ push %r12
+.cfi_push %r12
+.L${func_name}_seh_push_r12:
+ push %r13
+.cfi_push %r13
+.L${func_name}_seh_push_r13:
+ push %r14
+.cfi_push %r14
+.L${func_name}_seh_push_r14:
+ push %r15
+.cfi_push %r15
+.L${func_name}_seh_push_r15:
+___
+
+ if ($win64) {
+ $code .= <<___;
+ push %rdi
+.L${func_name}_seh_push_rdi:
+ push %rsi
+.L${func_name}_seh_push_rsi:
+
+ sub \$`$XMM_STORAGE+8`,%rsp # +8 alignment
+.L${func_name}_seh_allocstack_xmm:
+___
+ }
+ $code .= <<___;
+ # ; %rbp contains stack pointer right after GP regs pushed at stack + [8
+ # ; bytes of alignment (Windows only)]. It serves as a frame pointer in SEH
+ # ; handlers. The requirement for a frame pointer is that its offset from
+ # ; RSP shall be multiple of 16, and not exceed 240 bytes. The frame pointer
+ # ; itself seems to be reasonable to use here, because later we do 64-byte stack
+ # ; alignment which gives us non-determinate offsets and complicates writing
+ # ; SEH handlers.
+ #
+ # ; It also serves as an anchor for retrieving stack arguments on both Linux
+ # ; and Windows.
+ lea `$XMM_STORAGE`(%rsp),%rbp
+.cfi_def_cfa_register %rbp
+.L${func_name}_seh_setfp:
+___
+ if ($win64) {
+
+ # ; xmm6:xmm15 need to be preserved on Windows
+ foreach my $reg_idx (6 .. 15) {
+ my $xmm_reg_offset = ($reg_idx - 6) * 16;
+ $code .= <<___;
+ vmovdqu %xmm${reg_idx},$xmm_reg_offset(%rsp)
+.L${func_name}_seh_save_xmm${reg_idx}:
+___
+ }
+ }
+
+ $code .= <<___;
+# Prolog ends here. Next stack allocation is treated as "dynamic".
+.L${func_name}_seh_prolog_end:
+___
+
+ if ($DYNAMIC_STACK_ALLOC_SIZE) {
+ $code .= <<___;
+ sub \$`$DYNAMIC_STACK_ALLOC_SIZE + $DYNAMIC_STACK_ALLOC_ALIGNMENT_SPACE`,%rsp
+ and \$(-64),%rsp
+___
+ }
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; Restore register content for the caller.
+# ;;; And cleanup stack.
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+sub EPILOG {
+ my ($hkeys_storage_on_stack, $payload_len) = @_;
+
+ my $rndsuffix = &random_string();
+
+ if ($hkeys_storage_on_stack && $CLEAR_HKEYS_STORAGE_ON_EXIT) {
+
+ # ; There is no need in hkeys cleanup if payload len was small, i.e. no hkeys
+ # ; were stored in the local frame storage
+ $code .= <<___;
+ cmpq \$`16*16`,$payload_len
+ jbe .Lskip_hkeys_cleanup_${rndsuffix}
+ vpxor %xmm0,%xmm0,%xmm0
+___
+ for (my $i = 0; $i < int($HKEYS_STORAGE / 64); $i++) {
+ $code .= "vmovdqa64 %zmm0,`$STACK_HKEYS_OFFSET + 64*$i`(%rsp)\n";
+ }
+ $code .= ".Lskip_hkeys_cleanup_${rndsuffix}:\n";
+ }
+
+ if ($CLEAR_SCRATCH_REGISTERS) {
+ &clear_scratch_gps_asm();
+ &clear_scratch_zmms_asm();
+ } else {
+ $code .= "vzeroupper\n";
+ }
+
+ if ($win64) {
+
+ # ; restore xmm15:xmm6
+ for (my $reg_idx = 15; $reg_idx >= 6; $reg_idx--) {
+ my $xmm_reg_offset = -$XMM_STORAGE + ($reg_idx - 6) * 16;
+ $code .= <<___;
+ vmovdqu $xmm_reg_offset(%rbp),%xmm${reg_idx},
+___
+ }
+ }
+
+ if ($win64) {
+
+ # Forming valid epilog for SEH with use of frame pointer.
+ # https://docs.microsoft.com/en-us/cpp/build/prolog-and-epilog?view=msvc-160#epilog-code
+ $code .= "lea 8(%rbp),%rsp\n";
+ } else {
+ $code .= "lea (%rbp),%rsp\n";
+ $code .= ".cfi_def_cfa_register %rsp\n";
+ }
+
+ if ($win64) {
+ $code .= <<___;
+ pop %rsi
+.cfi_pop %rsi
+ pop %rdi
+.cfi_pop %rdi
+___
+ }
+ $code .= <<___;
+ pop %r15
+.cfi_pop %r15
+ pop %r14
+.cfi_pop %r14
+ pop %r13
+.cfi_pop %r13
+ pop %r12
+.cfi_pop %r12
+ pop %rbp
+.cfi_pop %rbp
+ pop %rbx
+.cfi_pop %rbx
+___
+}
+
+# ; Clears all scratch ZMM registers
+# ;
+# ; It should be called before restoring the XMM registers
+# ; for Windows (XMM6-XMM15).
+# ;
+sub clear_scratch_zmms_asm {
+
+ # ; On Linux, all ZMM registers are scratch registers
+ if (!$win64) {
+ $code .= "vzeroall\n";
+ } else {
+ foreach my $i (0 .. 5) {
+ $code .= "vpxorq %xmm${i},%xmm${i},%xmm${i}\n";
+ }
+ }
+ foreach my $i (16 .. 31) {
+ $code .= "vpxorq %xmm${i},%xmm${i},%xmm${i}\n";
+ }
+}
+
+# Clears all scratch GP registers
+sub clear_scratch_gps_asm {
+ foreach my $reg ("%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11") {
+ $code .= "xor $reg,$reg\n";
+ }
+ if (!$win64) {
+ foreach my $reg ("%rsi", "%rdi") {
+ $code .= "xor $reg,$reg\n";
+ }
+ }
+}
+
+sub precompute_hkeys_on_stack {
+ my $GCM128_CTX = $_[0];
+ my $HKEYS_READY = $_[1];
+ my $ZTMP0 = $_[2];
+ my $ZTMP1 = $_[3];
+ my $ZTMP2 = $_[4];
+ my $ZTMP3 = $_[5];
+ my $ZTMP4 = $_[6];
+ my $ZTMP5 = $_[7];
+ my $ZTMP6 = $_[8];
+ my $HKEYS_RANGE = $_[9]; # ; "first16", "mid16", "all", "first32", "last32"
+
+ die "precompute_hkeys_on_stack: Unexpected value of HKEYS_RANGE: $HKEYS_RANGE"
+ if ($HKEYS_RANGE ne "first16"
+ && $HKEYS_RANGE ne "mid16"
+ && $HKEYS_RANGE ne "all"
+ && $HKEYS_RANGE ne "first32"
+ && $HKEYS_RANGE ne "last32");
+
+ my $rndsuffix = &random_string();
+
+ $code .= <<___;
+ test $HKEYS_READY,$HKEYS_READY
+ jnz .L_skip_hkeys_precomputation_${rndsuffix}
+___
+
+ if ($HKEYS_RANGE eq "first16" || $HKEYS_RANGE eq "first32" || $HKEYS_RANGE eq "all") {
+
+ # ; Fill the stack with the first 16 hkeys from the context
+ $code .= <<___;
+ # ; Move 16 hkeys from the context to stack
+ vmovdqu64 @{[HashKeyByIdx(4,$GCM128_CTX)]},$ZTMP0
+ vmovdqu64 $ZTMP0,@{[HashKeyByIdx(4,"%rsp")]}
+
+ vmovdqu64 @{[HashKeyByIdx(8,$GCM128_CTX)]},$ZTMP1
+ vmovdqu64 $ZTMP1,@{[HashKeyByIdx(8,"%rsp")]}
+
+ # ; broadcast HashKey^8
+ vshufi64x2 \$0x00,$ZTMP1,$ZTMP1,$ZTMP1
+
+ vmovdqu64 @{[HashKeyByIdx(12,$GCM128_CTX)]},$ZTMP2
+ vmovdqu64 $ZTMP2,@{[HashKeyByIdx(12,"%rsp")]}
+
+ vmovdqu64 @{[HashKeyByIdx(16,$GCM128_CTX)]},$ZTMP3
+ vmovdqu64 $ZTMP3,@{[HashKeyByIdx(16,"%rsp")]}
+___
+ }
+
+ if ($HKEYS_RANGE eq "mid16" || $HKEYS_RANGE eq "last32") {
+ $code .= <<___;
+ vmovdqu64 @{[HashKeyByIdx(8,"%rsp")]},$ZTMP1
+
+ # ; broadcast HashKey^8
+ vshufi64x2 \$0x00,$ZTMP1,$ZTMP1,$ZTMP1
+
+ vmovdqu64 @{[HashKeyByIdx(12,"%rsp")]},$ZTMP2
+ vmovdqu64 @{[HashKeyByIdx(16,"%rsp")]},$ZTMP3
+___
+
+ }
+
+ if ($HKEYS_RANGE eq "mid16" || $HKEYS_RANGE eq "first32" || $HKEYS_RANGE eq "last32" || $HKEYS_RANGE eq "all") {
+
+ # ; Precompute hkeys^i, i=17..32
+ my $i = 20;
+ foreach (1 .. int((32 - 16) / 8)) {
+
+ # ;; compute HashKey^(4 + n), HashKey^(3 + n), ... HashKey^(1 + n)
+ &GHASH_MUL($ZTMP2, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6);
+ $code .= "vmovdqu64 $ZTMP2,@{[HashKeyByIdx($i,\"%rsp\")]}\n";
+ $i += 4;
+
+ # ;; compute HashKey^(8 + n), HashKey^(7 + n), ... HashKey^(5 + n)
+ &GHASH_MUL($ZTMP3, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6);
+ $code .= "vmovdqu64 $ZTMP3,@{[HashKeyByIdx($i,\"%rsp\")]}\n";
+ $i += 4;
+ }
+ }
+
+ if ($HKEYS_RANGE eq "last32" || $HKEYS_RANGE eq "all") {
+
+ # ; Precompute hkeys^i, i=33..48 (HKEYS_STORAGE_CAPACITY = 48)
+ my $i = 36;
+ foreach (1 .. int((48 - 32) / 8)) {
+
+ # ;; compute HashKey^(4 + n), HashKey^(3 + n), ... HashKey^(1 + n)
+ &GHASH_MUL($ZTMP2, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6);
+ $code .= "vmovdqu64 $ZTMP2,@{[HashKeyByIdx($i,\"%rsp\")]}\n";
+ $i += 4;
+
+ # ;; compute HashKey^(8 + n), HashKey^(7 + n), ... HashKey^(5 + n)
+ &GHASH_MUL($ZTMP3, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6);
+ $code .= "vmovdqu64 $ZTMP3,@{[HashKeyByIdx($i,\"%rsp\")]}\n";
+ $i += 4;
+ }
+ }
+
+ $code .= ".L_skip_hkeys_precomputation_${rndsuffix}:\n";
+}
+
+# ;; =============================================================================
+# ;; Generic macro to produce code that executes $OPCODE instruction
+# ;; on selected number of AES blocks (16 bytes long ) between 0 and 16.
+# ;; All three operands of the instruction come from registers.
+# ;; Note: if 3 blocks are left at the end instruction is produced to operate all
+# ;; 4 blocks (full width of ZMM)
+sub ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16 {
+ my $NUM_BLOCKS = $_[0]; # [in] numerical value, number of AES blocks (0 to 16)
+ my $OPCODE = $_[1]; # [in] instruction name
+ my @DST;
+ $DST[0] = $_[2]; # [out] destination ZMM register
+ $DST[1] = $_[3]; # [out] destination ZMM register
+ $DST[2] = $_[4]; # [out] destination ZMM register
+ $DST[3] = $_[5]; # [out] destination ZMM register
+ my @SRC1;
+ $SRC1[0] = $_[6]; # [in] source 1 ZMM register
+ $SRC1[1] = $_[7]; # [in] source 1 ZMM register
+ $SRC1[2] = $_[8]; # [in] source 1 ZMM register
+ $SRC1[3] = $_[9]; # [in] source 1 ZMM register
+ my @SRC2;
+ $SRC2[0] = $_[10]; # [in] source 2 ZMM register
+ $SRC2[1] = $_[11]; # [in] source 2 ZMM register
+ $SRC2[2] = $_[12]; # [in] source 2 ZMM register
+ $SRC2[3] = $_[13]; # [in] source 2 ZMM register
+
+ die "ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16: num_blocks is out of bounds = $NUM_BLOCKS\n"
+ if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0);
+
+ my $reg_idx = 0;
+ my $blocks_left = $NUM_BLOCKS;
+
+ foreach (1 .. ($NUM_BLOCKS / 4)) {
+ $code .= "$OPCODE $SRC2[$reg_idx],$SRC1[$reg_idx],$DST[$reg_idx]\n";
+ $reg_idx++;
+ $blocks_left -= 4;
+ }
+
+ my $DSTREG = $DST[$reg_idx];
+ my $SRC1REG = $SRC1[$reg_idx];
+ my $SRC2REG = $SRC2[$reg_idx];
+
+ if ($blocks_left == 1) {
+ $code .= "$OPCODE @{[XWORD($SRC2REG)]},@{[XWORD($SRC1REG)]},@{[XWORD($DSTREG)]}\n";
+ } elsif ($blocks_left == 2) {
+ $code .= "$OPCODE @{[YWORD($SRC2REG)]},@{[YWORD($SRC1REG)]},@{[YWORD($DSTREG)]}\n";
+ } elsif ($blocks_left == 3) {
+ $code .= "$OPCODE $SRC2REG,$SRC1REG,$DSTREG\n";
+ }
+}
+
+# ;; =============================================================================
+# ;; Loads specified number of AES blocks into ZMM registers using mask register
+# ;; for the last loaded register (xmm, ymm or zmm).
+# ;; Loads take place at 1 byte granularity.
+sub ZMM_LOAD_MASKED_BLOCKS_0_16 {
+ my $NUM_BLOCKS = $_[0]; # [in] numerical value, number of AES blocks (0 to 16)
+ my $INP = $_[1]; # [in] input data pointer to read from
+ my $DATA_OFFSET = $_[2]; # [in] offset to the output pointer (GP or numerical)
+ my @DST;
+ $DST[0] = $_[3]; # [out] ZMM register with loaded data
+ $DST[1] = $_[4]; # [out] ZMM register with loaded data
+ $DST[2] = $_[5]; # [out] ZMM register with loaded data
+ $DST[3] = $_[6]; # [out] ZMM register with loaded data
+ my $MASK = $_[7]; # [in] mask register
+
+ die "ZMM_LOAD_MASKED_BLOCKS_0_16: num_blocks is out of bounds = $NUM_BLOCKS\n"
+ if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0);
+
+ my $src_offset = 0;
+ my $dst_idx = 0;
+ my $blocks_left = $NUM_BLOCKS;
+
+ if ($NUM_BLOCKS > 0) {
+ foreach (1 .. (int(($NUM_BLOCKS + 3) / 4) - 1)) {
+ $code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},$DST[$dst_idx]\n";
+ $src_offset += 64;
+ $dst_idx++;
+ $blocks_left -= 4;
+ }
+ }
+
+ my $DSTREG = $DST[$dst_idx];
+
+ if ($blocks_left == 1) {
+ $code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},@{[XWORD($DSTREG)]}\{$MASK\}{z}\n";
+ } elsif ($blocks_left == 2) {
+ $code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},@{[YWORD($DSTREG)]}\{$MASK\}{z}\n";
+ } elsif (($blocks_left == 3 || $blocks_left == 4)) {
+ $code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},$DSTREG\{$MASK\}{z}\n";
+ }
+}
+
+# ;; =============================================================================
+# ;; Stores specified number of AES blocks from ZMM registers with mask register
+# ;; for the last loaded register (xmm, ymm or zmm).
+# ;; Stores take place at 1 byte granularity.
+sub ZMM_STORE_MASKED_BLOCKS_0_16 {
+ my $NUM_BLOCKS = $_[0]; # [in] numerical value, number of AES blocks (0 to 16)
+ my $OUTP = $_[1]; # [in] output data pointer to write to
+ my $DATA_OFFSET = $_[2]; # [in] offset to the output pointer (GP or numerical)
+ my @SRC;
+ $SRC[0] = $_[3]; # [in] ZMM register with data to store
+ $SRC[1] = $_[4]; # [in] ZMM register with data to store
+ $SRC[2] = $_[5]; # [in] ZMM register with data to store
+ $SRC[3] = $_[6]; # [in] ZMM register with data to store
+ my $MASK = $_[7]; # [in] mask register
+
+ die "ZMM_STORE_MASKED_BLOCKS_0_16: num_blocks is out of bounds = $NUM_BLOCKS\n"
+ if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0);
+
+ my $dst_offset = 0;
+ my $src_idx = 0;
+ my $blocks_left = $NUM_BLOCKS;
+
+ if ($NUM_BLOCKS > 0) {
+ foreach (1 .. (int(($NUM_BLOCKS + 3) / 4) - 1)) {
+ $code .= "vmovdqu8 $SRC[$src_idx],`$dst_offset`($OUTP,$DATA_OFFSET,1)\n";
+ $dst_offset += 64;
+ $src_idx++;
+ $blocks_left -= 4;
+ }
+ }
+
+ my $SRCREG = $SRC[$src_idx];
+
+ if ($blocks_left == 1) {
+ $code .= "vmovdqu8 @{[XWORD($SRCREG)]},`$dst_offset`($OUTP,$DATA_OFFSET,1){$MASK}\n";
+ } elsif ($blocks_left == 2) {
+ $code .= "vmovdqu8 @{[YWORD($SRCREG)]},`$dst_offset`($OUTP,$DATA_OFFSET,1){$MASK}\n";
+ } elsif ($blocks_left == 3 || $blocks_left == 4) {
+ $code .= "vmovdqu8 $SRCREG,`$dst_offset`($OUTP,$DATA_OFFSET,1){$MASK}\n";
+ }
+}
+
+# ;;; ===========================================================================
+# ;;; Handles AES encryption rounds
+# ;;; It handles special cases: the last and first rounds
+# ;;; Optionally, it performs XOR with data after the last AES round.
+# ;;; Uses NROUNDS parameter to check what needs to be done for the current round.
+# ;;; If 3 blocks are trailing then operation on whole ZMM is performed (4 blocks).
+sub ZMM_AESENC_ROUND_BLOCKS_0_16 {
+ my $L0B0_3 = $_[0]; # [in/out] zmm; blocks 0 to 3
+ my $L0B4_7 = $_[1]; # [in/out] zmm; blocks 4 to 7
+ my $L0B8_11 = $_[2]; # [in/out] zmm; blocks 8 to 11
+ my $L0B12_15 = $_[3]; # [in/out] zmm; blocks 12 to 15
+ my $KEY = $_[4]; # [in] zmm containing round key
+ my $ROUND = $_[5]; # [in] round number
+ my $D0_3 = $_[6]; # [in] zmm or no_data; plain/cipher text blocks 0-3
+ my $D4_7 = $_[7]; # [in] zmm or no_data; plain/cipher text blocks 4-7
+ my $D8_11 = $_[8]; # [in] zmm or no_data; plain/cipher text blocks 8-11
+ my $D12_15 = $_[9]; # [in] zmm or no_data; plain/cipher text blocks 12-15
+ my $NUMBL = $_[10]; # [in] number of blocks; numerical value
+ my $NROUNDS = $_[11]; # [in] number of rounds; numerical value
+
+ # ;;; === first AES round
+ if ($ROUND < 1) {
+
+ # ;; round 0
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUMBL, "vpxorq", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3,
+ $L0B4_7, $L0B8_11, $L0B12_15, $KEY, $KEY, $KEY, $KEY);
+ }
+
+ # ;;; === middle AES rounds
+ if ($ROUND >= 1 && $ROUND <= $NROUNDS) {
+
+ # ;; rounds 1 to 9/11/13
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUMBL, "vaesenc", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3,
+ $L0B4_7, $L0B8_11, $L0B12_15, $KEY, $KEY, $KEY, $KEY);
+ }
+
+ # ;;; === last AES round
+ if ($ROUND > $NROUNDS) {
+
+ # ;; the last round - mix enclast with text xor's
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUMBL, "vaesenclast", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3,
+ $L0B4_7, $L0B8_11, $L0B12_15, $KEY, $KEY, $KEY, $KEY);
+
+ # ;;; === XOR with data
+ if ( ($D0_3 ne "no_data")
+ && ($D4_7 ne "no_data")
+ && ($D8_11 ne "no_data")
+ && ($D12_15 ne "no_data"))
+ {
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUMBL, "vpxorq", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3,
+ $L0B4_7, $L0B8_11, $L0B12_15, $D0_3, $D4_7, $D8_11, $D12_15);
+ }
+ }
+}
+
+# ;;; Horizontal XOR - 4 x 128bits xored together
+sub VHPXORI4x128 {
+ my $REG = $_[0]; # [in/out] ZMM with 4x128bits to xor; 128bit output
+ my $TMP = $_[1]; # [clobbered] ZMM temporary register
+ $code .= <<___;
+ vextracti64x4 \$1,$REG,@{[YWORD($TMP)]}
+ vpxorq @{[YWORD($TMP)]},@{[YWORD($REG)]},@{[YWORD($REG)]}
+ vextracti32x4 \$1,@{[YWORD($REG)]},@{[XWORD($TMP)]}
+ vpxorq @{[XWORD($TMP)]},@{[XWORD($REG)]},@{[XWORD($REG)]}
+___
+}
+
+# ;;; AVX512 reduction macro
+sub VCLMUL_REDUCE {
+ my $OUT = $_[0]; # [out] zmm/ymm/xmm: result (must not be $TMP1 or $HI128)
+ my $POLY = $_[1]; # [in] zmm/ymm/xmm: polynomial
+ my $HI128 = $_[2]; # [in] zmm/ymm/xmm: high 128b of hash to reduce
+ my $LO128 = $_[3]; # [in] zmm/ymm/xmm: low 128b of hash to reduce
+ my $TMP0 = $_[4]; # [in] zmm/ymm/xmm: temporary register
+ my $TMP1 = $_[5]; # [in] zmm/ymm/xmm: temporary register
+
+ $code .= <<___;
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; first phase of the reduction
+ vpclmulqdq \$0x01,$LO128,$POLY,$TMP0
+ vpslldq \$8,$TMP0,$TMP0 # ; shift-L 2 DWs
+ vpxorq $TMP0,$LO128,$TMP0 # ; first phase of the reduction complete
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; second phase of the reduction
+ vpclmulqdq \$0x00,$TMP0,$POLY,$TMP1
+ vpsrldq \$4,$TMP1,$TMP1 # ; shift-R only 1-DW to obtain 2-DWs shift-R
+ vpclmulqdq \$0x10,$TMP0,$POLY,$OUT
+ vpslldq \$4,$OUT,$OUT # ; shift-L 1-DW to obtain result with no shifts
+ vpternlogq \$0x96,$HI128,$TMP1,$OUT # ; OUT/GHASH = OUT xor TMP1 xor HI128
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+___
+}
+
+# ;; ===========================================================================
+# ;; schoolbook multiply of 16 blocks (16 x 16 bytes)
+# ;; - it is assumed that data read from $INPTR is already shuffled and
+# ;; $INPTR address is 64 byte aligned
+# ;; - there is an option to pass ready blocks through ZMM registers too.
+# ;; 4 extra parameters need to be passed in such case and 21st ($ZTMP9) argument can be empty
+sub GHASH_16 {
+ my $TYPE = $_[0]; # [in] ghash type: start (xor hash), mid, end (same as mid; no reduction),
+ # end_reduce (end with reduction), start_reduce
+ my $GH = $_[1]; # [in/out] ZMM ghash sum: high 128-bits
+ my $GM = $_[2]; # [in/out] ZMM ghash sum: middle 128-bits
+ my $GL = $_[3]; # [in/out] ZMM ghash sum: low 128-bits
+ my $INPTR = $_[4]; # [in] data input pointer
+ my $INOFF = $_[5]; # [in] data input offset
+ my $INDIS = $_[6]; # [in] data input displacement
+ my $HKPTR = $_[7]; # [in] hash key pointer
+ my $HKOFF = $_[8]; # [in] hash key offset (can be either numerical offset, or register containing offset)
+ my $HKDIS = $_[9]; # [in] hash key displacement
+ my $HASH = $_[10]; # [in/out] ZMM hash value in/out
+ my $ZTMP0 = $_[11]; # [clobbered] temporary ZMM
+ my $ZTMP1 = $_[12]; # [clobbered] temporary ZMM
+ my $ZTMP2 = $_[13]; # [clobbered] temporary ZMM
+ my $ZTMP3 = $_[14]; # [clobbered] temporary ZMM
+ my $ZTMP4 = $_[15]; # [clobbered] temporary ZMM
+ my $ZTMP5 = $_[16]; # [clobbered] temporary ZMM
+ my $ZTMP6 = $_[17]; # [clobbered] temporary ZMM
+ my $ZTMP7 = $_[18]; # [clobbered] temporary ZMM
+ my $ZTMP8 = $_[19]; # [clobbered] temporary ZMM
+ my $ZTMP9 = $_[20]; # [clobbered] temporary ZMM, can be empty if 4 extra parameters below are provided
+ my $DAT0 = $_[21]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused)
+ my $DAT1 = $_[22]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused)
+ my $DAT2 = $_[23]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused)
+ my $DAT3 = $_[24]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused)
+
+ my $start_ghash = 0;
+ my $do_reduction = 0;
+ if ($TYPE eq "start") {
+ $start_ghash = 1;
+ }
+
+ if ($TYPE eq "start_reduce") {
+ $start_ghash = 1;
+ $do_reduction = 1;
+ }
+
+ if ($TYPE eq "end_reduce") {
+ $do_reduction = 1;
+ }
+
+ # ;; ghash blocks 0-3
+ if (scalar(@_) == 21) {
+ $code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+0*64))]},$ZTMP9\n";
+ } else {
+ $ZTMP9 = $DAT0;
+ }
+
+ if ($start_ghash != 0) {
+ $code .= "vpxorq $HASH,$ZTMP9,$ZTMP9\n";
+ }
+ $code .= <<___;
+ vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+0*64))]},$ZTMP8
+ vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP0 # ; T0H = a1*b1
+ vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP1 # ; T0L = a0*b0
+ vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP2 # ; T0M1 = a1*b0
+ vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP3 # ; T0M2 = a0*b1
+___
+
+ # ;; ghash blocks 4-7
+ if (scalar(@_) == 21) {
+ $code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+1*64))]},$ZTMP9\n";
+ } else {
+ $ZTMP9 = $DAT1;
+ }
+ $code .= <<___;
+ vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+1*64))]},$ZTMP8
+ vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP4 # ; T1H = a1*b1
+ vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP5 # ; T1L = a0*b0
+ vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP6 # ; T1M1 = a1*b0
+ vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP7 # ; T1M2 = a0*b1
+___
+
+ # ;; update sums
+ if ($start_ghash != 0) {
+ $code .= <<___;
+ vpxorq $ZTMP6,$ZTMP2,$GM # ; GM = T0M1 + T1M1
+ vpxorq $ZTMP4,$ZTMP0,$GH # ; GH = T0H + T1H
+ vpxorq $ZTMP5,$ZTMP1,$GL # ; GL = T0L + T1L
+ vpternlogq \$0x96,$ZTMP7,$ZTMP3,$GM # ; GM = T0M2 + T1M1
+___
+ } else { # ;; mid, end, end_reduce
+ $code .= <<___;
+ vpternlogq \$0x96,$ZTMP6,$ZTMP2,$GM # ; GM += T0M1 + T1M1
+ vpternlogq \$0x96,$ZTMP4,$ZTMP0,$GH # ; GH += T0H + T1H
+ vpternlogq \$0x96,$ZTMP5,$ZTMP1,$GL # ; GL += T0L + T1L
+ vpternlogq \$0x96,$ZTMP7,$ZTMP3,$GM # ; GM += T0M2 + T1M1
+___
+ }
+
+ # ;; ghash blocks 8-11
+ if (scalar(@_) == 21) {
+ $code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+2*64))]},$ZTMP9\n";
+ } else {
+ $ZTMP9 = $DAT2;
+ }
+ $code .= <<___;
+ vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+2*64))]},$ZTMP8
+ vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP0 # ; T0H = a1*b1
+ vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP1 # ; T0L = a0*b0
+ vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP2 # ; T0M1 = a1*b0
+ vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP3 # ; T0M2 = a0*b1
+___
+
+ # ;; ghash blocks 12-15
+ if (scalar(@_) == 21) {
+ $code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+3*64))]},$ZTMP9\n";
+ } else {
+ $ZTMP9 = $DAT3;
+ }
+ $code .= <<___;
+ vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+3*64))]},$ZTMP8
+ vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP4 # ; T1H = a1*b1
+ vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP5 # ; T1L = a0*b0
+ vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP6 # ; T1M1 = a1*b0
+ vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP7 # ; T1M2 = a0*b1
+ # ;; update sums
+ vpternlogq \$0x96,$ZTMP6,$ZTMP2,$GM # ; GM += T0M1 + T1M1
+ vpternlogq \$0x96,$ZTMP4,$ZTMP0,$GH # ; GH += T0H + T1H
+ vpternlogq \$0x96,$ZTMP5,$ZTMP1,$GL # ; GL += T0L + T1L
+ vpternlogq \$0x96,$ZTMP7,$ZTMP3,$GM # ; GM += T0M2 + T1M1
+___
+ if ($do_reduction != 0) {
+ $code .= <<___;
+ # ;; integrate GM into GH and GL
+ vpsrldq \$8,$GM,$ZTMP0
+ vpslldq \$8,$GM,$ZTMP1
+ vpxorq $ZTMP0,$GH,$GH
+ vpxorq $ZTMP1,$GL,$GL
+___
+
+ # ;; add GH and GL 128-bit words horizontally
+ &VHPXORI4x128($GH, $ZTMP0);
+ &VHPXORI4x128($GL, $ZTMP1);
+
+ # ;; reduction
+ $code .= "vmovdqa64 POLY2(%rip),@{[XWORD($ZTMP2)]}\n";
+ &VCLMUL_REDUCE(&XWORD($HASH), &XWORD($ZTMP2), &XWORD($GH), &XWORD($GL), &XWORD($ZTMP0), &XWORD($ZTMP1));
+ }
+}
+
+# ;; ===========================================================================
+# ;; GHASH 1 to 16 blocks of cipher text
+# ;; - performs reduction at the end
+# ;; - it doesn't load the data and it assumed it is already loaded and shuffled
+sub GHASH_1_TO_16 {
+ my $GCM128_CTX = $_[0]; # [in] pointer to expanded keys
+ my $GHASH = $_[1]; # [out] ghash output
+ my $T0H = $_[2]; # [clobbered] temporary ZMM
+ my $T0L = $_[3]; # [clobbered] temporary ZMM
+ my $T0M1 = $_[4]; # [clobbered] temporary ZMM
+ my $T0M2 = $_[5]; # [clobbered] temporary ZMM
+ my $T1H = $_[6]; # [clobbered] temporary ZMM
+ my $T1L = $_[7]; # [clobbered] temporary ZMM
+ my $T1M1 = $_[8]; # [clobbered] temporary ZMM
+ my $T1M2 = $_[9]; # [clobbered] temporary ZMM
+ my $HK = $_[10]; # [clobbered] temporary ZMM
+ my $AAD_HASH_IN = $_[11]; # [in] input hash value
+ my @CIPHER_IN;
+ $CIPHER_IN[0] = $_[12]; # [in] ZMM with cipher text blocks 0-3
+ $CIPHER_IN[1] = $_[13]; # [in] ZMM with cipher text blocks 4-7
+ $CIPHER_IN[2] = $_[14]; # [in] ZMM with cipher text blocks 8-11
+ $CIPHER_IN[3] = $_[15]; # [in] ZMM with cipher text blocks 12-15
+ my $NUM_BLOCKS = $_[16]; # [in] numerical value, number of blocks
+ my $GH = $_[17]; # [in] ZMM with hi product part
+ my $GM = $_[18]; # [in] ZMM with mid product part
+ my $GL = $_[19]; # [in] ZMM with lo product part
+
+ die "GHASH_1_TO_16: num_blocks is out of bounds = $NUM_BLOCKS\n" if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0);
+
+ if (scalar(@_) == 17) {
+ $code .= "vpxorq $AAD_HASH_IN,$CIPHER_IN[0],$CIPHER_IN[0]\n";
+ }
+
+ if ($NUM_BLOCKS == 16) {
+ $code .= <<___;
+ vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK
+ vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T0H # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T0L # ; L = a0*b0
+ vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T0M1 # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T0M2 # ; M2 = a0*b1
+ vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-1*4, $GCM128_CTX)]},$HK
+ vpclmulqdq \$0x11,$HK,$CIPHER_IN[1],$T1H # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$CIPHER_IN[1],$T1L # ; L = a0*b0
+ vpclmulqdq \$0x01,$HK,$CIPHER_IN[1],$T1M1 # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$CIPHER_IN[1],$T1M2 # ; M2 = a0*b1
+ vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-2*4, $GCM128_CTX)]},$HK
+ vpclmulqdq \$0x11,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; L = a0*b0
+ vpternlogq \$0x96,$T1H,$CIPHER_IN[0],$T0H
+ vpternlogq \$0x96,$T1L,$CIPHER_IN[1],$T0L
+ vpclmulqdq \$0x01,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; M2 = a0*b1
+ vpternlogq \$0x96,$T1M1,$CIPHER_IN[0],$T0M1
+ vpternlogq \$0x96,$T1M2,$CIPHER_IN[1],$T0M2
+ vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-3*4, $GCM128_CTX)]},$HK
+ vpclmulqdq \$0x11,$HK,$CIPHER_IN[3],$T1H # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$CIPHER_IN[3],$T1L # ; L = a0*b0
+ vpclmulqdq \$0x01,$HK,$CIPHER_IN[3],$T1M1 # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$CIPHER_IN[3],$T1M2 # ; M2 = a0*b1
+ vpxorq $T1H,$T0H,$T1H
+ vpxorq $T1L,$T0L,$T1L
+ vpxorq $T1M1,$T0M1,$T1M1
+ vpxorq $T1M2,$T0M2,$T1M2
+___
+ } elsif ($NUM_BLOCKS >= 12) {
+ $code .= <<___;
+ vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK
+ vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T0H # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T0L # ; L = a0*b0
+ vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T0M1 # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T0M2 # ; M2 = a0*b1
+ vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-1*4, $GCM128_CTX)]},$HK
+ vpclmulqdq \$0x11,$HK,$CIPHER_IN[1],$T1H # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$CIPHER_IN[1],$T1L # ; L = a0*b0
+ vpclmulqdq \$0x01,$HK,$CIPHER_IN[1],$T1M1 # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$CIPHER_IN[1],$T1M2 # ; M2 = a0*b1
+ vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-2*4, $GCM128_CTX)]},$HK
+ vpclmulqdq \$0x11,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; L = a0*b0
+ vpternlogq \$0x96,$T0H,$CIPHER_IN[0],$T1H
+ vpternlogq \$0x96,$T0L,$CIPHER_IN[1],$T1L
+ vpclmulqdq \$0x01,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; M2 = a0*b1
+ vpternlogq \$0x96,$T0M1,$CIPHER_IN[0],$T1M1
+ vpternlogq \$0x96,$T0M2,$CIPHER_IN[1],$T1M2
+___
+ } elsif ($NUM_BLOCKS >= 8) {
+ $code .= <<___;
+ vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK
+ vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T0H # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T0L # ; L = a0*b0
+ vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T0M1 # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T0M2 # ; M2 = a0*b1
+ vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-1*4, $GCM128_CTX)]},$HK
+ vpclmulqdq \$0x11,$HK,$CIPHER_IN[1],$T1H # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$CIPHER_IN[1],$T1L # ; L = a0*b0
+ vpclmulqdq \$0x01,$HK,$CIPHER_IN[1],$T1M1 # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$CIPHER_IN[1],$T1M2 # ; M2 = a0*b1
+ vpxorq $T1H,$T0H,$T1H
+ vpxorq $T1L,$T0L,$T1L
+ vpxorq $T1M1,$T0M1,$T1M1
+ vpxorq $T1M2,$T0M2,$T1M2
+___
+ } elsif ($NUM_BLOCKS >= 4) {
+ $code .= <<___;
+ vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK
+ vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T1H # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T1L # ; L = a0*b0
+ vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T1M1 # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T1M2 # ; M2 = a0*b1
+___
+ }
+
+ # ;; T1H/L/M1/M2 - hold current product sums (provided $NUM_BLOCKS >= 4)
+ my $blocks_left = ($NUM_BLOCKS % 4);
+ if ($blocks_left > 0) {
+
+ # ;; =====================================================
+ # ;; There are 1, 2 or 3 blocks left to process.
+ # ;; It may also be that they are the only blocks to process.
+
+ # ;; Set hash key and register index position for the remaining 1 to 3 blocks
+ my $reg_idx = ($NUM_BLOCKS / 4);
+ my $REG_IN = $CIPHER_IN[$reg_idx];
+
+ if ($blocks_left == 1) {
+ $code .= <<___;
+ vmovdqu64 @{[HashKeyByIdx($blocks_left, $GCM128_CTX)]},@{[XWORD($HK)]}
+ vpclmulqdq \$0x01,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0M1)]} # ; M1 = a1*b0
+ vpclmulqdq \$0x10,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0M2)]} # ; M2 = a0*b1
+ vpclmulqdq \$0x11,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0H)]} # ; H = a1*b1
+ vpclmulqdq \$0x00,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0L)]} # ; L = a0*b0
+___
+ } elsif ($blocks_left == 2) {
+ $code .= <<___;
+ vmovdqu64 @{[HashKeyByIdx($blocks_left, $GCM128_CTX)]},@{[YWORD($HK)]}
+ vpclmulqdq \$0x01,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0M1)]} # ; M1 = a1*b0
+ vpclmulqdq \$0x10,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0M2)]} # ; M2 = a0*b1
+ vpclmulqdq \$0x11,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0H)]} # ; H = a1*b1
+ vpclmulqdq \$0x00,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0L)]} # ; L = a0*b0
+___
+ } else { # ; blocks_left == 3
+ $code .= <<___;
+ vmovdqu64 @{[HashKeyByIdx($blocks_left, $GCM128_CTX)]},@{[YWORD($HK)]}
+ vinserti64x2 \$2,@{[HashKeyByIdx($blocks_left-2, $GCM128_CTX)]},$HK,$HK
+ vpclmulqdq \$0x01,$HK,$REG_IN,$T0M1 # ; M1 = a1*b0
+ vpclmulqdq \$0x10,$HK,$REG_IN,$T0M2 # ; M2 = a0*b1
+ vpclmulqdq \$0x11,$HK,$REG_IN,$T0H # ; H = a1*b1
+ vpclmulqdq \$0x00,$HK,$REG_IN,$T0L # ; L = a0*b0
+___
+ }
+
+ if (scalar(@_) == 20) {
+
+ # ;; *** GH/GM/GL passed as arguments
+ if ($NUM_BLOCKS >= 4) {
+ $code .= <<___;
+ # ;; add ghash product sums from the first 4, 8 or 12 blocks
+ vpxorq $T1M1,$T0M1,$T0M1
+ vpternlogq \$0x96,$T1M2,$GM,$T0M2
+ vpternlogq \$0x96,$T1H,$GH,$T0H
+ vpternlogq \$0x96,$T1L,$GL,$T0L
+___
+ } else {
+ $code .= <<___;
+ vpxorq $GM,$T0M1,$T0M1
+ vpxorq $GH,$T0H,$T0H
+ vpxorq $GL,$T0L,$T0L
+___
+ }
+ } else {
+
+ # ;; *** GH/GM/GL NOT passed as arguments
+ if ($NUM_BLOCKS >= 4) {
+ $code .= <<___;
+ # ;; add ghash product sums from the first 4, 8 or 12 blocks
+ vpxorq $T1M1,$T0M1,$T0M1
+ vpxorq $T1M2,$T0M2,$T0M2
+ vpxorq $T1H,$T0H,$T0H
+ vpxorq $T1L,$T0L,$T0L
+___
+ }
+ }
+ $code .= <<___;
+ # ;; integrate TM into TH and TL
+ vpxorq $T0M2,$T0M1,$T0M1
+ vpsrldq \$8,$T0M1,$T1M1
+ vpslldq \$8,$T0M1,$T1M2
+ vpxorq $T1M1,$T0H,$T0H
+ vpxorq $T1M2,$T0L,$T0L
+___
+ } else {
+
+ # ;; =====================================================
+ # ;; number of blocks is 4, 8, 12 or 16
+ # ;; T1H/L/M1/M2 include product sums not T0H/L/M1/M2
+ if (scalar(@_) == 20) {
+ $code .= <<___;
+ # ;; *** GH/GM/GL passed as arguments
+ vpxorq $GM,$T1M1,$T1M1
+ vpxorq $GH,$T1H,$T1H
+ vpxorq $GL,$T1L,$T1L
+___
+ }
+ $code .= <<___;
+ # ;; integrate TM into TH and TL
+ vpxorq $T1M2,$T1M1,$T1M1
+ vpsrldq \$8,$T1M1,$T0M1
+ vpslldq \$8,$T1M1,$T0M2
+ vpxorq $T0M1,$T1H,$T0H
+ vpxorq $T0M2,$T1L,$T0L
+___
+ }
+
+ # ;; add TH and TL 128-bit words horizontally
+ &VHPXORI4x128($T0H, $T1M1);
+ &VHPXORI4x128($T0L, $T1M2);
+
+ # ;; reduction
+ $code .= "vmovdqa64 POLY2(%rip),@{[XWORD($HK)]}\n";
+ &VCLMUL_REDUCE(
+ @{[XWORD($GHASH)]},
+ @{[XWORD($HK)]},
+ @{[XWORD($T0H)]},
+ @{[XWORD($T0L)]},
+ @{[XWORD($T0M1)]},
+ @{[XWORD($T0M2)]});
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;; GHASH_MUL MACRO to implement: Data*HashKey mod (x^128 + x^127 + x^126 +x^121 + 1)
+# ;; Input: A and B (128-bits each, bit-reflected)
+# ;; Output: C = A*B*x mod poly, (i.e. >>1 )
+# ;; To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
+# ;; GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
+# ;;
+# ;; Refer to [3] for more detals.
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+sub GHASH_MUL {
+ my $GH = $_[0]; #; [in/out] xmm/ymm/zmm with multiply operand(s) (128-bits)
+ my $HK = $_[1]; #; [in] xmm/ymm/zmm with hash key value(s) (128-bits)
+ my $T1 = $_[2]; #; [clobbered] xmm/ymm/zmm
+ my $T2 = $_[3]; #; [clobbered] xmm/ymm/zmm
+ my $T3 = $_[4]; #; [clobbered] xmm/ymm/zmm
+
+ $code .= <<___;
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ vpclmulqdq \$0x11,$HK,$GH,$T1 # ; $T1 = a1*b1
+ vpclmulqdq \$0x00,$HK,$GH,$T2 # ; $T2 = a0*b0
+ vpclmulqdq \$0x01,$HK,$GH,$T3 # ; $T3 = a1*b0
+ vpclmulqdq \$0x10,$HK,$GH,$GH # ; $GH = a0*b1
+ vpxorq $T3,$GH,$GH
+
+ vpsrldq \$8,$GH,$T3 # ; shift-R $GH 2 DWs
+ vpslldq \$8,$GH,$GH # ; shift-L $GH 2 DWs
+ vpxorq $T3,$T1,$T1
+ vpxorq $T2,$GH,$GH
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;first phase of the reduction
+ vmovdqu64 POLY2(%rip),$T3
+
+ vpclmulqdq \$0x01,$GH,$T3,$T2
+ vpslldq \$8,$T2,$T2 # ; shift-L $T2 2 DWs
+ vpxorq $T2,$GH,$GH # ; first phase of the reduction complete
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;second phase of the reduction
+ vpclmulqdq \$0x00,$GH,$T3,$T2
+ vpsrldq \$4,$T2,$T2 # ; shift-R only 1-DW to obtain 2-DWs shift-R
+ vpclmulqdq \$0x10,$GH,$T3,$GH
+ vpslldq \$4,$GH,$GH # ; Shift-L 1-DW to obtain result with no shifts
+ # ; second phase of the reduction complete, the result is in $GH
+ vpternlogq \$0x96,$T2,$T1,$GH # ; GH = GH xor T1 xor T2
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+___
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; PRECOMPUTE computes HashKey_i
+sub PRECOMPUTE {
+ my $GCM128_CTX = $_[0]; #; [in/out] context pointer, hkeys content updated
+ my $HK = $_[1]; #; [in] xmm, hash key
+ my $T1 = $_[2]; #; [clobbered] xmm
+ my $T2 = $_[3]; #; [clobbered] xmm
+ my $T3 = $_[4]; #; [clobbered] xmm
+ my $T4 = $_[5]; #; [clobbered] xmm
+ my $T5 = $_[6]; #; [clobbered] xmm
+ my $T6 = $_[7]; #; [clobbered] xmm
+
+ my $ZT1 = &ZWORD($T1);
+ my $ZT2 = &ZWORD($T2);
+ my $ZT3 = &ZWORD($T3);
+ my $ZT4 = &ZWORD($T4);
+ my $ZT5 = &ZWORD($T5);
+ my $ZT6 = &ZWORD($T6);
+
+ my $YT1 = &YWORD($T1);
+ my $YT2 = &YWORD($T2);
+ my $YT3 = &YWORD($T3);
+ my $YT4 = &YWORD($T4);
+ my $YT5 = &YWORD($T5);
+ my $YT6 = &YWORD($T6);
+
+ $code .= <<___;
+ vshufi32x4 \$0x00,@{[YWORD($HK)]},@{[YWORD($HK)]},$YT5
+ vmovdqa $YT5,$YT4
+___
+
+ # ;; calculate HashKey^2<<1 mod poly
+ &GHASH_MUL($YT4, $YT5, $YT1, $YT2, $YT3);
+
+ $code .= <<___;
+ vmovdqu64 $T4,@{[HashKeyByIdx(2,$GCM128_CTX)]}
+ vinserti64x2 \$1,$HK,$YT4,$YT5
+ vmovdqa64 $YT5,$YT6 # ;; YT6 = HashKey | HashKey^2
+___
+
+ # ;; use 2x128-bit computation
+ # ;; calculate HashKey^4<<1 mod poly, HashKey^3<<1 mod poly
+ &GHASH_MUL($YT5, $YT4, $YT1, $YT2, $YT3); # ;; YT5 = HashKey^3 | HashKey^4
+
+ $code .= <<___;
+ vmovdqu64 $YT5,@{[HashKeyByIdx(4,$GCM128_CTX)]}
+
+ vinserti64x4 \$1,$YT6,$ZT5,$ZT5 # ;; ZT5 = YT6 | YT5
+
+ # ;; switch to 4x128-bit computations now
+ vshufi64x2 \$0x00,$ZT5,$ZT5,$ZT4 # ;; broadcast HashKey^4 across all ZT4
+ vmovdqa64 $ZT5,$ZT6 # ;; save HashKey^4 to HashKey^1 in ZT6
+___
+
+ # ;; calculate HashKey^5<<1 mod poly, HashKey^6<<1 mod poly, ... HashKey^8<<1 mod poly
+ &GHASH_MUL($ZT5, $ZT4, $ZT1, $ZT2, $ZT3);
+ $code .= <<___;
+ vmovdqu64 $ZT5,@{[HashKeyByIdx(8,$GCM128_CTX)]} # ;; HashKey^8 to HashKey^5 in ZT5 now
+ vshufi64x2 \$0x00,$ZT5,$ZT5,$ZT4 # ;; broadcast HashKey^8 across all ZT4
+___
+
+ # ;; calculate HashKey^9<<1 mod poly, HashKey^10<<1 mod poly, ... HashKey^16<<1 mod poly
+ # ;; use HashKey^8 as multiplier against ZT6 and ZT5 - this allows deeper ooo execution
+
+ # ;; compute HashKey^(12), HashKey^(11), ... HashKey^(9)
+ &GHASH_MUL($ZT6, $ZT4, $ZT1, $ZT2, $ZT3);
+ $code .= "vmovdqu64 $ZT6,@{[HashKeyByIdx(12,$GCM128_CTX)]}\n";
+
+ # ;; compute HashKey^(16), HashKey^(15), ... HashKey^(13)
+ &GHASH_MUL($ZT5, $ZT4, $ZT1, $ZT2, $ZT3);
+ $code .= "vmovdqu64 $ZT5,@{[HashKeyByIdx(16,$GCM128_CTX)]}\n";
+
+ # ; Hkeys 17..48 will be precomputed somewhere else as context can hold only 16 hkeys
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;; READ_SMALL_DATA_INPUT
+# ;; Packs xmm register with data when data input is less or equal to 16 bytes
+# ;; Returns 0 if data has length 0
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+sub READ_SMALL_DATA_INPUT {
+ my $OUTPUT = $_[0]; # [out] xmm register
+ my $INPUT = $_[1]; # [in] buffer pointer to read from
+ my $LENGTH = $_[2]; # [in] number of bytes to read
+ my $TMP1 = $_[3]; # [clobbered]
+ my $TMP2 = $_[4]; # [clobbered]
+ my $MASK = $_[5]; # [out] k1 to k7 register to store the partial block mask
+
+ $code .= <<___;
+ mov \$16,@{[DWORD($TMP2)]}
+ lea byte_len_to_mask_table(%rip),$TMP1
+ cmp $TMP2,$LENGTH
+ cmovc $LENGTH,$TMP2
+___
+ if ($win64) {
+ $code .= <<___;
+ add $TMP2,$TMP1
+ add $TMP2,$TMP1
+ kmovw ($TMP1),$MASK
+___
+ } else {
+ $code .= "kmovw ($TMP1,$TMP2,2),$MASK\n";
+ }
+ $code .= "vmovdqu8 ($INPUT),${OUTPUT}{$MASK}{z}\n";
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# CALC_AAD_HASH: Calculates the hash of the data which will not be encrypted.
+# Input: The input data (A_IN), that data's length (A_LEN), and the hash key (HASH_KEY).
+# Output: The hash of the data (AAD_HASH).
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+sub CALC_AAD_HASH {
+ my $A_IN = $_[0]; # [in] AAD text pointer
+ my $A_LEN = $_[1]; # [in] AAD length
+ my $AAD_HASH = $_[2]; # [in/out] xmm ghash value
+ my $GCM128_CTX = $_[3]; # [in] pointer to context
+ my $ZT0 = $_[4]; # [clobbered] ZMM register
+ my $ZT1 = $_[5]; # [clobbered] ZMM register
+ my $ZT2 = $_[6]; # [clobbered] ZMM register
+ my $ZT3 = $_[7]; # [clobbered] ZMM register
+ my $ZT4 = $_[8]; # [clobbered] ZMM register
+ my $ZT5 = $_[9]; # [clobbered] ZMM register
+ my $ZT6 = $_[10]; # [clobbered] ZMM register
+ my $ZT7 = $_[11]; # [clobbered] ZMM register
+ my $ZT8 = $_[12]; # [clobbered] ZMM register
+ my $ZT9 = $_[13]; # [clobbered] ZMM register
+ my $ZT10 = $_[14]; # [clobbered] ZMM register
+ my $ZT11 = $_[15]; # [clobbered] ZMM register
+ my $ZT12 = $_[16]; # [clobbered] ZMM register
+ my $ZT13 = $_[17]; # [clobbered] ZMM register
+ my $ZT14 = $_[18]; # [clobbered] ZMM register
+ my $ZT15 = $_[19]; # [clobbered] ZMM register
+ my $ZT16 = $_[20]; # [clobbered] ZMM register
+ my $T1 = $_[21]; # [clobbered] GP register
+ my $T2 = $_[22]; # [clobbered] GP register
+ my $T3 = $_[23]; # [clobbered] GP register
+ my $MASKREG = $_[24]; # [clobbered] mask register
+
+ my $HKEYS_READY = "%rbx";
+
+ my $SHFMSK = $ZT13;
+
+ my $rndsuffix = &random_string();
+
+ $code .= <<___;
+ mov $A_IN,$T1 # ; T1 = AAD
+ mov $A_LEN,$T2 # ; T2 = aadLen
+ or $T2,$T2
+ jz .L_CALC_AAD_done_${rndsuffix}
+
+ xor $HKEYS_READY,$HKEYS_READY
+ vmovdqa64 SHUF_MASK(%rip),$SHFMSK
+
+.L_get_AAD_loop48x16_${rndsuffix}:
+ cmp \$`(48*16)`,$T2
+ jl .L_exit_AAD_loop48x16_${rndsuffix}
+___
+
+ $code .= <<___;
+ vmovdqu64 `64*0`($T1),$ZT1 # ; Blocks 0-3
+ vmovdqu64 `64*1`($T1),$ZT2 # ; Blocks 4-7
+ vmovdqu64 `64*2`($T1),$ZT3 # ; Blocks 8-11
+ vmovdqu64 `64*3`($T1),$ZT4 # ; Blocks 12-15
+ vpshufb $SHFMSK,$ZT1,$ZT1
+ vpshufb $SHFMSK,$ZT2,$ZT2
+ vpshufb $SHFMSK,$ZT3,$ZT3
+ vpshufb $SHFMSK,$ZT4,$ZT4
+___
+
+ &precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZT0, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT14, "all");
+ $code .= "mov \$1,$HKEYS_READY\n";
+
+ &GHASH_16(
+ "start", $ZT5, $ZT6, $ZT7,
+ "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp",
+ &HashKeyOffsetByIdx(48, "frame"), 0, "@{[ZWORD($AAD_HASH)]}", $ZT0,
+ $ZT8, $ZT9, $ZT10, $ZT11,
+ $ZT12, $ZT14, $ZT15, $ZT16,
+ "NO_ZMM", $ZT1, $ZT2, $ZT3,
+ $ZT4);
+
+ $code .= <<___;
+ vmovdqu64 `16*16 + 64*0`($T1),$ZT1 # ; Blocks 16-19
+ vmovdqu64 `16*16 + 64*1`($T1),$ZT2 # ; Blocks 20-23
+ vmovdqu64 `16*16 + 64*2`($T1),$ZT3 # ; Blocks 24-27
+ vmovdqu64 `16*16 + 64*3`($T1),$ZT4 # ; Blocks 28-31
+ vpshufb $SHFMSK,$ZT1,$ZT1
+ vpshufb $SHFMSK,$ZT2,$ZT2
+ vpshufb $SHFMSK,$ZT3,$ZT3
+ vpshufb $SHFMSK,$ZT4,$ZT4
+___
+
+ &GHASH_16(
+ "mid", $ZT5, $ZT6, $ZT7,
+ "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp",
+ &HashKeyOffsetByIdx(32, "frame"), 0, "NO_HASH_IN_OUT", $ZT0,
+ $ZT8, $ZT9, $ZT10, $ZT11,
+ $ZT12, $ZT14, $ZT15, $ZT16,
+ "NO_ZMM", $ZT1, $ZT2, $ZT3,
+ $ZT4);
+
+ $code .= <<___;
+ vmovdqu64 `32*16 + 64*0`($T1),$ZT1 # ; Blocks 32-35
+ vmovdqu64 `32*16 + 64*1`($T1),$ZT2 # ; Blocks 36-39
+ vmovdqu64 `32*16 + 64*2`($T1),$ZT3 # ; Blocks 40-43
+ vmovdqu64 `32*16 + 64*3`($T1),$ZT4 # ; Blocks 44-47
+ vpshufb $SHFMSK,$ZT1,$ZT1
+ vpshufb $SHFMSK,$ZT2,$ZT2
+ vpshufb $SHFMSK,$ZT3,$ZT3
+ vpshufb $SHFMSK,$ZT4,$ZT4
+___
+
+ &GHASH_16(
+ "end_reduce", $ZT5, $ZT6, $ZT7,
+ "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp",
+ &HashKeyOffsetByIdx(16, "frame"), 0, &ZWORD($AAD_HASH), $ZT0,
+ $ZT8, $ZT9, $ZT10, $ZT11,
+ $ZT12, $ZT14, $ZT15, $ZT16,
+ "NO_ZMM", $ZT1, $ZT2, $ZT3,
+ $ZT4);
+
+ $code .= <<___;
+ sub \$`(48*16)`,$T2
+ je .L_CALC_AAD_done_${rndsuffix}
+
+ add \$`(48*16)`,$T1
+ jmp .L_get_AAD_loop48x16_${rndsuffix}
+
+.L_exit_AAD_loop48x16_${rndsuffix}:
+ # ; Less than 48x16 bytes remaining
+ cmp \$`(32*16)`,$T2
+ jl .L_less_than_32x16_${rndsuffix}
+___
+
+ $code .= <<___;
+ # ; Get next 16 blocks
+ vmovdqu64 `64*0`($T1),$ZT1
+ vmovdqu64 `64*1`($T1),$ZT2
+ vmovdqu64 `64*2`($T1),$ZT3
+ vmovdqu64 `64*3`($T1),$ZT4
+ vpshufb $SHFMSK,$ZT1,$ZT1
+ vpshufb $SHFMSK,$ZT2,$ZT2
+ vpshufb $SHFMSK,$ZT3,$ZT3
+ vpshufb $SHFMSK,$ZT4,$ZT4
+___
+
+ &precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZT0, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT14, "first32");
+ $code .= "mov \$1,$HKEYS_READY\n";
+
+ &GHASH_16(
+ "start", $ZT5, $ZT6, $ZT7,
+ "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp",
+ &HashKeyOffsetByIdx(32, "frame"), 0, &ZWORD($AAD_HASH), $ZT0,
+ $ZT8, $ZT9, $ZT10, $ZT11,
+ $ZT12, $ZT14, $ZT15, $ZT16,
+ "NO_ZMM", $ZT1, $ZT2, $ZT3,
+ $ZT4);
+
+ $code .= <<___;
+ vmovdqu64 `16*16 + 64*0`($T1),$ZT1
+ vmovdqu64 `16*16 + 64*1`($T1),$ZT2
+ vmovdqu64 `16*16 + 64*2`($T1),$ZT3
+ vmovdqu64 `16*16 + 64*3`($T1),$ZT4
+ vpshufb $SHFMSK,$ZT1,$ZT1
+ vpshufb $SHFMSK,$ZT2,$ZT2
+ vpshufb $SHFMSK,$ZT3,$ZT3
+ vpshufb $SHFMSK,$ZT4,$ZT4
+___
+
+ &GHASH_16(
+ "end_reduce", $ZT5, $ZT6, $ZT7,
+ "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp",
+ &HashKeyOffsetByIdx(16, "frame"), 0, &ZWORD($AAD_HASH), $ZT0,
+ $ZT8, $ZT9, $ZT10, $ZT11,
+ $ZT12, $ZT14, $ZT15, $ZT16,
+ "NO_ZMM", $ZT1, $ZT2, $ZT3,
+ $ZT4);
+
+ $code .= <<___;
+ sub \$`(32*16)`,$T2
+ je .L_CALC_AAD_done_${rndsuffix}
+
+ add \$`(32*16)`,$T1
+ jmp .L_less_than_16x16_${rndsuffix}
+
+.L_less_than_32x16_${rndsuffix}:
+ cmp \$`(16*16)`,$T2
+ jl .L_less_than_16x16_${rndsuffix}
+ # ; Get next 16 blocks
+ vmovdqu64 `64*0`($T1),$ZT1
+ vmovdqu64 `64*1`($T1),$ZT2
+ vmovdqu64 `64*2`($T1),$ZT3
+ vmovdqu64 `64*3`($T1),$ZT4
+ vpshufb $SHFMSK,$ZT1,$ZT1
+ vpshufb $SHFMSK,$ZT2,$ZT2
+ vpshufb $SHFMSK,$ZT3,$ZT3
+ vpshufb $SHFMSK,$ZT4,$ZT4
+___
+
+ # ; This code path does not use more than 16 hkeys, so they can be taken from the context
+ # ; (not from the stack storage)
+ &GHASH_16(
+ "start_reduce", $ZT5, $ZT6, $ZT7,
+ "NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", $GCM128_CTX,
+ &HashKeyOffsetByIdx(16, "context"), 0, &ZWORD($AAD_HASH), $ZT0,
+ $ZT8, $ZT9, $ZT10, $ZT11,
+ $ZT12, $ZT14, $ZT15, $ZT16,
+ "NO_ZMM", $ZT1, $ZT2, $ZT3,
+ $ZT4);
+
+ $code .= <<___;
+ sub \$`(16*16)`,$T2
+ je .L_CALC_AAD_done_${rndsuffix}
+
+ add \$`(16*16)`,$T1
+ # ; Less than 16x16 bytes remaining
+.L_less_than_16x16_${rndsuffix}:
+ # ;; prep mask source address
+ lea byte64_len_to_mask_table(%rip),$T3
+ lea ($T3,$T2,8),$T3
+
+ # ;; calculate number of blocks to ghash (including partial bytes)
+ add \$15,@{[DWORD($T2)]}
+ shr \$4,@{[DWORD($T2)]}
+ cmp \$2,@{[DWORD($T2)]}
+ jb .L_AAD_blocks_1_${rndsuffix}
+ je .L_AAD_blocks_2_${rndsuffix}
+ cmp \$4,@{[DWORD($T2)]}
+ jb .L_AAD_blocks_3_${rndsuffix}
+ je .L_AAD_blocks_4_${rndsuffix}
+ cmp \$6,@{[DWORD($T2)]}
+ jb .L_AAD_blocks_5_${rndsuffix}
+ je .L_AAD_blocks_6_${rndsuffix}
+ cmp \$8,@{[DWORD($T2)]}
+ jb .L_AAD_blocks_7_${rndsuffix}
+ je .L_AAD_blocks_8_${rndsuffix}
+ cmp \$10,@{[DWORD($T2)]}
+ jb .L_AAD_blocks_9_${rndsuffix}
+ je .L_AAD_blocks_10_${rndsuffix}
+ cmp \$12,@{[DWORD($T2)]}
+ jb .L_AAD_blocks_11_${rndsuffix}
+ je .L_AAD_blocks_12_${rndsuffix}
+ cmp \$14,@{[DWORD($T2)]}
+ jb .L_AAD_blocks_13_${rndsuffix}
+ je .L_AAD_blocks_14_${rndsuffix}
+ cmp \$15,@{[DWORD($T2)]}
+ je .L_AAD_blocks_15_${rndsuffix}
+___
+
+ # ;; fall through for 16 blocks
+
+ # ;; The flow of each of these cases is identical:
+ # ;; - load blocks plain text
+ # ;; - shuffle loaded blocks
+ # ;; - xor in current hash value into block 0
+ # ;; - perform up multiplications with ghash keys
+ # ;; - jump to reduction code
+
+ for (my $aad_blocks = 16; $aad_blocks > 0; $aad_blocks--) {
+ $code .= ".L_AAD_blocks_${aad_blocks}_${rndsuffix}:\n";
+ if ($aad_blocks > 12) {
+ $code .= "sub \$`12*16*8`, $T3\n";
+ } elsif ($aad_blocks > 8) {
+ $code .= "sub \$`8*16*8`, $T3\n";
+ } elsif ($aad_blocks > 4) {
+ $code .= "sub \$`4*16*8`, $T3\n";
+ }
+ $code .= "kmovq ($T3),$MASKREG\n";
+
+ &ZMM_LOAD_MASKED_BLOCKS_0_16($aad_blocks, $T1, 0, $ZT1, $ZT2, $ZT3, $ZT4, $MASKREG);
+
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16($aad_blocks, "vpshufb", $ZT1, $ZT2, $ZT3, $ZT4,
+ $ZT1, $ZT2, $ZT3, $ZT4, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK);
+
+ &GHASH_1_TO_16($GCM128_CTX, &ZWORD($AAD_HASH),
+ $ZT0, $ZT5, $ZT6, $ZT7, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, &ZWORD($AAD_HASH), $ZT1, $ZT2, $ZT3, $ZT4, $aad_blocks);
+
+ if ($aad_blocks > 1) {
+
+ # ;; fall through to CALC_AAD_done in 1 block case
+ $code .= "jmp .L_CALC_AAD_done_${rndsuffix}\n";
+ }
+
+ }
+ $code .= ".L_CALC_AAD_done_${rndsuffix}:\n";
+
+ # ;; result in AAD_HASH
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;; PARTIAL_BLOCK
+# ;; Handles encryption/decryption and the tag partial blocks between
+# ;; update calls.
+# ;; Requires the input data be at least 1 byte long.
+# ;; Output:
+# ;; A cipher/plain of the first partial block (CIPH_PLAIN_OUT),
+# ;; AAD_HASH and updated GCM128_CTX
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+sub PARTIAL_BLOCK {
+ my $GCM128_CTX = $_[0]; # [in] key pointer
+ my $PBLOCK_LEN = $_[1]; # [in] partial block length
+ my $CIPH_PLAIN_OUT = $_[2]; # [in] output buffer
+ my $PLAIN_CIPH_IN = $_[3]; # [in] input buffer
+ my $PLAIN_CIPH_LEN = $_[4]; # [in] buffer length
+ my $DATA_OFFSET = $_[5]; # [out] data offset (gets set)
+ my $AAD_HASH = $_[6]; # [out] updated GHASH value
+ my $ENC_DEC = $_[7]; # [in] cipher direction
+ my $GPTMP0 = $_[8]; # [clobbered] GP temporary register
+ my $GPTMP1 = $_[9]; # [clobbered] GP temporary register
+ my $GPTMP2 = $_[10]; # [clobbered] GP temporary register
+ my $ZTMP0 = $_[11]; # [clobbered] ZMM temporary register
+ my $ZTMP1 = $_[12]; # [clobbered] ZMM temporary register
+ my $ZTMP2 = $_[13]; # [clobbered] ZMM temporary register
+ my $ZTMP3 = $_[14]; # [clobbered] ZMM temporary register
+ my $ZTMP4 = $_[15]; # [clobbered] ZMM temporary register
+ my $ZTMP5 = $_[16]; # [clobbered] ZMM temporary register
+ my $ZTMP6 = $_[17]; # [clobbered] ZMM temporary register
+ my $ZTMP7 = $_[18]; # [clobbered] ZMM temporary register
+ my $MASKREG = $_[19]; # [clobbered] mask temporary register
+
+ my $XTMP0 = &XWORD($ZTMP0);
+ my $XTMP1 = &XWORD($ZTMP1);
+ my $XTMP2 = &XWORD($ZTMP2);
+ my $XTMP3 = &XWORD($ZTMP3);
+ my $XTMP4 = &XWORD($ZTMP4);
+ my $XTMP5 = &XWORD($ZTMP5);
+ my $XTMP6 = &XWORD($ZTMP6);
+ my $XTMP7 = &XWORD($ZTMP7);
+
+ my $LENGTH = $DATA_OFFSET;
+ my $IA0 = $GPTMP1;
+ my $IA1 = $GPTMP2;
+ my $IA2 = $GPTMP0;
+
+ my $rndsuffix = &random_string();
+
+ $code .= <<___;
+ # ;; if no partial block present then LENGTH/DATA_OFFSET will be set to zero
+ mov ($PBLOCK_LEN),$LENGTH
+ or $LENGTH,$LENGTH
+ je .L_partial_block_done_${rndsuffix} # ;Leave Macro if no partial blocks
+___
+
+ &READ_SMALL_DATA_INPUT($XTMP0, $PLAIN_CIPH_IN, $PLAIN_CIPH_LEN, $IA0, $IA2, $MASKREG);
+
+ $code .= <<___;
+ # ;; XTMP1 = my_ctx_data.partial_block_enc_key
+ vmovdqu64 $CTX_OFFSET_PEncBlock($GCM128_CTX),$XTMP1
+ vmovdqu64 @{[HashKeyByIdx(1,$GCM128_CTX)]},$XTMP2
+
+ # ;; adjust the shuffle mask pointer to be able to shift right $LENGTH bytes
+ # ;; (16 - $LENGTH) is the number of bytes in plaintext mod 16)
+ lea SHIFT_MASK(%rip),$IA0
+ add $LENGTH,$IA0
+ vmovdqu64 ($IA0),$XTMP3 # ; shift right shuffle mask
+ vpshufb $XTMP3,$XTMP1,$XTMP1
+___
+
+ if ($ENC_DEC eq "DEC") {
+ $code .= <<___;
+ # ;; keep copy of cipher text in $XTMP4
+ vmovdqa64 $XTMP0,$XTMP4
+___
+ }
+ $code .= <<___;
+ vpxorq $XTMP0,$XTMP1,$XTMP1 # ; Ciphertext XOR E(K, Yn)
+ # ;; Set $IA1 to be the amount of data left in CIPH_PLAIN_IN after filling the block
+ # ;; Determine if partial block is not being filled and shift mask accordingly
+___
+ if ($win64) {
+ $code .= <<___;
+ mov $PLAIN_CIPH_LEN,$IA1
+ add $LENGTH,$IA1
+___
+ } else {
+ $code .= "lea ($PLAIN_CIPH_LEN, $LENGTH, 1),$IA1\n";
+ }
+ $code .= <<___;
+ sub \$16,$IA1
+ jge .L_no_extra_mask_${rndsuffix}
+ sub $IA1,$IA0
+.L_no_extra_mask_${rndsuffix}:
+ # ;; get the appropriate mask to mask out bottom $LENGTH bytes of $XTMP1
+ # ;; - mask out bottom $LENGTH bytes of $XTMP1
+ # ;; sizeof(SHIFT_MASK) == 16 bytes
+ vmovdqu64 16($IA0),$XTMP0
+ vpand $XTMP0,$XTMP1,$XTMP1
+___
+
+ if ($ENC_DEC eq "DEC") {
+ $code .= <<___;
+ vpand $XTMP0,$XTMP4,$XTMP4
+ vpshufb SHUF_MASK(%rip),$XTMP4,$XTMP4
+ vpshufb $XTMP3,$XTMP4,$XTMP4
+ vpxorq $XTMP4,$AAD_HASH,$AAD_HASH
+___
+ } else {
+ $code .= <<___;
+ vpshufb SHUF_MASK(%rip),$XTMP1,$XTMP1
+ vpshufb $XTMP3,$XTMP1,$XTMP1
+ vpxorq $XTMP1,$AAD_HASH,$AAD_HASH
+___
+ }
+ $code .= <<___;
+ cmp \$0,$IA1
+ jl .L_partial_incomplete_${rndsuffix}
+___
+
+ # ;; GHASH computation for the last <16 Byte block
+ &GHASH_MUL($AAD_HASH, $XTMP2, $XTMP5, $XTMP6, $XTMP7);
+
+ $code .= <<___;
+ movq \$0, ($PBLOCK_LEN)
+ # ;; Set $LENGTH to be the number of bytes to write out
+ mov $LENGTH,$IA0
+ mov \$16,$LENGTH
+ sub $IA0,$LENGTH
+ jmp .L_enc_dec_done_${rndsuffix}
+
+.L_partial_incomplete_${rndsuffix}:
+___
+ if ($win64) {
+ $code .= <<___;
+ mov $PLAIN_CIPH_LEN,$IA0
+ add $IA0,($PBLOCK_LEN)
+___
+ } else {
+ $code .= "add $PLAIN_CIPH_LEN,($PBLOCK_LEN)\n";
+ }
+ $code .= <<___;
+ mov $PLAIN_CIPH_LEN,$LENGTH
+
+.L_enc_dec_done_${rndsuffix}:
+ # ;; output encrypted Bytes
+
+ lea byte_len_to_mask_table(%rip),$IA0
+ kmovw ($IA0,$LENGTH,2),$MASKREG
+ vmovdqu64 $AAD_HASH,$CTX_OFFSET_AadHash($GCM128_CTX)
+___
+
+ if ($ENC_DEC eq "ENC") {
+ $code .= <<___;
+ # ;; shuffle XTMP1 back to output as ciphertext
+ vpshufb SHUF_MASK(%rip),$XTMP1,$XTMP1
+ vpshufb $XTMP3,$XTMP1,$XTMP1
+___
+ }
+ $code .= <<___;
+ mov $CIPH_PLAIN_OUT,$IA0
+ vmovdqu8 $XTMP1,($IA0){$MASKREG}
+.L_partial_block_done_${rndsuffix}:
+___
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;; Ciphers 1 to 16 blocks and prepares them for later GHASH compute operation
+sub INITIAL_BLOCKS_PARTIAL_CIPHER {
+ my $AES_KEYS = $_[0]; # [in] key pointer
+ my $GCM128_CTX = $_[1]; # [in] context pointer
+ my $CIPH_PLAIN_OUT = $_[2]; # [in] text output pointer
+ my $PLAIN_CIPH_IN = $_[3]; # [in] text input pointer
+ my $LENGTH = $_[4]; # [in/clobbered] length in bytes
+ my $DATA_OFFSET = $_[5]; # [in/out] current data offset (updated)
+ my $NUM_BLOCKS = $_[6]; # [in] can only be 1, 2, 3, 4, 5, ..., 15 or 16 (not 0)
+ my $CTR = $_[7]; # [in/out] current counter value
+ my $ENC_DEC = $_[8]; # [in] cipher direction (ENC/DEC)
+ my $DAT0 = $_[9]; # [out] ZMM with cipher text shuffled for GHASH
+ my $DAT1 = $_[10]; # [out] ZMM with cipher text shuffled for GHASH
+ my $DAT2 = $_[11]; # [out] ZMM with cipher text shuffled for GHASH
+ my $DAT3 = $_[12]; # [out] ZMM with cipher text shuffled for GHASH
+ my $LAST_CIPHER_BLK = $_[13]; # [out] XMM to put ciphered counter block partially xor'ed with text
+ my $LAST_GHASH_BLK = $_[14]; # [out] XMM to put last cipher text block shuffled for GHASH
+ my $CTR0 = $_[15]; # [clobbered] ZMM temporary
+ my $CTR1 = $_[16]; # [clobbered] ZMM temporary
+ my $CTR2 = $_[17]; # [clobbered] ZMM temporary
+ my $CTR3 = $_[18]; # [clobbered] ZMM temporary
+ my $ZT1 = $_[19]; # [clobbered] ZMM temporary
+ my $IA0 = $_[20]; # [clobbered] GP temporary
+ my $IA1 = $_[21]; # [clobbered] GP temporary
+ my $MASKREG = $_[22]; # [clobbered] mask register
+ my $SHUFMASK = $_[23]; # [out] ZMM loaded with BE/LE shuffle mask
+
+ if ($NUM_BLOCKS == 1) {
+ $code .= "vmovdqa64 SHUF_MASK(%rip),@{[XWORD($SHUFMASK)]}\n";
+ } elsif ($NUM_BLOCKS == 2) {
+ $code .= "vmovdqa64 SHUF_MASK(%rip),@{[YWORD($SHUFMASK)]}\n";
+ } else {
+ $code .= "vmovdqa64 SHUF_MASK(%rip),$SHUFMASK\n";
+ }
+
+ # ;; prepare AES counter blocks
+ if ($NUM_BLOCKS == 1) {
+ $code .= "vpaddd ONE(%rip),$CTR,@{[XWORD($CTR0)]}\n";
+ } elsif ($NUM_BLOCKS == 2) {
+ $code .= <<___;
+ vshufi64x2 \$0,@{[YWORD($CTR)]},@{[YWORD($CTR)]},@{[YWORD($CTR0)]}
+ vpaddd ddq_add_1234(%rip),@{[YWORD($CTR0)]},@{[YWORD($CTR0)]}
+___
+ } else {
+ $code .= <<___;
+ vshufi64x2 \$0,@{[ZWORD($CTR)]},@{[ZWORD($CTR)]},@{[ZWORD($CTR)]}
+ vpaddd ddq_add_1234(%rip),@{[ZWORD($CTR)]},$CTR0
+___
+ if ($NUM_BLOCKS > 4) {
+ $code .= "vpaddd ddq_add_5678(%rip),@{[ZWORD($CTR)]},$CTR1\n";
+ }
+ if ($NUM_BLOCKS > 8) {
+ $code .= "vpaddd ddq_add_8888(%rip),$CTR0,$CTR2\n";
+ }
+ if ($NUM_BLOCKS > 12) {
+ $code .= "vpaddd ddq_add_8888(%rip),$CTR1,$CTR3\n";
+ }
+ }
+
+ # ;; get load/store mask
+ $code .= <<___;
+ lea byte64_len_to_mask_table(%rip),$IA0
+ mov $LENGTH,$IA1
+___
+ if ($NUM_BLOCKS > 12) {
+ $code .= "sub \$`3*64`,$IA1\n";
+ } elsif ($NUM_BLOCKS > 8) {
+ $code .= "sub \$`2*64`,$IA1\n";
+ } elsif ($NUM_BLOCKS > 4) {
+ $code .= "sub \$`1*64`,$IA1\n";
+ }
+ $code .= "kmovq ($IA0,$IA1,8),$MASKREG\n";
+
+ # ;; extract new counter value
+ # ;; shuffle the counters for AES rounds
+ if ($NUM_BLOCKS <= 4) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$CTR0,$CTR\n";
+ } elsif ($NUM_BLOCKS <= 8) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$CTR1,$CTR\n";
+ } elsif ($NUM_BLOCKS <= 12) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$CTR2,$CTR\n";
+ } else {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$CTR3,$CTR\n";
+ }
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vpshufb", $CTR0, $CTR1, $CTR2, $CTR3, $CTR0,
+ $CTR1, $CTR2, $CTR3, $SHUFMASK, $SHUFMASK, $SHUFMASK, $SHUFMASK);
+
+ # ;; load plain/cipher text
+ &ZMM_LOAD_MASKED_BLOCKS_0_16($NUM_BLOCKS, $PLAIN_CIPH_IN, $DATA_OFFSET, $DAT0, $DAT1, $DAT2, $DAT3, $MASKREG);
+
+ # ;; AES rounds and XOR with plain/cipher text
+ foreach my $j (0 .. ($NROUNDS + 1)) {
+ $code .= "vbroadcastf64x2 `($j * 16)`($AES_KEYS),$ZT1\n";
+ &ZMM_AESENC_ROUND_BLOCKS_0_16($CTR0, $CTR1, $CTR2, $CTR3, $ZT1, $j,
+ $DAT0, $DAT1, $DAT2, $DAT3, $NUM_BLOCKS, $NROUNDS);
+ }
+
+ # ;; retrieve the last cipher counter block (partially XOR'ed with text)
+ # ;; - this is needed for partial block cases
+ if ($NUM_BLOCKS <= 4) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$CTR0,$LAST_CIPHER_BLK\n";
+ } elsif ($NUM_BLOCKS <= 8) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$CTR1,$LAST_CIPHER_BLK\n";
+ } elsif ($NUM_BLOCKS <= 12) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$CTR2,$LAST_CIPHER_BLK\n";
+ } else {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$CTR3,$LAST_CIPHER_BLK\n";
+ }
+
+ # ;; write cipher/plain text back to output and
+ $code .= "mov $CIPH_PLAIN_OUT,$IA0\n";
+ &ZMM_STORE_MASKED_BLOCKS_0_16($NUM_BLOCKS, $IA0, $DATA_OFFSET, $CTR0, $CTR1, $CTR2, $CTR3, $MASKREG);
+
+ # ;; zero bytes outside the mask before hashing
+ if ($NUM_BLOCKS <= 4) {
+ $code .= "vmovdqu8 $CTR0,${CTR0}{$MASKREG}{z}\n";
+ } elsif ($NUM_BLOCKS <= 8) {
+ $code .= "vmovdqu8 $CTR1,${CTR1}{$MASKREG}{z}\n";
+ } elsif ($NUM_BLOCKS <= 12) {
+ $code .= "vmovdqu8 $CTR2,${CTR2}{$MASKREG}{z}\n";
+ } else {
+ $code .= "vmovdqu8 $CTR3,${CTR3}{$MASKREG}{z}\n";
+ }
+
+ # ;; Shuffle the cipher text blocks for hashing part
+ # ;; ZT5 and ZT6 are expected outputs with blocks for hashing
+ if ($ENC_DEC eq "DEC") {
+
+ # ;; Decrypt case
+ # ;; - cipher blocks are in ZT5 & ZT6
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vpshufb", $DAT0, $DAT1, $DAT2, $DAT3, $DAT0,
+ $DAT1, $DAT2, $DAT3, $SHUFMASK, $SHUFMASK, $SHUFMASK, $SHUFMASK);
+ } else {
+
+ # ;; Encrypt case
+ # ;; - cipher blocks are in CTR0-CTR3
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vpshufb", $DAT0, $DAT1, $DAT2, $DAT3, $CTR0,
+ $CTR1, $CTR2, $CTR3, $SHUFMASK, $SHUFMASK, $SHUFMASK, $SHUFMASK);
+ }
+
+ # ;; Extract the last block for partials and multi_call cases
+ if ($NUM_BLOCKS <= 4) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS-1)`,$DAT0,$LAST_GHASH_BLK\n";
+ } elsif ($NUM_BLOCKS <= 8) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS-5)`,$DAT1,$LAST_GHASH_BLK\n";
+ } elsif ($NUM_BLOCKS <= 12) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS-9)`,$DAT2,$LAST_GHASH_BLK\n";
+ } else {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS-13)`,$DAT3,$LAST_GHASH_BLK\n";
+ }
+
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;; Computes GHASH on 1 to 16 blocks
+sub INITIAL_BLOCKS_PARTIAL_GHASH {
+ my $AES_KEYS = $_[0]; # [in] key pointer
+ my $GCM128_CTX = $_[1]; # [in] context pointer
+ my $LENGTH = $_[2]; # [in/clobbered] length in bytes
+ my $NUM_BLOCKS = $_[3]; # [in] can only be 1, 2, 3, 4, 5, ..., 15 or 16 (not 0)
+ my $HASH_IN_OUT = $_[4]; # [in/out] XMM ghash in/out value
+ my $ENC_DEC = $_[5]; # [in] cipher direction (ENC/DEC)
+ my $DAT0 = $_[6]; # [in] ZMM with cipher text shuffled for GHASH
+ my $DAT1 = $_[7]; # [in] ZMM with cipher text shuffled for GHASH
+ my $DAT2 = $_[8]; # [in] ZMM with cipher text shuffled for GHASH
+ my $DAT3 = $_[9]; # [in] ZMM with cipher text shuffled for GHASH
+ my $LAST_CIPHER_BLK = $_[10]; # [in] XMM with ciphered counter block partially xor'ed with text
+ my $LAST_GHASH_BLK = $_[11]; # [in] XMM with last cipher text block shuffled for GHASH
+ my $ZT0 = $_[12]; # [clobbered] ZMM temporary
+ my $ZT1 = $_[13]; # [clobbered] ZMM temporary
+ my $ZT2 = $_[14]; # [clobbered] ZMM temporary
+ my $ZT3 = $_[15]; # [clobbered] ZMM temporary
+ my $ZT4 = $_[16]; # [clobbered] ZMM temporary
+ my $ZT5 = $_[17]; # [clobbered] ZMM temporary
+ my $ZT6 = $_[18]; # [clobbered] ZMM temporary
+ my $ZT7 = $_[19]; # [clobbered] ZMM temporary
+ my $ZT8 = $_[20]; # [clobbered] ZMM temporary
+ my $PBLOCK_LEN = $_[21]; # [in] partial block length
+ my $GH = $_[22]; # [in] ZMM with hi product part
+ my $GM = $_[23]; # [in] ZMM with mid prodcut part
+ my $GL = $_[24]; # [in] ZMM with lo product part
+
+ my $rndsuffix = &random_string();
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;;; - Hash all but the last partial block of data
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ # ;; update data offset
+ if ($NUM_BLOCKS > 1) {
+
+ # ;; The final block of data may be <16B
+ $code .= "sub \$16 * ($NUM_BLOCKS - 1),$LENGTH\n";
+ }
+
+ if ($NUM_BLOCKS < 16) {
+ $code .= <<___;
+ # ;; NOTE: the 'jl' is always taken for num_initial_blocks = 16.
+ # ;; This is run in the context of GCM_ENC_DEC_SMALL for length < 256.
+ cmp \$16,$LENGTH
+ jl .L_small_initial_partial_block_${rndsuffix}
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;;; Handle a full length final block - encrypt and hash all blocks
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ sub \$16,$LENGTH
+ movq \$0,($PBLOCK_LEN)
+___
+
+ # ;; Hash all of the data
+ if (scalar(@_) == 22) {
+
+ # ;; start GHASH compute
+ &GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4,
+ $ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $NUM_BLOCKS);
+ } elsif (scalar(@_) == 25) {
+
+ # ;; continue GHASH compute
+ &GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4,
+ $ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $NUM_BLOCKS, $GH, $GM, $GL);
+ }
+ $code .= "jmp .L_small_initial_compute_done_${rndsuffix}\n";
+ }
+
+ $code .= <<___;
+.L_small_initial_partial_block_${rndsuffix}:
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;;; Handle ghash for a <16B final block
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ # ;; As it's an init / update / finalize series we need to leave the
+ # ;; last block if it's less than a full block of data.
+
+ mov $LENGTH,($PBLOCK_LEN)
+ vmovdqu64 $LAST_CIPHER_BLK,$CTX_OFFSET_PEncBlock($GCM128_CTX)
+___
+
+ my $k = ($NUM_BLOCKS - 1);
+ my $last_block_to_hash = 1;
+ if (($NUM_BLOCKS > $last_block_to_hash)) {
+
+ # ;; ZT12-ZT20 - temporary registers
+ if (scalar(@_) == 22) {
+
+ # ;; start GHASH compute
+ &GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4,
+ $ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $k);
+ } elsif (scalar(@_) == 25) {
+
+ # ;; continue GHASH compute
+ &GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4,
+ $ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $k, $GH, $GM, $GL);
+ }
+
+ # ;; just fall through no jmp needed
+ } else {
+
+ if (scalar(@_) == 25) {
+ $code .= <<___;
+ # ;; Reduction is required in this case.
+ # ;; Integrate GM into GH and GL.
+ vpsrldq \$8,$GM,$ZT0
+ vpslldq \$8,$GM,$ZT1
+ vpxorq $ZT0,$GH,$GH
+ vpxorq $ZT1,$GL,$GL
+___
+
+ # ;; Add GH and GL 128-bit words horizontally
+ &VHPXORI4x128($GH, $ZT0);
+ &VHPXORI4x128($GL, $ZT1);
+
+ # ;; 256-bit to 128-bit reduction
+ $code .= "vmovdqa64 POLY2(%rip),@{[XWORD($ZT0)]}\n";
+ &VCLMUL_REDUCE(&XWORD($HASH_IN_OUT), &XWORD($ZT0), &XWORD($GH), &XWORD($GL), &XWORD($ZT1), &XWORD($ZT2));
+ }
+ $code .= <<___;
+ # ;; Record that a reduction is not needed -
+ # ;; In this case no hashes are computed because there
+ # ;; is only one initial block and it is < 16B in length.
+ # ;; We only need to check if a reduction is needed if
+ # ;; initial_blocks == 1 and init/update/final is being used.
+ # ;; In this case we may just have a partial block, and that
+ # ;; gets hashed in finalize.
+
+ # ;; The hash should end up in HASH_IN_OUT.
+ # ;; The only way we should get here is if there is
+ # ;; a partial block of data, so xor that into the hash.
+ vpxorq $LAST_GHASH_BLK,$HASH_IN_OUT,$HASH_IN_OUT
+ # ;; The result is in $HASH_IN_OUT
+ jmp .L_after_reduction_${rndsuffix}
+___
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;;; After GHASH reduction
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ $code .= ".L_small_initial_compute_done_${rndsuffix}:\n";
+
+ # ;; If using init/update/finalize, we need to xor any partial block data
+ # ;; into the hash.
+ if ($NUM_BLOCKS > 1) {
+
+ # ;; NOTE: for $NUM_BLOCKS = 0 the xor never takes place
+ if ($NUM_BLOCKS != 16) {
+ $code .= <<___;
+ # ;; NOTE: for $NUM_BLOCKS = 16, $LENGTH, stored in [PBlockLen] is never zero
+ or $LENGTH,$LENGTH
+ je .L_after_reduction_${rndsuffix}
+___
+ }
+ $code .= "vpxorq $LAST_GHASH_BLK,$HASH_IN_OUT,$HASH_IN_OUT\n";
+ }
+
+ $code .= ".L_after_reduction_${rndsuffix}:\n";
+
+ # ;; Final hash is now in HASH_IN_OUT
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;; INITIAL_BLOCKS_PARTIAL macro with support for a partial final block.
+# ;; It may look similar to INITIAL_BLOCKS but its usage is different:
+# ;; - first encrypts/decrypts required number of blocks and then
+# ;; ghashes these blocks
+# ;; - Small packets or left over data chunks (<256 bytes)
+# ;; - Remaining data chunks below 256 bytes (multi buffer code)
+# ;;
+# ;; num_initial_blocks is expected to include the partial final block
+# ;; in the count.
+sub INITIAL_BLOCKS_PARTIAL {
+ my $AES_KEYS = $_[0]; # [in] key pointer
+ my $GCM128_CTX = $_[1]; # [in] context pointer
+ my $CIPH_PLAIN_OUT = $_[2]; # [in] text output pointer
+ my $PLAIN_CIPH_IN = $_[3]; # [in] text input pointer
+ my $LENGTH = $_[4]; # [in/clobbered] length in bytes
+ my $DATA_OFFSET = $_[5]; # [in/out] current data offset (updated)
+ my $NUM_BLOCKS = $_[6]; # [in] can only be 1, 2, 3, 4, 5, ..., 15 or 16 (not 0)
+ my $CTR = $_[7]; # [in/out] current counter value
+ my $HASH_IN_OUT = $_[8]; # [in/out] XMM ghash in/out value
+ my $ENC_DEC = $_[9]; # [in] cipher direction (ENC/DEC)
+ my $CTR0 = $_[10]; # [clobbered] ZMM temporary
+ my $CTR1 = $_[11]; # [clobbered] ZMM temporary
+ my $CTR2 = $_[12]; # [clobbered] ZMM temporary
+ my $CTR3 = $_[13]; # [clobbered] ZMM temporary
+ my $DAT0 = $_[14]; # [clobbered] ZMM temporary
+ my $DAT1 = $_[15]; # [clobbered] ZMM temporary
+ my $DAT2 = $_[16]; # [clobbered] ZMM temporary
+ my $DAT3 = $_[17]; # [clobbered] ZMM temporary
+ my $LAST_CIPHER_BLK = $_[18]; # [clobbered] ZMM temporary
+ my $LAST_GHASH_BLK = $_[19]; # [clobbered] ZMM temporary
+ my $ZT0 = $_[20]; # [clobbered] ZMM temporary
+ my $ZT1 = $_[21]; # [clobbered] ZMM temporary
+ my $ZT2 = $_[22]; # [clobbered] ZMM temporary
+ my $ZT3 = $_[23]; # [clobbered] ZMM temporary
+ my $ZT4 = $_[24]; # [clobbered] ZMM temporary
+ my $IA0 = $_[25]; # [clobbered] GP temporary
+ my $IA1 = $_[26]; # [clobbered] GP temporary
+ my $MASKREG = $_[27]; # [clobbered] mask register
+ my $SHUFMASK = $_[28]; # [clobbered] ZMM for BE/LE shuffle mask
+ my $PBLOCK_LEN = $_[29]; # [in] partial block length
+
+ &INITIAL_BLOCKS_PARTIAL_CIPHER(
+ $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN,
+ $LENGTH, $DATA_OFFSET, $NUM_BLOCKS, $CTR,
+ $ENC_DEC, $DAT0, $DAT1, $DAT2,
+ $DAT3, &XWORD($LAST_CIPHER_BLK), &XWORD($LAST_GHASH_BLK), $CTR0,
+ $CTR1, $CTR2, $CTR3, $ZT0,
+ $IA0, $IA1, $MASKREG, $SHUFMASK);
+
+ &INITIAL_BLOCKS_PARTIAL_GHASH($AES_KEYS, $GCM128_CTX, $LENGTH, $NUM_BLOCKS, $HASH_IN_OUT, $ENC_DEC, $DAT0,
+ $DAT1, $DAT2, $DAT3, &XWORD($LAST_CIPHER_BLK),
+ &XWORD($LAST_GHASH_BLK), $CTR0, $CTR1, $CTR2, $CTR3, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, $PBLOCK_LEN);
+}
+
+# ;; ===========================================================================
+# ;; Stitched GHASH of 16 blocks (with reduction) with encryption of N blocks
+# ;; followed with GHASH of the N blocks.
+sub GHASH_16_ENCRYPT_N_GHASH_N {
+ my $AES_KEYS = $_[0]; # [in] key pointer
+ my $GCM128_CTX = $_[1]; # [in] context pointer
+ my $CIPH_PLAIN_OUT = $_[2]; # [in] pointer to output buffer
+ my $PLAIN_CIPH_IN = $_[3]; # [in] pointer to input buffer
+ my $DATA_OFFSET = $_[4]; # [in] data offset
+ my $LENGTH = $_[5]; # [in] data length
+ my $CTR_BE = $_[6]; # [in/out] ZMM counter blocks (last 4) in big-endian
+ my $CTR_CHECK = $_[7]; # [in/out] GP with 8-bit counter for overflow check
+ my $HASHKEY_OFFSET = $_[8]; # [in] numerical offset for the highest hash key
+ # (can be in form of register or numerical value)
+ my $GHASHIN_BLK_OFFSET = $_[9]; # [in] numerical offset for GHASH blocks in
+ my $SHFMSK = $_[10]; # [in] ZMM with byte swap mask for pshufb
+ my $B00_03 = $_[11]; # [clobbered] temporary ZMM
+ my $B04_07 = $_[12]; # [clobbered] temporary ZMM
+ my $B08_11 = $_[13]; # [clobbered] temporary ZMM
+ my $B12_15 = $_[14]; # [clobbered] temporary ZMM
+ my $GH1H_UNUSED = $_[15]; # [clobbered] temporary ZMM
+ my $GH1L = $_[16]; # [clobbered] temporary ZMM
+ my $GH1M = $_[17]; # [clobbered] temporary ZMM
+ my $GH1T = $_[18]; # [clobbered] temporary ZMM
+ my $GH2H = $_[19]; # [clobbered] temporary ZMM
+ my $GH2L = $_[20]; # [clobbered] temporary ZMM
+ my $GH2M = $_[21]; # [clobbered] temporary ZMM
+ my $GH2T = $_[22]; # [clobbered] temporary ZMM
+ my $GH3H = $_[23]; # [clobbered] temporary ZMM
+ my $GH3L = $_[24]; # [clobbered] temporary ZMM
+ my $GH3M = $_[25]; # [clobbered] temporary ZMM
+ my $GH3T = $_[26]; # [clobbered] temporary ZMM
+ my $AESKEY1 = $_[27]; # [clobbered] temporary ZMM
+ my $AESKEY2 = $_[28]; # [clobbered] temporary ZMM
+ my $GHKEY1 = $_[29]; # [clobbered] temporary ZMM
+ my $GHKEY2 = $_[30]; # [clobbered] temporary ZMM
+ my $GHDAT1 = $_[31]; # [clobbered] temporary ZMM
+ my $GHDAT2 = $_[32]; # [clobbered] temporary ZMM
+ my $ZT01 = $_[33]; # [clobbered] temporary ZMM
+ my $ADDBE_4x4 = $_[34]; # [in] ZMM with 4x128bits 4 in big-endian
+ my $ADDBE_1234 = $_[35]; # [in] ZMM with 4x128bits 1, 2, 3 and 4 in big-endian
+ my $GHASH_TYPE = $_[36]; # [in] "start", "start_reduce", "mid", "end_reduce"
+ my $TO_REDUCE_L = $_[37]; # [in] ZMM for low 4x128-bit GHASH sum
+ my $TO_REDUCE_H = $_[38]; # [in] ZMM for hi 4x128-bit GHASH sum
+ my $TO_REDUCE_M = $_[39]; # [in] ZMM for medium 4x128-bit GHASH sum
+ my $ENC_DEC = $_[40]; # [in] cipher direction
+ my $HASH_IN_OUT = $_[41]; # [in/out] XMM ghash in/out value
+ my $IA0 = $_[42]; # [clobbered] GP temporary
+ my $IA1 = $_[43]; # [clobbered] GP temporary
+ my $MASKREG = $_[44]; # [clobbered] mask register
+ my $NUM_BLOCKS = $_[45]; # [in] numerical value with number of blocks to be encrypted/ghashed (1 to 16)
+ my $PBLOCK_LEN = $_[46]; # [in] partial block length
+
+ die "GHASH_16_ENCRYPT_N_GHASH_N: num_blocks is out of bounds = $NUM_BLOCKS\n"
+ if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0);
+
+ my $rndsuffix = &random_string();
+
+ my $GH1H = $HASH_IN_OUT;
+
+ # ; this is to avoid additional move in do_reduction case
+
+ my $LAST_GHASH_BLK = $GH1L;
+ my $LAST_CIPHER_BLK = $GH1T;
+
+ my $RED_POLY = $GH2T;
+ my $RED_P1 = $GH2L;
+ my $RED_T1 = $GH2H;
+ my $RED_T2 = $GH2M;
+
+ my $DATA1 = $GH3H;
+ my $DATA2 = $GH3L;
+ my $DATA3 = $GH3M;
+ my $DATA4 = $GH3T;
+
+ # ;; do reduction after the 16 blocks ?
+ my $do_reduction = 0;
+
+ # ;; is 16 block chunk a start?
+ my $is_start = 0;
+
+ if ($GHASH_TYPE eq "start_reduce") {
+ $is_start = 1;
+ $do_reduction = 1;
+ }
+
+ if ($GHASH_TYPE eq "start") {
+ $is_start = 1;
+ }
+
+ if ($GHASH_TYPE eq "end_reduce") {
+ $do_reduction = 1;
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; - get load/store mask
+ # ;; - load plain/cipher text
+ # ;; get load/store mask
+ $code .= <<___;
+ lea byte64_len_to_mask_table(%rip),$IA0
+ mov $LENGTH,$IA1
+___
+ if ($NUM_BLOCKS > 12) {
+ $code .= "sub \$`3*64`,$IA1\n";
+ } elsif ($NUM_BLOCKS > 8) {
+ $code .= "sub \$`2*64`,$IA1\n";
+ } elsif ($NUM_BLOCKS > 4) {
+ $code .= "sub \$`1*64`,$IA1\n";
+ }
+ $code .= "kmovq ($IA0,$IA1,8),$MASKREG\n";
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; prepare counter blocks
+
+ $code .= <<___;
+ cmp \$`(256 - $NUM_BLOCKS)`,@{[DWORD($CTR_CHECK)]}
+ jae .L_16_blocks_overflow_${rndsuffix}
+___
+
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vpaddd", $B00_03, $B04_07, $B08_11, $B12_15, $CTR_BE,
+ $B00_03, $B04_07, $B08_11, $ADDBE_1234, $ADDBE_4x4, $ADDBE_4x4, $ADDBE_4x4);
+ $code .= <<___;
+ jmp .L_16_blocks_ok_${rndsuffix}
+
+.L_16_blocks_overflow_${rndsuffix}:
+ vpshufb $SHFMSK,$CTR_BE,$CTR_BE
+ vpaddd ddq_add_1234(%rip),$CTR_BE,$B00_03
+___
+ if ($NUM_BLOCKS > 4) {
+ $code .= <<___;
+ vmovdqa64 ddq_add_4444(%rip),$B12_15
+ vpaddd $B12_15,$B00_03,$B04_07
+___
+ }
+ if ($NUM_BLOCKS > 8) {
+ $code .= "vpaddd $B12_15,$B04_07,$B08_11\n";
+ }
+ if ($NUM_BLOCKS > 12) {
+ $code .= "vpaddd $B12_15,$B08_11,$B12_15\n";
+ }
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vpshufb", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK);
+ $code .= <<___;
+.L_16_blocks_ok_${rndsuffix}:
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; - pre-load constants
+ # ;; - add current hash into the 1st block
+ vbroadcastf64x2 `(16 * 0)`($AES_KEYS),$AESKEY1
+___
+ if ($is_start != 0) {
+ $code .= "vpxorq `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$HASH_IN_OUT,$GHDAT1\n";
+ } else {
+ $code .= "vmovdqa64 `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$GHDAT1\n";
+ }
+
+ $code .= "vmovdqu64 @{[EffectiveAddress(\"%rsp\",$HASHKEY_OFFSET,0*64)]},$GHKEY1\n";
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; save counter for the next round
+ # ;; increment counter overflow check register
+ if ($NUM_BLOCKS <= 4) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$B00_03,@{[XWORD($CTR_BE)]}\n";
+ } elsif ($NUM_BLOCKS <= 8) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$B04_07,@{[XWORD($CTR_BE)]}\n";
+ } elsif ($NUM_BLOCKS <= 12) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$B08_11,@{[XWORD($CTR_BE)]}\n";
+ } else {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$B12_15,@{[XWORD($CTR_BE)]}\n";
+ }
+ $code .= "vshufi64x2 \$0b00000000,$CTR_BE,$CTR_BE,$CTR_BE\n";
+
+ $code .= <<___;
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; pre-load constants
+ vbroadcastf64x2 `(16 * 1)`($AES_KEYS),$AESKEY2
+ vmovdqu64 @{[EffectiveAddress("%rsp",$HASHKEY_OFFSET,1*64)]},$GHKEY2
+ vmovdqa64 `$GHASHIN_BLK_OFFSET + (1*64)`(%rsp),$GHDAT2
+___
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; stitch AES rounds with GHASH
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 0 - ARK
+
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vpxorq", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
+ $code .= "vbroadcastf64x2 `(16 * 2)`($AES_KEYS),$AESKEY1\n";
+
+ $code .= <<___;
+ # ;;==================================================
+ # ;; GHASH 4 blocks (15 to 12)
+ vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH1H # ; a1*b1
+ vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH1L # ; a0*b0
+ vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH1M # ; a1*b0
+ vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH1T # ; a0*b1
+ vmovdqu64 @{[EffectiveAddress("%rsp",$HASHKEY_OFFSET,2*64)]},$GHKEY1
+ vmovdqa64 `$GHASHIN_BLK_OFFSET + (2*64)`(%rsp),$GHDAT1
+___
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 1
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
+ $code .= "vbroadcastf64x2 `(16 * 3)`($AES_KEYS),$AESKEY2\n";
+
+ $code .= <<___;
+ # ;; =================================================
+ # ;; GHASH 4 blocks (11 to 8)
+ vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1
+ vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0
+ vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1
+ vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0
+ vmovdqu64 @{[EffectiveAddress("%rsp",$HASHKEY_OFFSET,3*64)]},$GHKEY2
+ vmovdqa64 `$GHASHIN_BLK_OFFSET + (3*64)`(%rsp),$GHDAT2
+___
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 2
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
+ $code .= "vbroadcastf64x2 `(16 * 4)`($AES_KEYS),$AESKEY1\n";
+
+ $code .= <<___;
+ # ;; =================================================
+ # ;; GHASH 4 blocks (7 to 4)
+ vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH3M # ; a0*b1
+ vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH3T # ; a1*b0
+ vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH3H # ; a1*b1
+ vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH3L # ; a0*b0
+___
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES rounds 3
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
+ $code .= "vbroadcastf64x2 `(16 * 5)`($AES_KEYS),$AESKEY2\n";
+
+ $code .= <<___;
+ # ;; =================================================
+ # ;; Gather (XOR) GHASH for 12 blocks
+ vpternlogq \$0x96,$GH3H,$GH2H,$GH1H
+ vpternlogq \$0x96,$GH3L,$GH2L,$GH1L
+ vpternlogq \$0x96,$GH3T,$GH2T,$GH1T
+ vpternlogq \$0x96,$GH3M,$GH2M,$GH1M
+___
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES rounds 4
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
+ $code .= "vbroadcastf64x2 `(16 * 6)`($AES_KEYS),$AESKEY1\n";
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; load plain/cipher text
+ &ZMM_LOAD_MASKED_BLOCKS_0_16($NUM_BLOCKS, $PLAIN_CIPH_IN, $DATA_OFFSET, $DATA1, $DATA2, $DATA3, $DATA4, $MASKREG);
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES rounds 5
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
+ $code .= "vbroadcastf64x2 `(16 * 7)`($AES_KEYS),$AESKEY2\n";
+
+ $code .= <<___;
+ # ;; =================================================
+ # ;; GHASH 4 blocks (3 to 0)
+ vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1
+ vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0
+ vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1
+ vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0
+___
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 6
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
+ $code .= "vbroadcastf64x2 `(16 * 8)`($AES_KEYS),$AESKEY1\n";
+
+ # ;; =================================================
+ # ;; gather GHASH in GH1L (low), GH1H (high), GH1M (mid)
+ # ;; - add GH2[MTLH] to GH1[MTLH]
+ $code .= "vpternlogq \$0x96,$GH2T,$GH1T,$GH1M\n";
+ if ($do_reduction != 0) {
+
+ if ($is_start != 0) {
+ $code .= "vpxorq $GH2M,$GH1M,$GH1M\n";
+ } else {
+ $code .= <<___;
+ vpternlogq \$0x96,$GH2H,$TO_REDUCE_H,$GH1H
+ vpternlogq \$0x96,$GH2L,$TO_REDUCE_L,$GH1L
+ vpternlogq \$0x96,$GH2M,$TO_REDUCE_M,$GH1M
+___
+ }
+
+ } else {
+
+ # ;; Update H/M/L hash sums if not carrying reduction
+ if ($is_start != 0) {
+ $code .= <<___;
+ vpxorq $GH2H,$GH1H,$TO_REDUCE_H
+ vpxorq $GH2L,$GH1L,$TO_REDUCE_L
+ vpxorq $GH2M,$GH1M,$TO_REDUCE_M
+___
+ } else {
+ $code .= <<___;
+ vpternlogq \$0x96,$GH2H,$GH1H,$TO_REDUCE_H
+ vpternlogq \$0x96,$GH2L,$GH1L,$TO_REDUCE_L
+ vpternlogq \$0x96,$GH2M,$GH1M,$TO_REDUCE_M
+___
+ }
+
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 7
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
+ $code .= "vbroadcastf64x2 `(16 * 9)`($AES_KEYS),$AESKEY2\n";
+
+ # ;; =================================================
+ # ;; prepare mid sum for adding to high & low
+ # ;; load polynomial constant for reduction
+ if ($do_reduction != 0) {
+ $code .= <<___;
+ vpsrldq \$8,$GH1M,$GH2M
+ vpslldq \$8,$GH1M,$GH1M
+
+ vmovdqa64 POLY2(%rip),@{[XWORD($RED_POLY)]}
+___
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 8
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
+ $code .= "vbroadcastf64x2 `(16 * 10)`($AES_KEYS),$AESKEY1\n";
+
+ # ;; =================================================
+ # ;; Add mid product to high and low
+ if ($do_reduction != 0) {
+ if ($is_start != 0) {
+ $code .= <<___;
+ vpternlogq \$0x96,$GH2M,$GH2H,$GH1H # ; TH = TH1 + TH2 + TM>>64
+ vpternlogq \$0x96,$GH1M,$GH2L,$GH1L # ; TL = TL1 + TL2 + TM<<64
+___
+ } else {
+ $code .= <<___;
+ vpxorq $GH2M,$GH1H,$GH1H # ; TH = TH1 + TM>>64
+ vpxorq $GH1M,$GH1L,$GH1L # ; TL = TL1 + TM<<64
+___
+ }
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 9
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
+
+ # ;; =================================================
+ # ;; horizontal xor of low and high 4x128
+ if ($do_reduction != 0) {
+ &VHPXORI4x128($GH1H, $GH2H);
+ &VHPXORI4x128($GH1L, $GH2L);
+ }
+
+ if (($NROUNDS >= 11)) {
+ $code .= "vbroadcastf64x2 `(16 * 11)`($AES_KEYS),$AESKEY2\n";
+ }
+
+ # ;; =================================================
+ # ;; first phase of reduction
+ if ($do_reduction != 0) {
+ $code .= <<___;
+ vpclmulqdq \$0x01,@{[XWORD($GH1L)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_P1)]}
+ vpslldq \$8,@{[XWORD($RED_P1)]},@{[XWORD($RED_P1)]} # ; shift-L 2 DWs
+ vpxorq @{[XWORD($RED_P1)]},@{[XWORD($GH1L)]},@{[XWORD($RED_P1)]} # ; first phase of the reduct
+___
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES rounds up to 11 (AES192) or 13 (AES256)
+ # ;; AES128 is done
+ if (($NROUNDS >= 11)) {
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
+ $code .= "vbroadcastf64x2 `(16 * 12)`($AES_KEYS),$AESKEY1\n";
+
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
+ if (($NROUNDS == 13)) {
+ $code .= "vbroadcastf64x2 `(16 * 13)`($AES_KEYS),$AESKEY2\n";
+
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
+ $code .= "vbroadcastf64x2 `(16 * 14)`($AES_KEYS),$AESKEY1\n";
+
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
+ }
+ }
+
+ # ;; =================================================
+ # ;; second phase of the reduction
+ if ($do_reduction != 0) {
+ $code .= <<___;
+ vpclmulqdq \$0x00,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T1)]}
+ vpsrldq \$4,@{[XWORD($RED_T1)]},@{[XWORD($RED_T1)]} # ; shift-R 1-DW to obtain 2-DWs shift-R
+ vpclmulqdq \$0x10,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T2)]}
+ vpslldq \$4,@{[XWORD($RED_T2)]},@{[XWORD($RED_T2)]} # ; shift-L 1-DW for result without shifts
+ # ;; GH1H = GH1H + RED_T1 + RED_T2
+ vpternlogq \$0x96,@{[XWORD($RED_T1)]},@{[XWORD($RED_T2)]},@{[XWORD($GH1H)]}
+___
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; the last AES round
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vaesenclast", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; XOR against plain/cipher text
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vpxorq", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
+ $B04_07, $B08_11, $B12_15, $DATA1, $DATA2, $DATA3, $DATA4);
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; retrieve the last cipher counter block (partially XOR'ed with text)
+ # ;; - this is needed for partial block cases
+ if ($NUM_BLOCKS <= 4) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$B00_03,@{[XWORD($LAST_CIPHER_BLK)]}\n";
+ } elsif ($NUM_BLOCKS <= 8) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$B04_07,@{[XWORD($LAST_CIPHER_BLK)]}\n";
+ } elsif ($NUM_BLOCKS <= 12) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$B08_11,@{[XWORD($LAST_CIPHER_BLK)]}\n";
+ } else {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$B12_15,@{[XWORD($LAST_CIPHER_BLK)]}\n";
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; store cipher/plain text
+ $code .= "mov $CIPH_PLAIN_OUT,$IA0\n";
+ &ZMM_STORE_MASKED_BLOCKS_0_16($NUM_BLOCKS, $IA0, $DATA_OFFSET, $B00_03, $B04_07, $B08_11, $B12_15, $MASKREG);
+
+ # ;; =================================================
+ # ;; shuffle cipher text blocks for GHASH computation
+ if ($ENC_DEC eq "ENC") {
+
+ # ;; zero bytes outside the mask before hashing
+ if ($NUM_BLOCKS <= 4) {
+ $code .= "vmovdqu8 $B00_03,${B00_03}{$MASKREG}{z}\n";
+ } elsif ($NUM_BLOCKS <= 8) {
+ $code .= "vmovdqu8 $B04_07,${B04_07}{$MASKREG}{z}\n";
+ } elsif ($NUM_BLOCKS <= 12) {
+ $code .= "vmovdqu8 $B08_11,${B08_11}{$MASKREG}{z}\n";
+ } else {
+ $code .= "vmovdqu8 $B12_15,${B12_15}{$MASKREG}{z}\n";
+ }
+
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vpshufb", $DATA1, $DATA2, $DATA3, $DATA4, $B00_03,
+ $B04_07, $B08_11, $B12_15, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK);
+ } else {
+
+ # ;; zero bytes outside the mask before hashing
+ if ($NUM_BLOCKS <= 4) {
+ $code .= "vmovdqu8 $DATA1,${DATA1}{$MASKREG}{z}\n";
+ } elsif ($NUM_BLOCKS <= 8) {
+ $code .= "vmovdqu8 $DATA2,${DATA2}{$MASKREG}{z}\n";
+ } elsif ($NUM_BLOCKS <= 12) {
+ $code .= "vmovdqu8 $DATA3,${DATA3}{$MASKREG}{z}\n";
+ } else {
+ $code .= "vmovdqu8 $DATA4,${DATA4}{$MASKREG}{z}\n";
+ }
+
+ &ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
+ $NUM_BLOCKS, "vpshufb", $DATA1, $DATA2, $DATA3, $DATA4, $DATA1,
+ $DATA2, $DATA3, $DATA4, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK);
+ }
+
+ # ;; =================================================
+ # ;; Extract the last block for partial / multi_call cases
+ if ($NUM_BLOCKS <= 4) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS-1)`,$DATA1,@{[XWORD($LAST_GHASH_BLK)]}\n";
+ } elsif ($NUM_BLOCKS <= 8) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS-5)`,$DATA2,@{[XWORD($LAST_GHASH_BLK)]}\n";
+ } elsif ($NUM_BLOCKS <= 12) {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS-9)`,$DATA3,@{[XWORD($LAST_GHASH_BLK)]}\n";
+ } else {
+ $code .= "vextracti32x4 \$`($NUM_BLOCKS-13)`,$DATA4,@{[XWORD($LAST_GHASH_BLK)]}\n";
+ }
+
+ if ($do_reduction != 0) {
+
+ # ;; GH1H holds reduced hash value
+ # ;; - normally do "vmovdqa64 &XWORD($GH1H), &XWORD($HASH_IN_OUT)"
+ # ;; - register rename trick obsoletes the above move
+ }
+
+ # ;; =================================================
+ # ;; GHASH last N blocks
+ # ;; - current hash value in HASH_IN_OUT or
+ # ;; product parts in TO_REDUCE_H/M/L
+ # ;; - DATA1-DATA4 include blocks for GHASH
+
+ if ($do_reduction == 0) {
+ &INITIAL_BLOCKS_PARTIAL_GHASH(
+ $AES_KEYS, $GCM128_CTX, $LENGTH, $NUM_BLOCKS,
+ &XWORD($HASH_IN_OUT), $ENC_DEC, $DATA1, $DATA2,
+ $DATA3, $DATA4, &XWORD($LAST_CIPHER_BLK), &XWORD($LAST_GHASH_BLK),
+ $B00_03, $B04_07, $B08_11, $B12_15,
+ $GHDAT1, $GHDAT2, $AESKEY1, $AESKEY2,
+ $GHKEY1, $PBLOCK_LEN, $TO_REDUCE_H, $TO_REDUCE_M,
+ $TO_REDUCE_L);
+ } else {
+ &INITIAL_BLOCKS_PARTIAL_GHASH(
+ $AES_KEYS, $GCM128_CTX, $LENGTH, $NUM_BLOCKS,
+ &XWORD($HASH_IN_OUT), $ENC_DEC, $DATA1, $DATA2,
+ $DATA3, $DATA4, &XWORD($LAST_CIPHER_BLK), &XWORD($LAST_GHASH_BLK),
+ $B00_03, $B04_07, $B08_11, $B12_15,
+ $GHDAT1, $GHDAT2, $AESKEY1, $AESKEY2,
+ $GHKEY1, $PBLOCK_LEN);
+ }
+}
+
+# ;; ===========================================================================
+# ;; ===========================================================================
+# ;; Stitched GHASH of 16 blocks (with reduction) with encryption of N blocks
+# ;; followed with GHASH of the N blocks.
+sub GCM_ENC_DEC_LAST {
+ my $AES_KEYS = $_[0]; # [in] key pointer
+ my $GCM128_CTX = $_[1]; # [in] context pointer
+ my $CIPH_PLAIN_OUT = $_[2]; # [in] pointer to output buffer
+ my $PLAIN_CIPH_IN = $_[3]; # [in] pointer to input buffer
+ my $DATA_OFFSET = $_[4]; # [in] data offset
+ my $LENGTH = $_[5]; # [in/clobbered] data length
+ my $CTR_BE = $_[6]; # [in/out] ZMM counter blocks (last 4) in big-endian
+ my $CTR_CHECK = $_[7]; # [in/out] GP with 8-bit counter for overflow check
+ my $HASHKEY_OFFSET = $_[8]; # [in] numerical offset for the highest hash key
+ # (can be register or numerical offset)
+ my $GHASHIN_BLK_OFFSET = $_[9]; # [in] numerical offset for GHASH blocks in
+ my $SHFMSK = $_[10]; # [in] ZMM with byte swap mask for pshufb
+ my $ZT00 = $_[11]; # [clobbered] temporary ZMM
+ my $ZT01 = $_[12]; # [clobbered] temporary ZMM
+ my $ZT02 = $_[13]; # [clobbered] temporary ZMM
+ my $ZT03 = $_[14]; # [clobbered] temporary ZMM
+ my $ZT04 = $_[15]; # [clobbered] temporary ZMM
+ my $ZT05 = $_[16]; # [clobbered] temporary ZMM
+ my $ZT06 = $_[17]; # [clobbered] temporary ZMM
+ my $ZT07 = $_[18]; # [clobbered] temporary ZMM
+ my $ZT08 = $_[19]; # [clobbered] temporary ZMM
+ my $ZT09 = $_[20]; # [clobbered] temporary ZMM
+ my $ZT10 = $_[21]; # [clobbered] temporary ZMM
+ my $ZT11 = $_[22]; # [clobbered] temporary ZMM
+ my $ZT12 = $_[23]; # [clobbered] temporary ZMM
+ my $ZT13 = $_[24]; # [clobbered] temporary ZMM
+ my $ZT14 = $_[25]; # [clobbered] temporary ZMM
+ my $ZT15 = $_[26]; # [clobbered] temporary ZMM
+ my $ZT16 = $_[27]; # [clobbered] temporary ZMM
+ my $ZT17 = $_[28]; # [clobbered] temporary ZMM
+ my $ZT18 = $_[29]; # [clobbered] temporary ZMM
+ my $ZT19 = $_[30]; # [clobbered] temporary ZMM
+ my $ZT20 = $_[31]; # [clobbered] temporary ZMM
+ my $ZT21 = $_[32]; # [clobbered] temporary ZMM
+ my $ZT22 = $_[33]; # [clobbered] temporary ZMM
+ my $ADDBE_4x4 = $_[34]; # [in] ZMM with 4x128bits 4 in big-endian
+ my $ADDBE_1234 = $_[35]; # [in] ZMM with 4x128bits 1, 2, 3 and 4 in big-endian
+ my $GHASH_TYPE = $_[36]; # [in] "start", "start_reduce", "mid", "end_reduce"
+ my $TO_REDUCE_L = $_[37]; # [in] ZMM for low 4x128-bit GHASH sum
+ my $TO_REDUCE_H = $_[38]; # [in] ZMM for hi 4x128-bit GHASH sum
+ my $TO_REDUCE_M = $_[39]; # [in] ZMM for medium 4x128-bit GHASH sum
+ my $ENC_DEC = $_[40]; # [in] cipher direction
+ my $HASH_IN_OUT = $_[41]; # [in/out] XMM ghash in/out value
+ my $IA0 = $_[42]; # [clobbered] GP temporary
+ my $IA1 = $_[43]; # [clobbered] GP temporary
+ my $MASKREG = $_[44]; # [clobbered] mask register
+ my $PBLOCK_LEN = $_[45]; # [in] partial block length
+
+ my $rndsuffix = &random_string();
+
+ $code .= <<___;
+ mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]}
+ add \$15,@{[DWORD($IA0)]}
+ shr \$4,@{[DWORD($IA0)]}
+ je .L_last_num_blocks_is_0_${rndsuffix}
+
+ cmp \$8,@{[DWORD($IA0)]}
+ je .L_last_num_blocks_is_8_${rndsuffix}
+ jb .L_last_num_blocks_is_7_1_${rndsuffix}
+
+
+ cmp \$12,@{[DWORD($IA0)]}
+ je .L_last_num_blocks_is_12_${rndsuffix}
+ jb .L_last_num_blocks_is_11_9_${rndsuffix}
+
+ # ;; 16, 15, 14 or 13
+ cmp \$15,@{[DWORD($IA0)]}
+ je .L_last_num_blocks_is_15_${rndsuffix}
+ ja .L_last_num_blocks_is_16_${rndsuffix}
+ cmp \$14,@{[DWORD($IA0)]}
+ je .L_last_num_blocks_is_14_${rndsuffix}
+ jmp .L_last_num_blocks_is_13_${rndsuffix}
+
+.L_last_num_blocks_is_11_9_${rndsuffix}:
+ # ;; 11, 10 or 9
+ cmp \$10,@{[DWORD($IA0)]}
+ je .L_last_num_blocks_is_10_${rndsuffix}
+ ja .L_last_num_blocks_is_11_${rndsuffix}
+ jmp .L_last_num_blocks_is_9_${rndsuffix}
+
+.L_last_num_blocks_is_7_1_${rndsuffix}:
+ cmp \$4,@{[DWORD($IA0)]}
+ je .L_last_num_blocks_is_4_${rndsuffix}
+ jb .L_last_num_blocks_is_3_1_${rndsuffix}
+ # ;; 7, 6 or 5
+ cmp \$6,@{[DWORD($IA0)]}
+ ja .L_last_num_blocks_is_7_${rndsuffix}
+ je .L_last_num_blocks_is_6_${rndsuffix}
+ jmp .L_last_num_blocks_is_5_${rndsuffix}
+
+.L_last_num_blocks_is_3_1_${rndsuffix}:
+ # ;; 3, 2 or 1
+ cmp \$2,@{[DWORD($IA0)]}
+ ja .L_last_num_blocks_is_3_${rndsuffix}
+ je .L_last_num_blocks_is_2_${rndsuffix}
+___
+
+ # ;; fall through for `jmp .L_last_num_blocks_is_1`
+
+ # ;; Use rep to generate different block size variants
+ # ;; - one block size has to be the first one
+ for my $num_blocks (1 .. 16) {
+ $code .= ".L_last_num_blocks_is_${num_blocks}_${rndsuffix}:\n";
+ &GHASH_16_ENCRYPT_N_GHASH_N(
+ $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET,
+ $LENGTH, $CTR_BE, $CTR_CHECK, $HASHKEY_OFFSET, $GHASHIN_BLK_OFFSET,
+ $SHFMSK, $ZT00, $ZT01, $ZT02, $ZT03,
+ $ZT04, $ZT05, $ZT06, $ZT07, $ZT08,
+ $ZT09, $ZT10, $ZT11, $ZT12, $ZT13,
+ $ZT14, $ZT15, $ZT16, $ZT17, $ZT18,
+ $ZT19, $ZT20, $ZT21, $ZT22, $ADDBE_4x4,
+ $ADDBE_1234, $GHASH_TYPE, $TO_REDUCE_L, $TO_REDUCE_H, $TO_REDUCE_M,
+ $ENC_DEC, $HASH_IN_OUT, $IA0, $IA1, $MASKREG,
+ $num_blocks, $PBLOCK_LEN);
+
+ $code .= "jmp .L_last_blocks_done_${rndsuffix}\n";
+ }
+
+ $code .= ".L_last_num_blocks_is_0_${rndsuffix}:\n";
+
+ # ;; if there is 0 blocks to cipher then there are only 16 blocks for ghash and reduction
+ # ;; - convert mid into end_reduce
+ # ;; - convert start into start_reduce
+ if ($GHASH_TYPE eq "mid") {
+ $GHASH_TYPE = "end_reduce";
+ }
+ if ($GHASH_TYPE eq "start") {
+ $GHASH_TYPE = "start_reduce";
+ }
+
+ &GHASH_16($GHASH_TYPE, $TO_REDUCE_H, $TO_REDUCE_M, $TO_REDUCE_L, "%rsp",
+ $GHASHIN_BLK_OFFSET, 0, "%rsp", $HASHKEY_OFFSET, 0, $HASH_IN_OUT, $ZT00, $ZT01,
+ $ZT02, $ZT03, $ZT04, $ZT05, $ZT06, $ZT07, $ZT08, $ZT09);
+
+ $code .= ".L_last_blocks_done_${rndsuffix}:\n";
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;; Main GCM macro stitching cipher with GHASH
+# ;; - operates on single stream
+# ;; - encrypts 16 blocks at a time
+# ;; - ghash the 16 previously encrypted ciphertext blocks
+# ;; - no partial block or multi_call handling here
+sub GHASH_16_ENCRYPT_16_PARALLEL {
+ my $AES_KEYS = $_[0]; # [in] key pointer
+ my $CIPH_PLAIN_OUT = $_[1]; # [in] pointer to output buffer
+ my $PLAIN_CIPH_IN = $_[2]; # [in] pointer to input buffer
+ my $DATA_OFFSET = $_[3]; # [in] data offset
+ my $CTR_BE = $_[4]; # [in/out] ZMM counter blocks (last 4) in big-endian
+ my $CTR_CHECK = $_[5]; # [in/out] GP with 8-bit counter for overflow check
+ my $HASHKEY_OFFSET = $_[6]; # [in] numerical offset for the highest hash key (hash key index value)
+ my $AESOUT_BLK_OFFSET = $_[7]; # [in] numerical offset for AES-CTR out
+ my $GHASHIN_BLK_OFFSET = $_[8]; # [in] numerical offset for GHASH blocks in
+ my $SHFMSK = $_[9]; # [in] ZMM with byte swap mask for pshufb
+ my $ZT1 = $_[10]; # [clobbered] temporary ZMM (cipher)
+ my $ZT2 = $_[11]; # [clobbered] temporary ZMM (cipher)
+ my $ZT3 = $_[12]; # [clobbered] temporary ZMM (cipher)
+ my $ZT4 = $_[13]; # [clobbered] temporary ZMM (cipher)
+ my $ZT5 = $_[14]; # [clobbered/out] temporary ZMM or GHASH OUT (final_reduction)
+ my $ZT6 = $_[15]; # [clobbered] temporary ZMM (cipher)
+ my $ZT7 = $_[16]; # [clobbered] temporary ZMM (cipher)
+ my $ZT8 = $_[17]; # [clobbered] temporary ZMM (cipher)
+ my $ZT9 = $_[18]; # [clobbered] temporary ZMM (cipher)
+ my $ZT10 = $_[19]; # [clobbered] temporary ZMM (ghash)
+ my $ZT11 = $_[20]; # [clobbered] temporary ZMM (ghash)
+ my $ZT12 = $_[21]; # [clobbered] temporary ZMM (ghash)
+ my $ZT13 = $_[22]; # [clobbered] temporary ZMM (ghash)
+ my $ZT14 = $_[23]; # [clobbered] temporary ZMM (ghash)
+ my $ZT15 = $_[24]; # [clobbered] temporary ZMM (ghash)
+ my $ZT16 = $_[25]; # [clobbered] temporary ZMM (ghash)
+ my $ZT17 = $_[26]; # [clobbered] temporary ZMM (ghash)
+ my $ZT18 = $_[27]; # [clobbered] temporary ZMM (ghash)
+ my $ZT19 = $_[28]; # [clobbered] temporary ZMM
+ my $ZT20 = $_[29]; # [clobbered] temporary ZMM
+ my $ZT21 = $_[30]; # [clobbered] temporary ZMM
+ my $ZT22 = $_[31]; # [clobbered] temporary ZMM
+ my $ZT23 = $_[32]; # [clobbered] temporary ZMM
+ my $ADDBE_4x4 = $_[33]; # [in] ZMM with 4x128bits 4 in big-endian
+ my $ADDBE_1234 = $_[34]; # [in] ZMM with 4x128bits 1, 2, 3 and 4 in big-endian
+ my $TO_REDUCE_L = $_[35]; # [in/out] ZMM for low 4x128-bit GHASH sum
+ my $TO_REDUCE_H = $_[36]; # [in/out] ZMM for hi 4x128-bit GHASH sum
+ my $TO_REDUCE_M = $_[37]; # [in/out] ZMM for medium 4x128-bit GHASH sum
+ my $DO_REDUCTION = $_[38]; # [in] "no_reduction", "final_reduction", "first_time"
+ my $ENC_DEC = $_[39]; # [in] cipher direction
+ my $DATA_DISPL = $_[40]; # [in] fixed numerical data displacement/offset
+ my $GHASH_IN = $_[41]; # [in] current GHASH value or "no_ghash_in"
+ my $IA0 = $_[42]; # [clobbered] temporary GPR
+
+ my $B00_03 = $ZT1;
+ my $B04_07 = $ZT2;
+ my $B08_11 = $ZT3;
+ my $B12_15 = $ZT4;
+
+ my $GH1H = $ZT5;
+
+ # ; @note: do not change this mapping
+ my $GH1L = $ZT6;
+ my $GH1M = $ZT7;
+ my $GH1T = $ZT8;
+
+ my $GH2H = $ZT9;
+ my $GH2L = $ZT10;
+ my $GH2M = $ZT11;
+ my $GH2T = $ZT12;
+
+ my $RED_POLY = $GH2T;
+ my $RED_P1 = $GH2L;
+ my $RED_T1 = $GH2H;
+ my $RED_T2 = $GH2M;
+
+ my $GH3H = $ZT13;
+ my $GH3L = $ZT14;
+ my $GH3M = $ZT15;
+ my $GH3T = $ZT16;
+
+ my $DATA1 = $ZT13;
+ my $DATA2 = $ZT14;
+ my $DATA3 = $ZT15;
+ my $DATA4 = $ZT16;
+
+ my $AESKEY1 = $ZT17;
+ my $AESKEY2 = $ZT18;
+
+ my $GHKEY1 = $ZT19;
+ my $GHKEY2 = $ZT20;
+ my $GHDAT1 = $ZT21;
+ my $GHDAT2 = $ZT22;
+
+ my $rndsuffix = &random_string();
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; prepare counter blocks
+
+ $code .= <<___;
+ cmpb \$`(256 - 16)`,@{[BYTE($CTR_CHECK)]}
+ jae .L_16_blocks_overflow_${rndsuffix}
+ vpaddd $ADDBE_1234,$CTR_BE,$B00_03
+ vpaddd $ADDBE_4x4,$B00_03,$B04_07
+ vpaddd $ADDBE_4x4,$B04_07,$B08_11
+ vpaddd $ADDBE_4x4,$B08_11,$B12_15
+ jmp .L_16_blocks_ok_${rndsuffix}
+.L_16_blocks_overflow_${rndsuffix}:
+ vpshufb $SHFMSK,$CTR_BE,$CTR_BE
+ vmovdqa64 ddq_add_4444(%rip),$B12_15
+ vpaddd ddq_add_1234(%rip),$CTR_BE,$B00_03
+ vpaddd $B12_15,$B00_03,$B04_07
+ vpaddd $B12_15,$B04_07,$B08_11
+ vpaddd $B12_15,$B08_11,$B12_15
+ vpshufb $SHFMSK,$B00_03,$B00_03
+ vpshufb $SHFMSK,$B04_07,$B04_07
+ vpshufb $SHFMSK,$B08_11,$B08_11
+ vpshufb $SHFMSK,$B12_15,$B12_15
+.L_16_blocks_ok_${rndsuffix}:
+___
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; pre-load constants
+ $code .= "vbroadcastf64x2 `(16 * 0)`($AES_KEYS),$AESKEY1\n";
+ if ($GHASH_IN ne "no_ghash_in") {
+ $code .= "vpxorq `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$GHASH_IN,$GHDAT1\n";
+ } else {
+ $code .= "vmovdqa64 `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$GHDAT1\n";
+ }
+
+ $code .= <<___;
+ vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (0*4)),"%rsp")]},$GHKEY1
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; save counter for the next round
+ # ;; increment counter overflow check register
+ vshufi64x2 \$0b11111111,$B12_15,$B12_15,$CTR_BE
+ addb \$16,@{[BYTE($CTR_CHECK)]}
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; pre-load constants
+ vbroadcastf64x2 `(16 * 1)`($AES_KEYS),$AESKEY2
+ vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (1*4)),"%rsp")]},$GHKEY2
+ vmovdqa64 `$GHASHIN_BLK_OFFSET + (1*64)`(%rsp),$GHDAT2
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; stitch AES rounds with GHASH
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 0 - ARK
+
+ vpxorq $AESKEY1,$B00_03,$B00_03
+ vpxorq $AESKEY1,$B04_07,$B04_07
+ vpxorq $AESKEY1,$B08_11,$B08_11
+ vpxorq $AESKEY1,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 2)`($AES_KEYS),$AESKEY1
+
+ # ;;==================================================
+ # ;; GHASH 4 blocks (15 to 12)
+ vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH1H # ; a1*b1
+ vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH1L # ; a0*b0
+ vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH1M # ; a1*b0
+ vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH1T # ; a0*b1
+ vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (2*4)),"%rsp")]},$GHKEY1
+ vmovdqa64 `$GHASHIN_BLK_OFFSET + (2*64)`(%rsp),$GHDAT1
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 1
+ vaesenc $AESKEY2,$B00_03,$B00_03
+ vaesenc $AESKEY2,$B04_07,$B04_07
+ vaesenc $AESKEY2,$B08_11,$B08_11
+ vaesenc $AESKEY2,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 3)`($AES_KEYS),$AESKEY2
+
+ # ;; =================================================
+ # ;; GHASH 4 blocks (11 to 8)
+ vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1
+ vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0
+ vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1
+ vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0
+ vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (3*4)),"%rsp")]},$GHKEY2
+ vmovdqa64 `$GHASHIN_BLK_OFFSET + (3*64)`(%rsp),$GHDAT2
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 2
+ vaesenc $AESKEY1,$B00_03,$B00_03
+ vaesenc $AESKEY1,$B04_07,$B04_07
+ vaesenc $AESKEY1,$B08_11,$B08_11
+ vaesenc $AESKEY1,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 4)`($AES_KEYS),$AESKEY1
+
+ # ;; =================================================
+ # ;; GHASH 4 blocks (7 to 4)
+ vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH3M # ; a0*b1
+ vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH3T # ; a1*b0
+ vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH3H # ; a1*b1
+ vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH3L # ; a0*b0
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES rounds 3
+ vaesenc $AESKEY2,$B00_03,$B00_03
+ vaesenc $AESKEY2,$B04_07,$B04_07
+ vaesenc $AESKEY2,$B08_11,$B08_11
+ vaesenc $AESKEY2,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 5)`($AES_KEYS),$AESKEY2
+
+ # ;; =================================================
+ # ;; Gather (XOR) GHASH for 12 blocks
+ vpternlogq \$0x96,$GH3H,$GH2H,$GH1H
+ vpternlogq \$0x96,$GH3L,$GH2L,$GH1L
+ vpternlogq \$0x96,$GH3T,$GH2T,$GH1T
+ vpternlogq \$0x96,$GH3M,$GH2M,$GH1M
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES rounds 4
+ vaesenc $AESKEY1,$B00_03,$B00_03
+ vaesenc $AESKEY1,$B04_07,$B04_07
+ vaesenc $AESKEY1,$B08_11,$B08_11
+ vaesenc $AESKEY1,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 6)`($AES_KEYS),$AESKEY1
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; load plain/cipher text (recycle GH3xx registers)
+ vmovdqu8 `$DATA_DISPL + (0 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA1
+ vmovdqu8 `$DATA_DISPL + (1 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA2
+ vmovdqu8 `$DATA_DISPL + (2 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA3
+ vmovdqu8 `$DATA_DISPL + (3 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA4
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES rounds 5
+ vaesenc $AESKEY2,$B00_03,$B00_03
+ vaesenc $AESKEY2,$B04_07,$B04_07
+ vaesenc $AESKEY2,$B08_11,$B08_11
+ vaesenc $AESKEY2,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 7)`($AES_KEYS),$AESKEY2
+
+ # ;; =================================================
+ # ;; GHASH 4 blocks (3 to 0)
+ vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1
+ vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0
+ vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1
+ vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 6
+ vaesenc $AESKEY1,$B00_03,$B00_03
+ vaesenc $AESKEY1,$B04_07,$B04_07
+ vaesenc $AESKEY1,$B08_11,$B08_11
+ vaesenc $AESKEY1,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 8)`($AES_KEYS),$AESKEY1
+___
+
+ # ;; =================================================
+ # ;; gather GHASH in GH1L (low) and GH1H (high)
+ if ($DO_REDUCTION eq "first_time") {
+ $code .= <<___;
+ vpternlogq \$0x96,$GH2T,$GH1T,$GH1M # ; TM
+ vpxorq $GH2M,$GH1M,$TO_REDUCE_M # ; TM
+ vpxorq $GH2H,$GH1H,$TO_REDUCE_H # ; TH
+ vpxorq $GH2L,$GH1L,$TO_REDUCE_L # ; TL
+___
+ }
+ if ($DO_REDUCTION eq "no_reduction") {
+ $code .= <<___;
+ vpternlogq \$0x96,$GH2T,$GH1T,$GH1M # ; TM
+ vpternlogq \$0x96,$GH2M,$GH1M,$TO_REDUCE_M # ; TM
+ vpternlogq \$0x96,$GH2H,$GH1H,$TO_REDUCE_H # ; TH
+ vpternlogq \$0x96,$GH2L,$GH1L,$TO_REDUCE_L # ; TL
+___
+ }
+ if ($DO_REDUCTION eq "final_reduction") {
+ $code .= <<___;
+ # ;; phase 1: add mid products together
+ # ;; also load polynomial constant for reduction
+ vpternlogq \$0x96,$GH2T,$GH1T,$GH1M # ; TM
+ vpternlogq \$0x96,$GH2M,$TO_REDUCE_M,$GH1M
+
+ vpsrldq \$8,$GH1M,$GH2M
+ vpslldq \$8,$GH1M,$GH1M
+
+ vmovdqa64 POLY2(%rip),@{[XWORD($RED_POLY)]}
+___
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 7
+ $code .= <<___;
+ vaesenc $AESKEY2,$B00_03,$B00_03
+ vaesenc $AESKEY2,$B04_07,$B04_07
+ vaesenc $AESKEY2,$B08_11,$B08_11
+ vaesenc $AESKEY2,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 9)`($AES_KEYS),$AESKEY2
+___
+
+ # ;; =================================================
+ # ;; Add mid product to high and low
+ if ($DO_REDUCTION eq "final_reduction") {
+ $code .= <<___;
+ vpternlogq \$0x96,$GH2M,$GH2H,$GH1H # ; TH = TH1 + TH2 + TM>>64
+ vpxorq $TO_REDUCE_H,$GH1H,$GH1H
+ vpternlogq \$0x96,$GH1M,$GH2L,$GH1L # ; TL = TL1 + TL2 + TM<<64
+ vpxorq $TO_REDUCE_L,$GH1L,$GH1L
+___
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 8
+ $code .= <<___;
+ vaesenc $AESKEY1,$B00_03,$B00_03
+ vaesenc $AESKEY1,$B04_07,$B04_07
+ vaesenc $AESKEY1,$B08_11,$B08_11
+ vaesenc $AESKEY1,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 10)`($AES_KEYS),$AESKEY1
+___
+
+ # ;; =================================================
+ # ;; horizontal xor of low and high 4x128
+ if ($DO_REDUCTION eq "final_reduction") {
+ &VHPXORI4x128($GH1H, $GH2H);
+ &VHPXORI4x128($GH1L, $GH2L);
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES round 9
+ $code .= <<___;
+ vaesenc $AESKEY2,$B00_03,$B00_03
+ vaesenc $AESKEY2,$B04_07,$B04_07
+ vaesenc $AESKEY2,$B08_11,$B08_11
+ vaesenc $AESKEY2,$B12_15,$B12_15
+___
+ if (($NROUNDS >= 11)) {
+ $code .= "vbroadcastf64x2 `(16 * 11)`($AES_KEYS),$AESKEY2\n";
+ }
+
+ # ;; =================================================
+ # ;; first phase of reduction
+ if ($DO_REDUCTION eq "final_reduction") {
+ $code .= <<___;
+ vpclmulqdq \$0x01,@{[XWORD($GH1L)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_P1)]}
+ vpslldq \$8,@{[XWORD($RED_P1)]},@{[XWORD($RED_P1)]} # ; shift-L 2 DWs
+ vpxorq @{[XWORD($RED_P1)]},@{[XWORD($GH1L)]},@{[XWORD($RED_P1)]} # ; first phase of the reduct
+___
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; AES rounds up to 11 (AES192) or 13 (AES256)
+ # ;; AES128 is done
+ if (($NROUNDS >= 11)) {
+ $code .= <<___;
+ vaesenc $AESKEY1,$B00_03,$B00_03
+ vaesenc $AESKEY1,$B04_07,$B04_07
+ vaesenc $AESKEY1,$B08_11,$B08_11
+ vaesenc $AESKEY1,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 12)`($AES_KEYS),$AESKEY1
+
+ vaesenc $AESKEY2,$B00_03,$B00_03
+ vaesenc $AESKEY2,$B04_07,$B04_07
+ vaesenc $AESKEY2,$B08_11,$B08_11
+ vaesenc $AESKEY2,$B12_15,$B12_15
+___
+ if (($NROUNDS == 13)) {
+ $code .= <<___;
+ vbroadcastf64x2 `(16 * 13)`($AES_KEYS),$AESKEY2
+
+ vaesenc $AESKEY1,$B00_03,$B00_03
+ vaesenc $AESKEY1,$B04_07,$B04_07
+ vaesenc $AESKEY1,$B08_11,$B08_11
+ vaesenc $AESKEY1,$B12_15,$B12_15
+ vbroadcastf64x2 `(16 * 14)`($AES_KEYS),$AESKEY1
+
+ vaesenc $AESKEY2,$B00_03,$B00_03
+ vaesenc $AESKEY2,$B04_07,$B04_07
+ vaesenc $AESKEY2,$B08_11,$B08_11
+ vaesenc $AESKEY2,$B12_15,$B12_15
+___
+ }
+ }
+
+ # ;; =================================================
+ # ;; second phase of the reduction
+ if ($DO_REDUCTION eq "final_reduction") {
+ $code .= <<___;
+ vpclmulqdq \$0x00,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T1)]}
+ vpsrldq \$4,@{[XWORD($RED_T1)]},@{[XWORD($RED_T1)]} # ; shift-R 1-DW to obtain 2-DWs shift-R
+ vpclmulqdq \$0x10,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T2)]}
+ vpslldq \$4,@{[XWORD($RED_T2)]},@{[XWORD($RED_T2)]} # ; shift-L 1-DW for result without shifts
+ # ;; GH1H = GH1H x RED_T1 x RED_T2
+ vpternlogq \$0x96,@{[XWORD($RED_T1)]},@{[XWORD($RED_T2)]},@{[XWORD($GH1H)]}
+___
+ }
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; the last AES round
+ $code .= <<___;
+ vaesenclast $AESKEY1,$B00_03,$B00_03
+ vaesenclast $AESKEY1,$B04_07,$B04_07
+ vaesenclast $AESKEY1,$B08_11,$B08_11
+ vaesenclast $AESKEY1,$B12_15,$B12_15
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; XOR against plain/cipher text
+ vpxorq $DATA1,$B00_03,$B00_03
+ vpxorq $DATA2,$B04_07,$B04_07
+ vpxorq $DATA3,$B08_11,$B08_11
+ vpxorq $DATA4,$B12_15,$B12_15
+
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; store cipher/plain text
+ mov $CIPH_PLAIN_OUT,$IA0
+ vmovdqu8 $B00_03,`$DATA_DISPL + (0 * 64)`($IA0,$DATA_OFFSET,1)
+ vmovdqu8 $B04_07,`$DATA_DISPL + (1 * 64)`($IA0,$DATA_OFFSET,1)
+ vmovdqu8 $B08_11,`$DATA_DISPL + (2 * 64)`($IA0,$DATA_OFFSET,1)
+ vmovdqu8 $B12_15,`$DATA_DISPL + (3 * 64)`($IA0,$DATA_OFFSET,1)
+___
+
+ # ;; =================================================
+ # ;; shuffle cipher text blocks for GHASH computation
+ if ($ENC_DEC eq "ENC") {
+ $code .= <<___;
+ vpshufb $SHFMSK,$B00_03,$B00_03
+ vpshufb $SHFMSK,$B04_07,$B04_07
+ vpshufb $SHFMSK,$B08_11,$B08_11
+ vpshufb $SHFMSK,$B12_15,$B12_15
+___
+ } else {
+ $code .= <<___;
+ vpshufb $SHFMSK,$DATA1,$B00_03
+ vpshufb $SHFMSK,$DATA2,$B04_07
+ vpshufb $SHFMSK,$DATA3,$B08_11
+ vpshufb $SHFMSK,$DATA4,$B12_15
+___
+ }
+
+ # ;; =================================================
+ # ;; store shuffled cipher text for ghashing
+ $code .= <<___;
+ vmovdqa64 $B00_03,`$AESOUT_BLK_OFFSET + (0*64)`(%rsp)
+ vmovdqa64 $B04_07,`$AESOUT_BLK_OFFSET + (1*64)`(%rsp)
+ vmovdqa64 $B08_11,`$AESOUT_BLK_OFFSET + (2*64)`(%rsp)
+ vmovdqa64 $B12_15,`$AESOUT_BLK_OFFSET + (3*64)`(%rsp)
+___
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; Encryption of a single block
+sub ENCRYPT_SINGLE_BLOCK {
+ my $AES_KEY = $_[0]; # ; [in]
+ my $XMM0 = $_[1]; # ; [in/out]
+ my $GPR1 = $_[2]; # ; [clobbered]
+
+ my $rndsuffix = &random_string();
+
+ $code .= <<___;
+ # ; load number of rounds from AES_KEY structure (offset in bytes is
+ # ; size of the |rd_key| buffer)
+ mov `4*15*4`($AES_KEY),@{[DWORD($GPR1)]}
+ cmp \$9,@{[DWORD($GPR1)]}
+ je .Laes_128_${rndsuffix}
+ cmp \$11,@{[DWORD($GPR1)]}
+ je .Laes_192_${rndsuffix}
+ cmp \$13,@{[DWORD($GPR1)]}
+ je .Laes_256_${rndsuffix}
+ jmp .Lexit_aes_${rndsuffix}
+___
+ for my $keylen (sort keys %aes_rounds) {
+ my $nr = $aes_rounds{$keylen};
+ $code .= <<___;
+.align 32
+.Laes_${keylen}_${rndsuffix}:
+___
+ $code .= "vpxorq `16*0`($AES_KEY),$XMM0, $XMM0\n\n";
+ for (my $i = 1; $i <= $nr; $i++) {
+ $code .= "vaesenc `16*$i`($AES_KEY),$XMM0,$XMM0\n\n";
+ }
+ $code .= <<___;
+ vaesenclast `16*($nr+1)`($AES_KEY),$XMM0,$XMM0
+ jmp .Lexit_aes_${rndsuffix}
+___
+ }
+ $code .= ".Lexit_aes_${rndsuffix}:\n\n";
+}
+
+sub CALC_J0 {
+ my $GCM128_CTX = $_[0]; #; [in] Pointer to GCM context
+ my $IV = $_[1]; #; [in] Pointer to IV
+ my $IV_LEN = $_[2]; #; [in] IV length
+ my $J0 = $_[3]; #; [out] XMM reg to contain J0
+ my $ZT0 = $_[4]; #; [clobbered] ZMM register
+ my $ZT1 = $_[5]; #; [clobbered] ZMM register
+ my $ZT2 = $_[6]; #; [clobbered] ZMM register
+ my $ZT3 = $_[7]; #; [clobbered] ZMM register
+ my $ZT4 = $_[8]; #; [clobbered] ZMM register
+ my $ZT5 = $_[9]; #; [clobbered] ZMM register
+ my $ZT6 = $_[10]; #; [clobbered] ZMM register
+ my $ZT7 = $_[11]; #; [clobbered] ZMM register
+ my $ZT8 = $_[12]; #; [clobbered] ZMM register
+ my $ZT9 = $_[13]; #; [clobbered] ZMM register
+ my $ZT10 = $_[14]; #; [clobbered] ZMM register
+ my $ZT11 = $_[15]; #; [clobbered] ZMM register
+ my $ZT12 = $_[16]; #; [clobbered] ZMM register
+ my $ZT13 = $_[17]; #; [clobbered] ZMM register
+ my $ZT14 = $_[18]; #; [clobbered] ZMM register
+ my $ZT15 = $_[19]; #; [clobbered] ZMM register
+ my $ZT16 = $_[20]; #; [clobbered] ZMM register
+ my $T1 = $_[21]; #; [clobbered] GP register
+ my $T2 = $_[22]; #; [clobbered] GP register
+ my $T3 = $_[23]; #; [clobbered] GP register
+ my $MASKREG = $_[24]; #; [clobbered] mask register
+
+ # ;; J0 = GHASH(IV || 0s+64 || len(IV)64)
+ # ;; s = 16 * RoundUp(len(IV)/16) - len(IV) */
+
+ # ;; Calculate GHASH of (IV || 0s)
+ $code .= "vpxor $J0,$J0,$J0\n";
+ &CALC_AAD_HASH($IV, $IV_LEN, $J0, $GCM128_CTX, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4,
+ $ZT5, $ZT6, $ZT7, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT13, $ZT14, $ZT15, $ZT16, $T1, $T2, $T3, $MASKREG);
+
+ # ;; Calculate GHASH of last 16-byte block (0 || len(IV)64)
+ $code .= <<___;
+ mov $IV_LEN,$T1
+ shl \$3,$T1 # ; IV length in bits
+ vmovq $T1,@{[XWORD($ZT2)]}
+
+ # ;; Might need shuffle of ZT2
+ vpxorq $J0,@{[XWORD($ZT2)]},$J0
+
+ vmovdqu64 @{[HashKeyByIdx(1,$GCM128_CTX)]},@{[XWORD($ZT0)]}
+___
+ &GHASH_MUL($J0, @{[XWORD($ZT0)]}, @{[XWORD($ZT1)]}, @{[XWORD($ZT2)]}, @{[XWORD($ZT3)]});
+
+ $code .= "vpshufb SHUF_MASK(%rip),$J0,$J0 # ; perform a 16Byte swap\n";
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; GCM_INIT_IV performs an initialization of gcm128_ctx struct to prepare for
+# ;;; encoding/decoding.
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+sub GCM_INIT_IV {
+ my $AES_KEYS = $_[0]; # [in] AES key schedule
+ my $GCM128_CTX = $_[1]; # [in/out] GCM context
+ my $IV = $_[2]; # [in] IV pointer
+ my $IV_LEN = $_[3]; # [in] IV length
+ my $GPR1 = $_[4]; # [clobbered] GP register
+ my $GPR2 = $_[5]; # [clobbered] GP register
+ my $GPR3 = $_[6]; # [clobbered] GP register
+ my $MASKREG = $_[7]; # [clobbered] mask register
+ my $CUR_COUNT = $_[8]; # [out] XMM with current counter
+ my $ZT0 = $_[9]; # [clobbered] ZMM register
+ my $ZT1 = $_[10]; # [clobbered] ZMM register
+ my $ZT2 = $_[11]; # [clobbered] ZMM register
+ my $ZT3 = $_[12]; # [clobbered] ZMM register
+ my $ZT4 = $_[13]; # [clobbered] ZMM register
+ my $ZT5 = $_[14]; # [clobbered] ZMM register
+ my $ZT6 = $_[15]; # [clobbered] ZMM register
+ my $ZT7 = $_[16]; # [clobbered] ZMM register
+ my $ZT8 = $_[17]; # [clobbered] ZMM register
+ my $ZT9 = $_[18]; # [clobbered] ZMM register
+ my $ZT10 = $_[19]; # [clobbered] ZMM register
+ my $ZT11 = $_[20]; # [clobbered] ZMM register
+ my $ZT12 = $_[21]; # [clobbered] ZMM register
+ my $ZT13 = $_[22]; # [clobbered] ZMM register
+ my $ZT14 = $_[23]; # [clobbered] ZMM register
+ my $ZT15 = $_[24]; # [clobbered] ZMM register
+ my $ZT16 = $_[25]; # [clobbered] ZMM register
+
+ my $ZT0x = $ZT0;
+ $ZT0x =~ s/zmm/xmm/;
+
+ $code .= <<___;
+ cmp \$12,$IV_LEN
+ je iv_len_12_init_IV
+___
+
+ # ;; IV is different than 12 bytes
+ &CALC_J0($GCM128_CTX, $IV, $IV_LEN, $CUR_COUNT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, $ZT5, $ZT6, $ZT7,
+ $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT13, $ZT14, $ZT15, $ZT16, $GPR1, $GPR2, $GPR3, $MASKREG);
+ $code .= <<___;
+ jmp skip_iv_len_12_init_IV
+iv_len_12_init_IV: # ;; IV is 12 bytes
+ # ;; read 12 IV bytes and pad with 0x00000001
+ vmovdqu8 ONEf(%rip),$CUR_COUNT
+ mov $IV,$GPR2
+ mov \$0x0000000000000fff,@{[DWORD($GPR1)]}
+ kmovq $GPR1,$MASKREG
+ vmovdqu8 ($GPR2),${CUR_COUNT}{$MASKREG} # ; ctr = IV | 0x1
+skip_iv_len_12_init_IV:
+ vmovdqu $CUR_COUNT,$ZT0x
+___
+ &ENCRYPT_SINGLE_BLOCK($AES_KEYS, "$ZT0x", "$GPR1"); # ; E(K, Y0)
+ $code .= <<___;
+ vmovdqu $ZT0x,`$CTX_OFFSET_EK0`($GCM128_CTX) # ; save EK0 for finalization stage
+
+ # ;; store IV as counter in LE format
+ vpshufb SHUF_MASK(%rip),$CUR_COUNT,$CUR_COUNT
+ vmovdqu $CUR_COUNT,`$CTX_OFFSET_CurCount`($GCM128_CTX) # ; save current counter Yi
+___
+}
+
+sub GCM_UPDATE_AAD {
+ my $GCM128_CTX = $_[0]; # [in] GCM context pointer
+ my $A_IN = $_[1]; # [in] AAD pointer
+ my $A_LEN = $_[2]; # [in] AAD length in bytes
+ my $GPR1 = $_[3]; # [clobbered] GP register
+ my $GPR2 = $_[4]; # [clobbered] GP register
+ my $GPR3 = $_[5]; # [clobbered] GP register
+ my $MASKREG = $_[6]; # [clobbered] mask register
+ my $AAD_HASH = $_[7]; # [out] XMM for AAD_HASH value
+ my $ZT0 = $_[8]; # [clobbered] ZMM register
+ my $ZT1 = $_[9]; # [clobbered] ZMM register
+ my $ZT2 = $_[10]; # [clobbered] ZMM register
+ my $ZT3 = $_[11]; # [clobbered] ZMM register
+ my $ZT4 = $_[12]; # [clobbered] ZMM register
+ my $ZT5 = $_[13]; # [clobbered] ZMM register
+ my $ZT6 = $_[14]; # [clobbered] ZMM register
+ my $ZT7 = $_[15]; # [clobbered] ZMM register
+ my $ZT8 = $_[16]; # [clobbered] ZMM register
+ my $ZT9 = $_[17]; # [clobbered] ZMM register
+ my $ZT10 = $_[18]; # [clobbered] ZMM register
+ my $ZT11 = $_[19]; # [clobbered] ZMM register
+ my $ZT12 = $_[20]; # [clobbered] ZMM register
+ my $ZT13 = $_[21]; # [clobbered] ZMM register
+ my $ZT14 = $_[22]; # [clobbered] ZMM register
+ my $ZT15 = $_[23]; # [clobbered] ZMM register
+ my $ZT16 = $_[24]; # [clobbered] ZMM register
+
+ # ; load current hash
+ $code .= "vmovdqu64 $CTX_OFFSET_AadHash($GCM128_CTX),$AAD_HASH\n";
+
+ &CALC_AAD_HASH($A_IN, $A_LEN, $AAD_HASH, $GCM128_CTX, $ZT0, $ZT1, $ZT2,
+ $ZT3, $ZT4, $ZT5, $ZT6, $ZT7, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT13,
+ $ZT14, $ZT15, $ZT16, $GPR1, $GPR2, $GPR3, $MASKREG);
+
+ # ; load current hash
+ $code .= "vmovdqu64 $AAD_HASH,$CTX_OFFSET_AadHash($GCM128_CTX)\n";
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; Cipher and ghash of payloads shorter than 256 bytes
+# ;;; - number of blocks in the message comes as argument
+# ;;; - depending on the number of blocks an optimized variant of
+# ;;; INITIAL_BLOCKS_PARTIAL is invoked
+sub GCM_ENC_DEC_SMALL {
+ my $AES_KEYS = $_[0]; # [in] key pointer
+ my $GCM128_CTX = $_[1]; # [in] context pointer
+ my $CIPH_PLAIN_OUT = $_[2]; # [in] output buffer
+ my $PLAIN_CIPH_IN = $_[3]; # [in] input buffer
+ my $PLAIN_CIPH_LEN = $_[4]; # [in] buffer length
+ my $ENC_DEC = $_[5]; # [in] cipher direction
+ my $DATA_OFFSET = $_[6]; # [in] data offset
+ my $LENGTH = $_[7]; # [in] data length
+ my $NUM_BLOCKS = $_[8]; # [in] number of blocks to process 1 to 16
+ my $CTR = $_[9]; # [in/out] XMM counter block
+ my $HASH_IN_OUT = $_[10]; # [in/out] XMM GHASH value
+ my $ZTMP0 = $_[11]; # [clobbered] ZMM register
+ my $ZTMP1 = $_[12]; # [clobbered] ZMM register
+ my $ZTMP2 = $_[13]; # [clobbered] ZMM register
+ my $ZTMP3 = $_[14]; # [clobbered] ZMM register
+ my $ZTMP4 = $_[15]; # [clobbered] ZMM register
+ my $ZTMP5 = $_[16]; # [clobbered] ZMM register
+ my $ZTMP6 = $_[17]; # [clobbered] ZMM register
+ my $ZTMP7 = $_[18]; # [clobbered] ZMM register
+ my $ZTMP8 = $_[19]; # [clobbered] ZMM register
+ my $ZTMP9 = $_[20]; # [clobbered] ZMM register
+ my $ZTMP10 = $_[21]; # [clobbered] ZMM register
+ my $ZTMP11 = $_[22]; # [clobbered] ZMM register
+ my $ZTMP12 = $_[23]; # [clobbered] ZMM register
+ my $ZTMP13 = $_[24]; # [clobbered] ZMM register
+ my $ZTMP14 = $_[25]; # [clobbered] ZMM register
+ my $IA0 = $_[26]; # [clobbered] GP register
+ my $IA1 = $_[27]; # [clobbered] GP register
+ my $MASKREG = $_[28]; # [clobbered] mask register
+ my $SHUFMASK = $_[29]; # [in] ZMM with BE/LE shuffle mask
+ my $PBLOCK_LEN = $_[30]; # [in] partial block length
+
+ my $rndsuffix = &random_string();
+
+ $code .= <<___;
+ cmp \$8,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_8_${rndsuffix}
+ jl .L_small_initial_num_blocks_is_7_1_${rndsuffix}
+
+
+ cmp \$12,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_12_${rndsuffix}
+ jl .L_small_initial_num_blocks_is_11_9_${rndsuffix}
+
+ # ;; 16, 15, 14 or 13
+ cmp \$16,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_16_${rndsuffix}
+ cmp \$15,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_15_${rndsuffix}
+ cmp \$14,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_14_${rndsuffix}
+ jmp .L_small_initial_num_blocks_is_13_${rndsuffix}
+
+.L_small_initial_num_blocks_is_11_9_${rndsuffix}:
+ # ;; 11, 10 or 9
+ cmp \$11,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_11_${rndsuffix}
+ cmp \$10,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_10_${rndsuffix}
+ jmp .L_small_initial_num_blocks_is_9_${rndsuffix}
+
+.L_small_initial_num_blocks_is_7_1_${rndsuffix}:
+ cmp \$4,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_4_${rndsuffix}
+ jl .L_small_initial_num_blocks_is_3_1_${rndsuffix}
+ # ;; 7, 6 or 5
+ cmp \$7,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_7_${rndsuffix}
+ cmp \$6,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_6_${rndsuffix}
+ jmp .L_small_initial_num_blocks_is_5_${rndsuffix}
+
+.L_small_initial_num_blocks_is_3_1_${rndsuffix}:
+ # ;; 3, 2 or 1
+ cmp \$3,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_3_${rndsuffix}
+ cmp \$2,$NUM_BLOCKS
+ je .L_small_initial_num_blocks_is_2_${rndsuffix}
+
+ # ;; for $NUM_BLOCKS == 1, just fall through and no 'jmp' needed
+
+ # ;; Generation of different block size variants
+ # ;; - one block size has to be the first one
+___
+
+ for (my $num_blocks = 1; $num_blocks <= 16; $num_blocks++) {
+ $code .= ".L_small_initial_num_blocks_is_${num_blocks}_${rndsuffix}:\n";
+ &INITIAL_BLOCKS_PARTIAL(
+ $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $LENGTH, $DATA_OFFSET,
+ $num_blocks, $CTR, $HASH_IN_OUT, $ENC_DEC, $ZTMP0, $ZTMP1,
+ $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
+ $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
+ $ZTMP14, $IA0, $IA1, $MASKREG, $SHUFMASK, $PBLOCK_LEN);
+
+ if ($num_blocks != 16) {
+ $code .= "jmp .L_small_initial_blocks_encrypted_${rndsuffix}\n";
+ }
+ }
+
+ $code .= ".L_small_initial_blocks_encrypted_${rndsuffix}:\n";
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ; GCM_ENC_DEC Encrypts/Decrypts given data. Assumes that the passed gcm128_context
+# ; struct has been initialized by GCM_INIT_IV
+# ; Requires the input data be at least 1 byte long because of READ_SMALL_INPUT_DATA.
+# ; Clobbers rax, r10-r15, and zmm0-zmm31, k1
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+sub GCM_ENC_DEC {
+ my $AES_KEYS = $_[0]; # [in] AES Key schedule
+ my $GCM128_CTX = $_[1]; # [in] context pointer
+ my $PBLOCK_LEN = $_[2]; # [in] length of partial block at the moment of previous update
+ my $PLAIN_CIPH_IN = $_[3]; # [in] input buffer pointer
+ my $PLAIN_CIPH_LEN = $_[4]; # [in] buffer length
+ my $CIPH_PLAIN_OUT = $_[5]; # [in] output buffer pointer
+ my $ENC_DEC = $_[6]; # [in] cipher direction
+
+ my $IA0 = "%r10";
+ my $IA1 = "%r12";
+ my $IA2 = "%r13";
+ my $IA3 = "%r15";
+ my $IA4 = "%r11";
+ my $IA5 = "%rax";
+ my $IA6 = "%rbx";
+ my $IA7 = "%r14";
+
+ my $LENGTH = $win64 ? $IA2 : $PLAIN_CIPH_LEN;
+
+ my $CTR_CHECK = $IA3;
+ my $DATA_OFFSET = $IA4;
+ my $HASHK_PTR = $IA6;
+
+ my $HKEYS_READY = $IA7;
+
+ my $CTR_BLOCKz = "%zmm2";
+ my $CTR_BLOCKx = "%xmm2";
+
+ # ; hardcoded in GCM_INIT
+
+ my $AAD_HASHz = "%zmm14";
+ my $AAD_HASHx = "%xmm14";
+
+ # ; hardcoded in GCM_COMPLETE
+
+ my $ZTMP0 = "%zmm0";
+ my $ZTMP1 = "%zmm3";
+ my $ZTMP2 = "%zmm4";
+ my $ZTMP3 = "%zmm5";
+ my $ZTMP4 = "%zmm6";
+ my $ZTMP5 = "%zmm7";
+ my $ZTMP6 = "%zmm10";
+ my $ZTMP7 = "%zmm11";
+ my $ZTMP8 = "%zmm12";
+ my $ZTMP9 = "%zmm13";
+ my $ZTMP10 = "%zmm15";
+ my $ZTMP11 = "%zmm16";
+ my $ZTMP12 = "%zmm17";
+
+ my $ZTMP13 = "%zmm19";
+ my $ZTMP14 = "%zmm20";
+ my $ZTMP15 = "%zmm21";
+ my $ZTMP16 = "%zmm30";
+ my $ZTMP17 = "%zmm31";
+ my $ZTMP18 = "%zmm1";
+ my $ZTMP19 = "%zmm18";
+ my $ZTMP20 = "%zmm8";
+ my $ZTMP21 = "%zmm22";
+ my $ZTMP22 = "%zmm23";
+
+ my $GH = "%zmm24";
+ my $GL = "%zmm25";
+ my $GM = "%zmm26";
+ my $SHUF_MASK = "%zmm29";
+
+ # ; Unused in the small packet path
+ my $ADDBE_4x4 = "%zmm27";
+ my $ADDBE_1234 = "%zmm28";
+
+ my $MASKREG = "%k1";
+
+ my $rndsuffix = &random_string();
+
+ # ;; reduction every 48 blocks, depth 32 blocks
+ # ;; @note 48 blocks is the maximum capacity of the stack frame
+ my $big_loop_nblocks = 48;
+ my $big_loop_depth = 32;
+
+ # ;;; Macro flow depending on packet size
+ # ;;; - LENGTH <= 16 blocks
+ # ;;; - cipher followed by hashing (reduction)
+ # ;;; - 16 blocks < LENGTH < 32 blocks
+ # ;;; - cipher 16 blocks
+ # ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction)
+ # ;;; - 32 blocks < LENGTH < 48 blocks
+ # ;;; - cipher 2 x 16 blocks
+ # ;;; - hash 16 blocks
+ # ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction)
+ # ;;; - LENGTH >= 48 blocks
+ # ;;; - cipher 2 x 16 blocks
+ # ;;; - while (data_to_cipher >= 48 blocks):
+ # ;;; - cipher 16 blocks & hash 16 blocks
+ # ;;; - cipher 16 blocks & hash 16 blocks
+ # ;;; - cipher 16 blocks & hash 16 blocks (reduction)
+ # ;;; - if (data_to_cipher >= 32 blocks):
+ # ;;; - cipher 16 blocks & hash 16 blocks
+ # ;;; - cipher 16 blocks & hash 16 blocks
+ # ;;; - hash 16 blocks (reduction)
+ # ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction)
+ # ;;; - elif (data_to_cipher >= 16 blocks):
+ # ;;; - cipher 16 blocks & hash 16 blocks
+ # ;;; - hash 16 blocks
+ # ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction)
+ # ;;; - else:
+ # ;;; - hash 16 blocks
+ # ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction)
+
+ if ($win64) {
+ $code .= "cmpq \$0,$PLAIN_CIPH_LEN\n";
+ } else {
+ $code .= "or $PLAIN_CIPH_LEN,$PLAIN_CIPH_LEN\n";
+ }
+ $code .= "je .L_enc_dec_done_${rndsuffix}\n";
+
+ # Length value from context $CTX_OFFSET_InLen`($GCM128_CTX) is updated in
+ # 'providers/implementations/ciphers/cipher_aes_gcm_hw_vaes_avx512.inc'
+
+ $code .= "xor $HKEYS_READY, $HKEYS_READY\n";
+ $code .= "vmovdqu64 `$CTX_OFFSET_AadHash`($GCM128_CTX),$AAD_HASHx\n";
+
+ # ;; Used for the update flow - if there was a previous partial
+ # ;; block fill the remaining bytes here.
+ &PARTIAL_BLOCK(
+ $GCM128_CTX, $PBLOCK_LEN, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $PLAIN_CIPH_LEN,
+ $DATA_OFFSET, $AAD_HASHx, $ENC_DEC, $IA0, $IA1,
+ $IA2, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3,
+ $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $MASKREG);
+
+ $code .= "vmovdqu64 `$CTX_OFFSET_CurCount`($GCM128_CTX),$CTR_BLOCKx\n";
+
+ # ;; Save the amount of data left to process in $LENGTH
+ # ;; NOTE: PLAIN_CIPH_LEN is a register on linux;
+ if ($win64) {
+ $code .= "mov $PLAIN_CIPH_LEN,$LENGTH\n";
+ }
+
+ # ;; There may be no more data if it was consumed in the partial block.
+ $code .= <<___;
+ sub $DATA_OFFSET,$LENGTH
+ je .L_enc_dec_done_${rndsuffix}
+___
+
+ $code .= <<___;
+ cmp \$`(16 * 16)`,$LENGTH
+ jbe .L_message_below_equal_16_blocks_${rndsuffix}
+
+ vmovdqa64 SHUF_MASK(%rip),$SHUF_MASK
+ vmovdqa64 ddq_addbe_4444(%rip),$ADDBE_4x4
+ vmovdqa64 ddq_addbe_1234(%rip),$ADDBE_1234
+
+ # ;; start the pipeline
+ # ;; - 32 blocks aes-ctr
+ # ;; - 16 blocks ghash + aes-ctr
+
+ # ;; set up CTR_CHECK
+ vmovd $CTR_BLOCKx,@{[DWORD($CTR_CHECK)]}
+ and \$255,@{[DWORD($CTR_CHECK)]}
+ # ;; in LE format after init, convert to BE
+ vshufi64x2 \$0,$CTR_BLOCKz,$CTR_BLOCKz,$CTR_BLOCKz
+ vpshufb $SHUF_MASK,$CTR_BLOCKz,$CTR_BLOCKz
+___
+
+ # ;; ==== AES-CTR - first 16 blocks
+ my $aesout_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
+ my $data_in_out_offset = 0;
+ &INITIAL_BLOCKS_16(
+ $PLAIN_CIPH_IN, $CIPH_PLAIN_OUT, $AES_KEYS, $DATA_OFFSET, "no_ghash", $CTR_BLOCKz,
+ $CTR_CHECK, $ADDBE_4x4, $ADDBE_1234, $ZTMP0, $ZTMP1, $ZTMP2,
+ $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8,
+ $SHUF_MASK, $ENC_DEC, $aesout_offset, $data_in_out_offset, $IA0);
+
+ &precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
+ "first16");
+
+ $code .= <<___;
+ cmp \$`(32 * 16)`,$LENGTH
+ jb .L_message_below_32_blocks_${rndsuffix}
+___
+
+ # ;; ==== AES-CTR - next 16 blocks
+ $aesout_offset = ($STACK_LOCAL_OFFSET + (16 * 16));
+ $data_in_out_offset = (16 * 16);
+ &INITIAL_BLOCKS_16(
+ $PLAIN_CIPH_IN, $CIPH_PLAIN_OUT, $AES_KEYS, $DATA_OFFSET, "no_ghash", $CTR_BLOCKz,
+ $CTR_CHECK, $ADDBE_4x4, $ADDBE_1234, $ZTMP0, $ZTMP1, $ZTMP2,
+ $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8,
+ $SHUF_MASK, $ENC_DEC, $aesout_offset, $data_in_out_offset, $IA0);
+
+ &precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
+ "last32");
+ $code .= "mov \$1,$HKEYS_READY\n";
+
+ $code .= <<___;
+ add \$`(32 * 16)`,$DATA_OFFSET
+ sub \$`(32 * 16)`,$LENGTH
+
+ cmp \$`($big_loop_nblocks * 16)`,$LENGTH
+ jb .L_no_more_big_nblocks_${rndsuffix}
+___
+
+ # ;; ====
+ # ;; ==== AES-CTR + GHASH - 48 blocks loop
+ # ;; ====
+ $code .= ".L_encrypt_big_nblocks_${rndsuffix}:\n";
+
+ # ;; ==== AES-CTR + GHASH - 16 blocks, start
+ $aesout_offset = ($STACK_LOCAL_OFFSET + (32 * 16));
+ $data_in_out_offset = (0 * 16);
+ my $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
+ &GHASH_16_ENCRYPT_16_PARALLEL(
+ $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
+ 48, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
+ $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
+ $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
+ $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
+ $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
+ $GH, $GM, "first_time", $ENC_DEC, $data_in_out_offset, $AAD_HASHz,
+ $IA0);
+
+ # ;; ==== AES-CTR + GHASH - 16 blocks, no reduction
+ $aesout_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
+ $data_in_out_offset = (16 * 16);
+ $ghashin_offset = ($STACK_LOCAL_OFFSET + (16 * 16));
+ &GHASH_16_ENCRYPT_16_PARALLEL(
+ $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
+ 32, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
+ $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
+ $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
+ $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
+ $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
+ $GH, $GM, "no_reduction", $ENC_DEC, $data_in_out_offset, "no_ghash_in",
+ $IA0);
+
+ # ;; ==== AES-CTR + GHASH - 16 blocks, reduction
+ $aesout_offset = ($STACK_LOCAL_OFFSET + (16 * 16));
+ $data_in_out_offset = (32 * 16);
+ $ghashin_offset = ($STACK_LOCAL_OFFSET + (32 * 16));
+ &GHASH_16_ENCRYPT_16_PARALLEL(
+ $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
+ 16, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
+ $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
+ $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
+ $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
+ $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
+ $GH, $GM, "final_reduction", $ENC_DEC, $data_in_out_offset, "no_ghash_in",
+ $IA0);
+
+ # ;; === xor cipher block 0 with GHASH (ZT4)
+ $code .= <<___;
+ vmovdqa64 $ZTMP4,$AAD_HASHz
+
+ add \$`($big_loop_nblocks * 16)`,$DATA_OFFSET
+ sub \$`($big_loop_nblocks * 16)`,$LENGTH
+ cmp \$`($big_loop_nblocks * 16)`,$LENGTH
+ jae .L_encrypt_big_nblocks_${rndsuffix}
+
+.L_no_more_big_nblocks_${rndsuffix}:
+
+ cmp \$`(32 * 16)`,$LENGTH
+ jae .L_encrypt_32_blocks_${rndsuffix}
+
+ cmp \$`(16 * 16)`,$LENGTH
+ jae .L_encrypt_16_blocks_${rndsuffix}
+___
+
+ # ;; =====================================================
+ # ;; =====================================================
+ # ;; ==== GHASH 1 x 16 blocks
+ # ;; ==== GHASH 1 x 16 blocks (reduction) & encrypt N blocks
+ # ;; ==== then GHASH N blocks
+ $code .= ".L_encrypt_0_blocks_ghash_32_${rndsuffix}:\n";
+
+ # ;; calculate offset to the right hash key
+ $code .= <<___;
+mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]}
+and \$~15,@{[DWORD($IA0)]}
+mov \$`@{[HashKeyOffsetByIdx(32,"frame")]}`,@{[DWORD($HASHK_PTR)]}
+sub @{[DWORD($IA0)]},@{[DWORD($HASHK_PTR)]}
+___
+
+ # ;; ==== GHASH 32 blocks and follow with reduction
+ &GHASH_16("start", $GH, $GM, $GL, "%rsp", $STACK_LOCAL_OFFSET, (0 * 16),
+ "%rsp", $HASHK_PTR, 0, $AAD_HASHz, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, $ZTMP9);
+
+ # ;; ==== GHASH 1 x 16 blocks with reduction + cipher and ghash on the reminder
+ $ghashin_offset = ($STACK_LOCAL_OFFSET + (16 * 16));
+ $code .= "add \$`(16 * 16)`,@{[DWORD($HASHK_PTR)]}\n";
+ &GCM_ENC_DEC_LAST(
+ $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $LENGTH,
+ $CTR_BLOCKz, $CTR_CHECK, $HASHK_PTR, $ghashin_offset, $SHUF_MASK, $ZTMP0,
+ $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
+ $ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12,
+ $ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18,
+ $ZTMP19, $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234,
+ "mid", $GL, $GH, $GM, $ENC_DEC, $AAD_HASHz,
+ $IA0, $IA5, $MASKREG, $PBLOCK_LEN);
+
+ $code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n";
+ $code .= "jmp .L_ghash_done_${rndsuffix}\n";
+
+ # ;; =====================================================
+ # ;; =====================================================
+ # ;; ==== GHASH & encrypt 1 x 16 blocks
+ # ;; ==== GHASH & encrypt 1 x 16 blocks
+ # ;; ==== GHASH 1 x 16 blocks (reduction)
+ # ;; ==== GHASH 1 x 16 blocks (reduction) & encrypt N blocks
+ # ;; ==== then GHASH N blocks
+ $code .= ".L_encrypt_32_blocks_${rndsuffix}:\n";
+
+ # ;; ==== AES-CTR + GHASH - 16 blocks, start
+ $aesout_offset = ($STACK_LOCAL_OFFSET + (32 * 16));
+ $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
+ $data_in_out_offset = (0 * 16);
+ &GHASH_16_ENCRYPT_16_PARALLEL(
+ $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
+ 48, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
+ $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
+ $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
+ $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
+ $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
+ $GH, $GM, "first_time", $ENC_DEC, $data_in_out_offset, $AAD_HASHz,
+ $IA0);
+
+ # ;; ==== AES-CTR + GHASH - 16 blocks, no reduction
+ $aesout_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
+ $ghashin_offset = ($STACK_LOCAL_OFFSET + (16 * 16));
+ $data_in_out_offset = (16 * 16);
+ &GHASH_16_ENCRYPT_16_PARALLEL(
+ $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
+ 32, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
+ $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
+ $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
+ $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
+ $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
+ $GH, $GM, "no_reduction", $ENC_DEC, $data_in_out_offset, "no_ghash_in",
+ $IA0);
+
+ # ;; ==== GHASH 16 blocks with reduction
+ &GHASH_16(
+ "end_reduce", $GH, $GM, $GL, "%rsp", $STACK_LOCAL_OFFSET, (32 * 16),
+ "%rsp", &HashKeyOffsetByIdx(16, "frame"),
+ 0, $AAD_HASHz, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, $ZTMP9);
+
+ # ;; ==== GHASH 1 x 16 blocks with reduction + cipher and ghash on the reminder
+ $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
+ $code .= <<___;
+ sub \$`(32 * 16)`,$LENGTH
+ add \$`(32 * 16)`,$DATA_OFFSET
+___
+
+ # ;; calculate offset to the right hash key
+ $code .= "mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]}\n";
+ $code .= <<___;
+ and \$~15,@{[DWORD($IA0)]}
+ mov \$`@{[HashKeyOffsetByIdx(16,"frame")]}`,@{[DWORD($HASHK_PTR)]}
+ sub @{[DWORD($IA0)]},@{[DWORD($HASHK_PTR)]}
+___
+ &GCM_ENC_DEC_LAST(
+ $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $LENGTH,
+ $CTR_BLOCKz, $CTR_CHECK, $HASHK_PTR, $ghashin_offset, $SHUF_MASK, $ZTMP0,
+ $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
+ $ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12,
+ $ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18,
+ $ZTMP19, $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234,
+ "start", $GL, $GH, $GM, $ENC_DEC, $AAD_HASHz,
+ $IA0, $IA5, $MASKREG, $PBLOCK_LEN);
+
+ $code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n";
+ $code .= "jmp .L_ghash_done_${rndsuffix}\n";
+
+ # ;; =====================================================
+ # ;; =====================================================
+ # ;; ==== GHASH & encrypt 16 blocks (done before)
+ # ;; ==== GHASH 1 x 16 blocks
+ # ;; ==== GHASH 1 x 16 blocks (reduction) & encrypt N blocks
+ # ;; ==== then GHASH N blocks
+ $code .= ".L_encrypt_16_blocks_${rndsuffix}:\n";
+
+ # ;; ==== AES-CTR + GHASH - 16 blocks, start
+ $aesout_offset = ($STACK_LOCAL_OFFSET + (32 * 16));
+ $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
+ $data_in_out_offset = (0 * 16);
+ &GHASH_16_ENCRYPT_16_PARALLEL(
+ $AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
+ 48, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
+ $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
+ $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
+ $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
+ $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
+ $GH, $GM, "first_time", $ENC_DEC, $data_in_out_offset, $AAD_HASHz,
+ $IA0);
+
+ # ;; ==== GHASH 1 x 16 blocks
+ &GHASH_16(
+ "mid", $GH, $GM, $GL, "%rsp", $STACK_LOCAL_OFFSET, (16 * 16),
+ "%rsp", &HashKeyOffsetByIdx(32, "frame"),
+ 0, "no_hash_input", $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, $ZTMP9);
+
+ # ;; ==== GHASH 1 x 16 blocks with reduction + cipher and ghash on the reminder
+ $ghashin_offset = ($STACK_LOCAL_OFFSET + (32 * 16));
+ $code .= <<___;
+ sub \$`(16 * 16)`,$LENGTH
+ add \$`(16 * 16)`,$DATA_OFFSET
+___
+ &GCM_ENC_DEC_LAST(
+ $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN,
+ $DATA_OFFSET, $LENGTH, $CTR_BLOCKz, $CTR_CHECK,
+ &HashKeyOffsetByIdx(16, "frame"), $ghashin_offset, $SHUF_MASK, $ZTMP0,
+ $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4,
+ $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8,
+ $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12,
+ $ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16,
+ $ZTMP17, $ZTMP18, $ZTMP19, $ZTMP20,
+ $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234,
+ "end_reduce", $GL, $GH, $GM,
+ $ENC_DEC, $AAD_HASHz, $IA0, $IA5,
+ $MASKREG, $PBLOCK_LEN);
+
+ $code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n";
+ $code .= <<___;
+ jmp .L_ghash_done_${rndsuffix}
+
+.L_message_below_32_blocks_${rndsuffix}:
+ # ;; 32 > number of blocks > 16
+
+ sub \$`(16 * 16)`,$LENGTH
+ add \$`(16 * 16)`,$DATA_OFFSET
+___
+ $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
+
+ # ;; calculate offset to the right hash key
+ $code .= "mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]}\n";
+
+ &precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
+ "mid16");
+ $code .= "mov \$1,$HKEYS_READY\n";
+
+ $code .= <<___;
+and \$~15,@{[DWORD($IA0)]}
+mov \$`@{[HashKeyOffsetByIdx(16,"frame")]}`,@{[DWORD($HASHK_PTR)]}
+sub @{[DWORD($IA0)]},@{[DWORD($HASHK_PTR)]}
+___
+
+ &GCM_ENC_DEC_LAST(
+ $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $LENGTH,
+ $CTR_BLOCKz, $CTR_CHECK, $HASHK_PTR, $ghashin_offset, $SHUF_MASK, $ZTMP0,
+ $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
+ $ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12,
+ $ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18,
+ $ZTMP19, $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234,
+ "start", $GL, $GH, $GM, $ENC_DEC, $AAD_HASHz,
+ $IA0, $IA5, $MASKREG, $PBLOCK_LEN);
+
+ $code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n";
+ $code .= <<___;
+ jmp .L_ghash_done_${rndsuffix}
+
+.L_message_below_equal_16_blocks_${rndsuffix}:
+ # ;; Determine how many blocks to process
+ # ;; - process one additional block if there is a partial block
+ mov @{[DWORD($LENGTH)]},@{[DWORD($IA1)]}
+ add \$15,@{[DWORD($IA1)]}
+ shr \$4, @{[DWORD($IA1)]} # ; $IA1 can be in the range from 0 to 16
+___
+ &GCM_ENC_DEC_SMALL(
+ $AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $PLAIN_CIPH_LEN, $ENC_DEC,
+ $DATA_OFFSET, $LENGTH, $IA1, $CTR_BLOCKx, $AAD_HASHx, $ZTMP0,
+ $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
+ $ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12,
+ $ZTMP13, $ZTMP14, $IA0, $IA3, $MASKREG, $SHUF_MASK,
+ $PBLOCK_LEN);
+
+ # ;; fall through to exit
+
+ $code .= ".L_ghash_done_${rndsuffix}:\n";
+
+ # ;; save the last counter block
+ $code .= "vmovdqu64 $CTR_BLOCKx,`$CTX_OFFSET_CurCount`($GCM128_CTX)\n";
+ $code .= <<___;
+ vmovdqu64 $AAD_HASHx,`$CTX_OFFSET_AadHash`($GCM128_CTX)
+.L_enc_dec_done_${rndsuffix}:
+___
+}
+
+# ;;; ===========================================================================
+# ;;; Encrypt/decrypt the initial 16 blocks
+sub INITIAL_BLOCKS_16 {
+ my $IN = $_[0]; # [in] input buffer
+ my $OUT = $_[1]; # [in] output buffer
+ my $AES_KEYS = $_[2]; # [in] pointer to expanded keys
+ my $DATA_OFFSET = $_[3]; # [in] data offset
+ my $GHASH = $_[4]; # [in] ZMM with AAD (low 128 bits)
+ my $CTR = $_[5]; # [in] ZMM with CTR BE blocks 4x128 bits
+ my $CTR_CHECK = $_[6]; # [in/out] GPR with counter overflow check
+ my $ADDBE_4x4 = $_[7]; # [in] ZMM 4x128bits with value 4 (big endian)
+ my $ADDBE_1234 = $_[8]; # [in] ZMM 4x128bits with values 1, 2, 3 & 4 (big endian)
+ my $T0 = $_[9]; # [clobered] temporary ZMM register
+ my $T1 = $_[10]; # [clobered] temporary ZMM register
+ my $T2 = $_[11]; # [clobered] temporary ZMM register
+ my $T3 = $_[12]; # [clobered] temporary ZMM register
+ my $T4 = $_[13]; # [clobered] temporary ZMM register
+ my $T5 = $_[14]; # [clobered] temporary ZMM register
+ my $T6 = $_[15]; # [clobered] temporary ZMM register
+ my $T7 = $_[16]; # [clobered] temporary ZMM register
+ my $T8 = $_[17]; # [clobered] temporary ZMM register
+ my $SHUF_MASK = $_[18]; # [in] ZMM with BE/LE shuffle mask
+ my $ENC_DEC = $_[19]; # [in] ENC (encrypt) or DEC (decrypt) selector
+ my $BLK_OFFSET = $_[20]; # [in] stack frame offset to ciphered blocks
+ my $DATA_DISPL = $_[21]; # [in] fixed numerical data displacement/offset
+ my $IA0 = $_[22]; # [clobered] temporary GP register
+
+ my $B00_03 = $T5;
+ my $B04_07 = $T6;
+ my $B08_11 = $T7;
+ my $B12_15 = $T8;
+
+ my $rndsuffix = &random_string();
+
+ my $stack_offset = $BLK_OFFSET;
+ $code .= <<___;
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;; prepare counter blocks
+
+ cmpb \$`(256 - 16)`,@{[BYTE($CTR_CHECK)]}
+ jae .L_next_16_overflow_${rndsuffix}
+ vpaddd $ADDBE_1234,$CTR,$B00_03
+ vpaddd $ADDBE_4x4,$B00_03,$B04_07
+ vpaddd $ADDBE_4x4,$B04_07,$B08_11
+ vpaddd $ADDBE_4x4,$B08_11,$B12_15
+ jmp .L_next_16_ok_${rndsuffix}
+.L_next_16_overflow_${rndsuffix}:
+ vpshufb $SHUF_MASK,$CTR,$CTR
+ vmovdqa64 ddq_add_4444(%rip),$B12_15
+ vpaddd ddq_add_1234(%rip),$CTR,$B00_03
+ vpaddd $B12_15,$B00_03,$B04_07
+ vpaddd $B12_15,$B04_07,$B08_11
+ vpaddd $B12_15,$B08_11,$B12_15
+ vpshufb $SHUF_MASK,$B00_03,$B00_03
+ vpshufb $SHUF_MASK,$B04_07,$B04_07
+ vpshufb $SHUF_MASK,$B08_11,$B08_11
+ vpshufb $SHUF_MASK,$B12_15,$B12_15
+.L_next_16_ok_${rndsuffix}:
+ vshufi64x2 \$0b11111111,$B12_15,$B12_15,$CTR
+ addb \$16,@{[BYTE($CTR_CHECK)]}
+ # ;; === load 16 blocks of data
+ vmovdqu8 `$DATA_DISPL + (64*0)`($IN,$DATA_OFFSET,1),$T0
+ vmovdqu8 `$DATA_DISPL + (64*1)`($IN,$DATA_OFFSET,1),$T1
+ vmovdqu8 `$DATA_DISPL + (64*2)`($IN,$DATA_OFFSET,1),$T2
+ vmovdqu8 `$DATA_DISPL + (64*3)`($IN,$DATA_OFFSET,1),$T3
+
+ # ;; move to AES encryption rounds
+ vbroadcastf64x2 `(16*0)`($AES_KEYS),$T4
+ vpxorq $T4,$B00_03,$B00_03
+ vpxorq $T4,$B04_07,$B04_07
+ vpxorq $T4,$B08_11,$B08_11
+ vpxorq $T4,$B12_15,$B12_15
+___
+ foreach (1 .. ($NROUNDS)) {
+ $code .= <<___;
+ vbroadcastf64x2 `(16*$_)`($AES_KEYS),$T4
+ vaesenc $T4,$B00_03,$B00_03
+ vaesenc $T4,$B04_07,$B04_07
+ vaesenc $T4,$B08_11,$B08_11
+ vaesenc $T4,$B12_15,$B12_15
+___
+ }
+ $code .= <<___;
+ vbroadcastf64x2 `(16*($NROUNDS+1))`($AES_KEYS),$T4
+ vaesenclast $T4,$B00_03,$B00_03
+ vaesenclast $T4,$B04_07,$B04_07
+ vaesenclast $T4,$B08_11,$B08_11
+ vaesenclast $T4,$B12_15,$B12_15
+
+ # ;; xor against text
+ vpxorq $T0,$B00_03,$B00_03
+ vpxorq $T1,$B04_07,$B04_07
+ vpxorq $T2,$B08_11,$B08_11
+ vpxorq $T3,$B12_15,$B12_15
+
+ # ;; store
+ mov $OUT, $IA0
+ vmovdqu8 $B00_03,`$DATA_DISPL + (64*0)`($IA0,$DATA_OFFSET,1)
+ vmovdqu8 $B04_07,`$DATA_DISPL + (64*1)`($IA0,$DATA_OFFSET,1)
+ vmovdqu8 $B08_11,`$DATA_DISPL + (64*2)`($IA0,$DATA_OFFSET,1)
+ vmovdqu8 $B12_15,`$DATA_DISPL + (64*3)`($IA0,$DATA_OFFSET,1)
+___
+ if ($ENC_DEC eq "DEC") {
+ $code .= <<___;
+ # ;; decryption - cipher text needs to go to GHASH phase
+ vpshufb $SHUF_MASK,$T0,$B00_03
+ vpshufb $SHUF_MASK,$T1,$B04_07
+ vpshufb $SHUF_MASK,$T2,$B08_11
+ vpshufb $SHUF_MASK,$T3,$B12_15
+___
+ } else {
+ $code .= <<___;
+ # ;; encryption
+ vpshufb $SHUF_MASK,$B00_03,$B00_03
+ vpshufb $SHUF_MASK,$B04_07,$B04_07
+ vpshufb $SHUF_MASK,$B08_11,$B08_11
+ vpshufb $SHUF_MASK,$B12_15,$B12_15
+___
+ }
+
+ if ($GHASH ne "no_ghash") {
+ $code .= <<___;
+ # ;; === xor cipher block 0 with GHASH for the next GHASH round
+ vpxorq $GHASH,$B00_03,$B00_03
+___
+ }
+ $code .= <<___;
+ vmovdqa64 $B00_03,`$stack_offset + (0 * 64)`(%rsp)
+ vmovdqa64 $B04_07,`$stack_offset + (1 * 64)`(%rsp)
+ vmovdqa64 $B08_11,`$stack_offset + (2 * 64)`(%rsp)
+ vmovdqa64 $B12_15,`$stack_offset + (3 * 64)`(%rsp)
+___
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ; GCM_COMPLETE Finishes ghash calculation
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+sub GCM_COMPLETE {
+ my $GCM128_CTX = $_[0];
+ my $PBLOCK_LEN = $_[1];
+
+ my $rndsuffix = &random_string();
+
+ $code .= <<___;
+ vmovdqu @{[HashKeyByIdx(1,$GCM128_CTX)]},%xmm2
+ vmovdqu $CTX_OFFSET_EK0($GCM128_CTX),%xmm3 # ; xmm3 = E(K,Y0)
+___
+
+ $code .= <<___;
+ vmovdqu `$CTX_OFFSET_AadHash`($GCM128_CTX),%xmm4
+
+ # ;; Process the final partial block.
+ cmp \$0,$PBLOCK_LEN
+ je .L_partial_done_${rndsuffix}
+___
+
+ # ;GHASH computation for the last <16 Byte block
+ &GHASH_MUL("%xmm4", "%xmm2", "%xmm0", "%xmm16", "%xmm17");
+
+ $code .= <<___;
+.L_partial_done_${rndsuffix}:
+ vmovq `$CTX_OFFSET_InLen`($GCM128_CTX), %xmm5
+ vpinsrq \$1, `$CTX_OFFSET_AadLen`($GCM128_CTX), %xmm5, %xmm5 # ; xmm5 = len(A)||len(C)
+ vpsllq \$3, %xmm5, %xmm5 # ; convert bytes into bits
+
+ vpxor %xmm5,%xmm4,%xmm4
+___
+
+ &GHASH_MUL("%xmm4", "%xmm2", "%xmm0", "%xmm16", "%xmm17");
+
+ $code .= <<___;
+ vpshufb SHUF_MASK(%rip),%xmm4,%xmm4 # ; perform a 16Byte swap
+ vpxor %xmm4,%xmm3,%xmm3
+
+.L_return_T_${rndsuffix}:
+ vmovdqu %xmm3,`$CTX_OFFSET_AadHash`($GCM128_CTX)
+___
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;;; Functions definitions
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+$code .= ".text\n";
+{
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ # ;void ossl_aes_gcm_init_avx512 /
+ # ; (const void *aes_keys,
+ # ; void *gcm128ctx)
+ # ;
+ # ; Precomputes hashkey table for GHASH optimization.
+ # ; Leaf function (does not allocate stack space, does not use non-volatile registers).
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ $code .= <<___;
+.globl ossl_aes_gcm_init_avx512
+.type ossl_aes_gcm_init_avx512,\@abi-omnipotent
+.align 32
+ossl_aes_gcm_init_avx512:
+.cfi_startproc
+ endbranch
+___
+ if ($CHECK_FUNCTION_ARGUMENTS) {
+ $code .= <<___;
+ # ;; Check aes_keys != NULL
+ test $arg1,$arg1
+ jz .Labort_init
+
+ # ;; Check gcm128ctx != NULL
+ test $arg2,$arg2
+ jz .Labort_init
+___
+ }
+ $code .= "vpxorq %xmm16,%xmm16,%xmm16\n";
+ &ENCRYPT_SINGLE_BLOCK("$arg1", "%xmm16", "%rax"); # ; xmm16 = HashKey
+ $code .= <<___;
+ vpshufb SHUF_MASK(%rip),%xmm16,%xmm16
+ # ;;; PRECOMPUTATION of HashKey<<1 mod poly from the HashKey ;;;
+ vmovdqa64 %xmm16,%xmm2
+ vpsllq \$1,%xmm16,%xmm16
+ vpsrlq \$63,%xmm2,%xmm2
+ vmovdqa %xmm2,%xmm1
+ vpslldq \$8,%xmm2,%xmm2
+ vpsrldq \$8,%xmm1,%xmm1
+ vporq %xmm2,%xmm16,%xmm16
+ # ;reduction
+ vpshufd \$0b00100100,%xmm1,%xmm2
+ vpcmpeqd TWOONE(%rip),%xmm2,%xmm2
+ vpand POLY(%rip),%xmm2,%xmm2
+ vpxorq %xmm2,%xmm16,%xmm16 # ; xmm16 holds the HashKey<<1 mod poly
+ # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ vmovdqu64 %xmm16,@{[HashKeyByIdx(1,$arg2)]} # ; store HashKey<<1 mod poly
+___
+ &PRECOMPUTE("$arg2", "%xmm16", "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5");
+ if ($CLEAR_SCRATCH_REGISTERS) {
+ &clear_scratch_gps_asm();
+ &clear_scratch_zmms_asm();
+ } else {
+ $code .= "vzeroupper\n";
+ }
+ $code .= <<___;
+.Labort_init:
+ret
+.cfi_endproc
+.size ossl_aes_gcm_init_avx512, .-ossl_aes_gcm_init_avx512
+___
+}
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;void ossl_aes_gcm_setiv_avx512
+# ; (const void *aes_keys,
+# ; void *gcm128ctx,
+# ; const unsigned char *iv,
+# ; size_t ivlen)
+# ;
+# ; Computes E(K,Y0) for finalization, updates current counter Yi in gcm128_context structure.
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+$code .= <<___;
+.globl ossl_aes_gcm_setiv_avx512
+.type ossl_aes_gcm_setiv_avx512,\@abi-omnipotent
+.align 32
+ossl_aes_gcm_setiv_avx512:
+.cfi_startproc
+.Lsetiv_seh_begin:
+ endbranch
+___
+if ($CHECK_FUNCTION_ARGUMENTS) {
+ $code .= <<___;
+ # ;; Check aes_keys != NULL
+ test $arg1,$arg1
+ jz .Labort_setiv
+
+ # ;; Check gcm128ctx != NULL
+ test $arg2,$arg2
+ jz .Labort_setiv
+
+ # ;; Check iv != NULL
+ test $arg3,$arg3
+ jz .Labort_setiv
+
+ # ;; Check ivlen != 0
+ test $arg4,$arg4
+ jz .Labort_setiv
+___
+}
+
+# ; NOTE: code before PROLOG() must not modify any registers
+&PROLOG(
+ 1, # allocate stack space for hkeys
+ 0, # do not allocate stack space for AES blocks
+ "setiv");
+&GCM_INIT_IV(
+ "$arg1", "$arg2", "$arg3", "$arg4", "%r10", "%r11", "%r12", "%k1", "%xmm2", "%zmm1",
+ "%zmm11", "%zmm3", "%zmm4", "%zmm5", "%zmm6", "%zmm7", "%zmm8", "%zmm9", "%zmm10", "%zmm12",
+ "%zmm13", "%zmm15", "%zmm16", "%zmm17", "%zmm18", "%zmm19");
+&EPILOG(
+ 1, # hkeys were allocated
+ $arg4);
+$code .= <<___;
+.Labort_setiv:
+ret
+.Lsetiv_seh_end:
+.cfi_endproc
+.size ossl_aes_gcm_setiv_avx512, .-ossl_aes_gcm_setiv_avx512
+___
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;void ossl_aes_gcm_update_aad_avx512
+# ; (unsigned char *gcm128ctx,
+# ; const unsigned char *aad,
+# ; size_t aadlen)
+# ;
+# ; Updates AAD hash in gcm128_context structure.
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+$code .= <<___;
+.globl ossl_aes_gcm_update_aad_avx512
+.type ossl_aes_gcm_update_aad_avx512,\@abi-omnipotent
+.align 32
+ossl_aes_gcm_update_aad_avx512:
+.cfi_startproc
+.Lghash_seh_begin:
+ endbranch
+___
+if ($CHECK_FUNCTION_ARGUMENTS) {
+ $code .= <<___;
+ # ;; Check gcm128ctx != NULL
+ test $arg1,$arg1
+ jz .Lexit_update_aad
+
+ # ;; Check aad != NULL
+ test $arg2,$arg2
+ jz .Lexit_update_aad
+
+ # ;; Check aadlen != 0
+ test $arg3,$arg3
+ jz .Lexit_update_aad
+___
+}
+
+# ; NOTE: code before PROLOG() must not modify any registers
+&PROLOG(
+ 1, # allocate stack space for hkeys,
+ 0, # do not allocate stack space for AES blocks
+ "ghash");
+&GCM_UPDATE_AAD(
+ "$arg1", "$arg2", "$arg3", "%r10", "%r11", "%r12", "%k1", "%xmm14", "%zmm1", "%zmm11",
+ "%zmm3", "%zmm4", "%zmm5", "%zmm6", "%zmm7", "%zmm8", "%zmm9", "%zmm10", "%zmm12", "%zmm13",
+ "%zmm15", "%zmm16", "%zmm17", "%zmm18", "%zmm19");
+&EPILOG(
+ 1, # hkeys were allocated
+ $arg3);
+$code .= <<___;
+.Lexit_update_aad:
+ret
+.Lghash_seh_end:
+.cfi_endproc
+.size ossl_aes_gcm_update_aad_avx512, .-ossl_aes_gcm_update_aad_avx512
+___
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;void ossl_aes_gcm_encrypt_avx512
+# ; (const void* aes_keys,
+# ; void *gcm128ctx,
+# ; unsigned int *pblocklen,
+# ; const unsigned char *in,
+# ; size_t len,
+# ; unsigned char *out);
+# ;
+# ; Performs encryption of data |in| of len |len|, and stores the output in |out|.
+# ; Stores encrypted partial block (if any) in gcm128ctx and its length in |pblocklen|.
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+$code .= <<___;
+.globl ossl_aes_gcm_encrypt_avx512
+.type ossl_aes_gcm_encrypt_avx512,\@abi-omnipotent
+.align 32
+ossl_aes_gcm_encrypt_avx512:
+.cfi_startproc
+.Lencrypt_seh_begin:
+ endbranch
+___
+
+# ; NOTE: code before PROLOG() must not modify any registers
+&PROLOG(
+ 1, # allocate stack space for hkeys
+ 1, # allocate stack space for AES blocks
+ "encrypt");
+if ($CHECK_FUNCTION_ARGUMENTS) {
+ $code .= <<___;
+ # ;; Check aes_keys != NULL
+ test $arg1,$arg1
+ jz .Lexit_gcm_encrypt
+
+ # ;; Check gcm128ctx != NULL
+ test $arg2,$arg2
+ jz .Lexit_gcm_encrypt
+
+ # ;; Check pblocklen != NULL
+ test $arg3,$arg3
+ jz .Lexit_gcm_encrypt
+
+ # ;; Check in != NULL
+ test $arg4,$arg4
+ jz .Lexit_gcm_encrypt
+
+ # ;; Check if len != 0
+ cmp \$0,$arg5
+ jz .Lexit_gcm_encrypt
+
+ # ;; Check out != NULL
+ cmp \$0,$arg6
+ jz .Lexit_gcm_encrypt
+___
+}
+$code .= <<___;
+ # ; load number of rounds from AES_KEY structure (offset in bytes is
+ # ; size of the |rd_key| buffer)
+ mov `4*15*4`($arg1),%eax
+ cmp \$9,%eax
+ je .Laes_gcm_encrypt_128_avx512
+ cmp \$11,%eax
+ je .Laes_gcm_encrypt_192_avx512
+ cmp \$13,%eax
+ je .Laes_gcm_encrypt_256_avx512
+ xor %eax,%eax
+ jmp .Lexit_gcm_encrypt
+___
+for my $keylen (sort keys %aes_rounds) {
+ $NROUNDS = $aes_rounds{$keylen};
+ $code .= <<___;
+.align 32
+.Laes_gcm_encrypt_${keylen}_avx512:
+___
+ &GCM_ENC_DEC("$arg1", "$arg2", "$arg3", "$arg4", "$arg5", "$arg6", "ENC");
+ $code .= "jmp .Lexit_gcm_encrypt\n";
+}
+$code .= ".Lexit_gcm_encrypt:\n";
+&EPILOG(1, $arg5);
+$code .= <<___;
+ret
+.Lencrypt_seh_end:
+.cfi_endproc
+.size ossl_aes_gcm_encrypt_avx512, .-ossl_aes_gcm_encrypt_avx512
+___
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;void ossl_aes_gcm_decrypt_avx512
+# ; (const void* keys,
+# ; void *gcm128ctx,
+# ; unsigned int *pblocklen,
+# ; const unsigned char *in,
+# ; size_t len,
+# ; unsigned char *out);
+# ;
+# ; Performs decryption of data |in| of len |len|, and stores the output in |out|.
+# ; Stores decrypted partial block (if any) in gcm128ctx and its length in |pblocklen|.
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+$code .= <<___;
+.globl ossl_aes_gcm_decrypt_avx512
+.type ossl_aes_gcm_decrypt_avx512,\@abi-omnipotent
+.align 32
+ossl_aes_gcm_decrypt_avx512:
+.cfi_startproc
+.Ldecrypt_seh_begin:
+ endbranch
+___
+
+# ; NOTE: code before PROLOG() must not modify any registers
+&PROLOG(
+ 1, # allocate stack space for hkeys
+ 1, # allocate stack space for AES blocks
+ "decrypt");
+if ($CHECK_FUNCTION_ARGUMENTS) {
+ $code .= <<___;
+ # ;; Check keys != NULL
+ test $arg1,$arg1
+ jz .Lexit_gcm_decrypt
+
+ # ;; Check gcm128ctx != NULL
+ test $arg2,$arg2
+ jz .Lexit_gcm_decrypt
+
+ # ;; Check pblocklen != NULL
+ test $arg3,$arg3
+ jz .Lexit_gcm_decrypt
+
+ # ;; Check in != NULL
+ test $arg4,$arg4
+ jz .Lexit_gcm_decrypt
+
+ # ;; Check if len != 0
+ cmp \$0,$arg5
+ jz .Lexit_gcm_decrypt
+
+ # ;; Check out != NULL
+ cmp \$0,$arg6
+ jz .Lexit_gcm_decrypt
+___
+}
+$code .= <<___;
+ # ; load number of rounds from AES_KEY structure (offset in bytes is
+ # ; size of the |rd_key| buffer)
+ mov `4*15*4`($arg1),%eax
+ cmp \$9,%eax
+ je .Laes_gcm_decrypt_128_avx512
+ cmp \$11,%eax
+ je .Laes_gcm_decrypt_192_avx512
+ cmp \$13,%eax
+ je .Laes_gcm_decrypt_256_avx512
+ xor %eax,%eax
+ jmp .Lexit_gcm_decrypt
+___
+for my $keylen (sort keys %aes_rounds) {
+ $NROUNDS = $aes_rounds{$keylen};
+ $code .= <<___;
+.align 32
+.Laes_gcm_decrypt_${keylen}_avx512:
+___
+ &GCM_ENC_DEC("$arg1", "$arg2", "$arg3", "$arg4", "$arg5", "$arg6", "DEC");
+ $code .= "jmp .Lexit_gcm_decrypt\n";
+}
+$code .= ".Lexit_gcm_decrypt:\n";
+&EPILOG(1, $arg5);
+$code .= <<___;
+ret
+.Ldecrypt_seh_end:
+.cfi_endproc
+.size ossl_aes_gcm_decrypt_avx512, .-ossl_aes_gcm_decrypt_avx512
+___
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;void ossl_aes_gcm_finalize_vaes_avx512
+# ; (void *gcm128ctx,
+# ; unsigned int pblocklen);
+# ;
+# ; Finalizes encryption / decryption
+# ; Leaf function (does not allocate stack space, does not use non-volatile registers).
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+$code .= <<___;
+.globl ossl_aes_gcm_finalize_avx512
+.type ossl_aes_gcm_finalize_avx512,\@abi-omnipotent
+.align 32
+ossl_aes_gcm_finalize_avx512:
+.cfi_startproc
+ endbranch
+___
+if ($CHECK_FUNCTION_ARGUMENTS) {
+ $code .= <<___;
+ # ;; Check gcm128ctx != NULL
+ test $arg1,$arg1
+ jz .Labort_finalize
+___
+}
+
+&GCM_COMPLETE("$arg1", "$arg2");
+
+$code .= <<___;
+.Labort_finalize:
+ret
+.cfi_endproc
+.size ossl_aes_gcm_finalize_avx512, .-ossl_aes_gcm_finalize_avx512
+___
+
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+# ;void ossl_gcm_gmult_avx512(u64 Xi[2],
+# ; const void* gcm128ctx)
+# ;
+# ; Leaf function (does not allocate stack space, does not use non-volatile registers).
+# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+$code .= <<___;
+.globl ossl_gcm_gmult_avx512
+.hidden ossl_gcm_gmult_avx512
+.type ossl_gcm_gmult_avx512,\@abi-omnipotent
+.align 32
+ossl_gcm_gmult_avx512:
+.cfi_startproc
+ endbranch
+___
+if ($CHECK_FUNCTION_ARGUMENTS) {
+ $code .= <<___;
+ # ;; Check Xi != NULL
+ test $arg1,$arg1
+ jz .Labort_gmult
+
+ # ;; Check gcm128ctx != NULL
+ test $arg2,$arg2
+ jz .Labort_gmult
+___
+}
+$code .= "vmovdqu64 ($arg1),%xmm1\n";
+$code .= "vmovdqu64 @{[HashKeyByIdx(1,$arg2)]},%xmm2\n";
+
+&GHASH_MUL("%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5");
+
+$code .= "vmovdqu64 %xmm1,($arg1)\n";
+if ($CLEAR_SCRATCH_REGISTERS) {
+ &clear_scratch_gps_asm();
+ &clear_scratch_zmms_asm();
+} else {
+ $code .= "vzeroupper\n";
+}
+$code .= <<___;
+.Labort_gmult:
+ret
+.cfi_endproc
+.size ossl_gcm_gmult_avx512, .-ossl_gcm_gmult_avx512
+___
+
+if ($win64) {
+
+ # Add unwind metadata for SEH.
+
+ # See https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=msvc-160
+ my $UWOP_PUSH_NONVOL = 0;
+ my $UWOP_ALLOC_LARGE = 1;
+ my $UWOP_SET_FPREG = 3;
+ my $UWOP_SAVE_XMM128 = 8;
+ my %UWOP_REG_NUMBER = (
+ rax => 0,
+ rcx => 1,
+ rdx => 2,
+ rbx => 3,
+ rsp => 4,
+ rbp => 5,
+ rsi => 6,
+ rdi => 7,
+ map(("r$_" => $_), (8 .. 15)));
+
+ $code .= <<___;
+.section .pdata
+.align 4
+ .rva .Lsetiv_seh_begin
+ .rva .Lsetiv_seh_end
+ .rva .Lsetiv_seh_info
+
+ .rva .Lghash_seh_begin
+ .rva .Lghash_seh_end
+ .rva .Lghash_seh_info
+
+ .rva .Lencrypt_seh_begin
+ .rva .Lencrypt_seh_end
+ .rva .Lencrypt_seh_info
+
+ .rva .Ldecrypt_seh_begin
+ .rva .Ldecrypt_seh_end
+ .rva .Ldecrypt_seh_info
+
+.section .xdata
+___
+
+ foreach my $func_name ("setiv", "ghash", "encrypt", "decrypt") {
+ $code .= <<___;
+.align 8
+.L${func_name}_seh_info:
+ .byte 1 # version 1, no flags
+ .byte \$L\$${func_name}_seh_prolog_end-\$L\$${func_name}_seh_begin
+ .byte 31 # num_slots = 1*8 + 2 + 1 + 2*10
+ # FR = rbp; Offset from RSP = $XMM_STORAGE scaled on 16
+ .byte @{[$UWOP_REG_NUMBER{rbp} | (($XMM_STORAGE / 16 ) << 4)]}
+___
+
+ # Metadata for %xmm15-%xmm6
+ # Occupy 2 slots each
+ for (my $reg_idx = 15; $reg_idx >= 6; $reg_idx--) {
+
+ # Scaled-by-16 stack offset
+ my $xmm_reg_offset = ($reg_idx - 6);
+ $code .= <<___;
+ .byte \$L\$${func_name}_seh_save_xmm${reg_idx}-\$L\$${func_name}_seh_begin
+ .byte @{[$UWOP_SAVE_XMM128 | (${reg_idx} << 4)]}
+ .value $xmm_reg_offset
+___
+ }
+
+ $code .= <<___;
+ # Frame pointer (occupy 1 slot)
+ .byte \$L\$${func_name}_seh_setfp-\$L\$${func_name}_seh_begin
+ .byte $UWOP_SET_FPREG
+
+ # Occupy 2 slots, as stack allocation < 512K, but > 128 bytes
+ .byte \$L\$${func_name}_seh_allocstack_xmm-\$L\$${func_name}_seh_begin
+ .byte $UWOP_ALLOC_LARGE
+ .value `($XMM_STORAGE + 8) / 8`
+___
+
+ # Metadata for GPR regs
+ # Occupy 1 slot each
+ foreach my $reg ("rsi", "rdi", "r15", "r14", "r13", "r12", "rbp", "rbx") {
+ $code .= <<___;
+ .byte \$L\$${func_name}_seh_push_${reg}-\$L\$${func_name}_seh_begin
+ .byte @{[$UWOP_PUSH_NONVOL | ($UWOP_REG_NUMBER{$reg} << 4)]}
+___
+ }
+ }
+}
+
+$code .= <<___;
+.data
+.align 16
+POLY: .quad 0x0000000000000001, 0xC200000000000000
+
+.align 64
+POLY2:
+ .quad 0x00000001C2000000, 0xC200000000000000
+ .quad 0x00000001C2000000, 0xC200000000000000
+ .quad 0x00000001C2000000, 0xC200000000000000
+ .quad 0x00000001C2000000, 0xC200000000000000
+
+.align 16
+TWOONE: .quad 0x0000000000000001, 0x0000000100000000
+
+# ;;; Order of these constants should not change.
+# ;;; More specifically, ALL_F should follow SHIFT_MASK, and ZERO should follow ALL_F
+.align 64
+SHUF_MASK:
+ .quad 0x08090A0B0C0D0E0F, 0x0001020304050607
+ .quad 0x08090A0B0C0D0E0F, 0x0001020304050607
+ .quad 0x08090A0B0C0D0E0F, 0x0001020304050607
+ .quad 0x08090A0B0C0D0E0F, 0x0001020304050607
+
+.align 16
+SHIFT_MASK:
+ .quad 0x0706050403020100, 0x0f0e0d0c0b0a0908
+
+ALL_F:
+ .quad 0xffffffffffffffff, 0xffffffffffffffff
+
+ZERO:
+ .quad 0x0000000000000000, 0x0000000000000000
+
+.align 16
+ONE:
+ .quad 0x0000000000000001, 0x0000000000000000
+
+.align 16
+ONEf:
+ .quad 0x0000000000000000, 0x0100000000000000
+
+.align 64
+ddq_add_1234:
+ .quad 0x0000000000000001, 0x0000000000000000
+ .quad 0x0000000000000002, 0x0000000000000000
+ .quad 0x0000000000000003, 0x0000000000000000
+ .quad 0x0000000000000004, 0x0000000000000000
+
+.align 64
+ddq_add_5678:
+ .quad 0x0000000000000005, 0x0000000000000000
+ .quad 0x0000000000000006, 0x0000000000000000
+ .quad 0x0000000000000007, 0x0000000000000000
+ .quad 0x0000000000000008, 0x0000000000000000
+
+.align 64
+ddq_add_4444:
+ .quad 0x0000000000000004, 0x0000000000000000
+ .quad 0x0000000000000004, 0x0000000000000000
+ .quad 0x0000000000000004, 0x0000000000000000
+ .quad 0x0000000000000004, 0x0000000000000000
+
+.align 64
+ddq_add_8888:
+ .quad 0x0000000000000008, 0x0000000000000000
+ .quad 0x0000000000000008, 0x0000000000000000
+ .quad 0x0000000000000008, 0x0000000000000000
+ .quad 0x0000000000000008, 0x0000000000000000
+
+.align 64
+ddq_addbe_1234:
+ .quad 0x0000000000000000, 0x0100000000000000
+ .quad 0x0000000000000000, 0x0200000000000000
+ .quad 0x0000000000000000, 0x0300000000000000
+ .quad 0x0000000000000000, 0x0400000000000000
+
+.align 64
+ddq_addbe_4444:
+ .quad 0x0000000000000000, 0x0400000000000000
+ .quad 0x0000000000000000, 0x0400000000000000
+ .quad 0x0000000000000000, 0x0400000000000000
+ .quad 0x0000000000000000, 0x0400000000000000
+
+.align 64
+byte_len_to_mask_table:
+ .value 0x0000, 0x0001, 0x0003, 0x0007
+ .value 0x000f, 0x001f, 0x003f, 0x007f
+ .value 0x00ff, 0x01ff, 0x03ff, 0x07ff
+ .value 0x0fff, 0x1fff, 0x3fff, 0x7fff
+ .value 0xffff
+
+.align 64
+byte64_len_to_mask_table:
+ .quad 0x0000000000000000, 0x0000000000000001
+ .quad 0x0000000000000003, 0x0000000000000007
+ .quad 0x000000000000000f, 0x000000000000001f
+ .quad 0x000000000000003f, 0x000000000000007f
+ .quad 0x00000000000000ff, 0x00000000000001ff
+ .quad 0x00000000000003ff, 0x00000000000007ff
+ .quad 0x0000000000000fff, 0x0000000000001fff
+ .quad 0x0000000000003fff, 0x0000000000007fff
+ .quad 0x000000000000ffff, 0x000000000001ffff
+ .quad 0x000000000003ffff, 0x000000000007ffff
+ .quad 0x00000000000fffff, 0x00000000001fffff
+ .quad 0x00000000003fffff, 0x00000000007fffff
+ .quad 0x0000000000ffffff, 0x0000000001ffffff
+ .quad 0x0000000003ffffff, 0x0000000007ffffff
+ .quad 0x000000000fffffff, 0x000000001fffffff
+ .quad 0x000000003fffffff, 0x000000007fffffff
+ .quad 0x00000000ffffffff, 0x00000001ffffffff
+ .quad 0x00000003ffffffff, 0x00000007ffffffff
+ .quad 0x0000000fffffffff, 0x0000001fffffffff
+ .quad 0x0000003fffffffff, 0x0000007fffffffff
+ .quad 0x000000ffffffffff, 0x000001ffffffffff
+ .quad 0x000003ffffffffff, 0x000007ffffffffff
+ .quad 0x00000fffffffffff, 0x00001fffffffffff
+ .quad 0x00003fffffffffff, 0x00007fffffffffff
+ .quad 0x0000ffffffffffff, 0x0001ffffffffffff
+ .quad 0x0003ffffffffffff, 0x0007ffffffffffff
+ .quad 0x000fffffffffffff, 0x001fffffffffffff
+ .quad 0x003fffffffffffff, 0x007fffffffffffff
+ .quad 0x00ffffffffffffff, 0x01ffffffffffffff
+ .quad 0x03ffffffffffffff, 0x07ffffffffffffff
+ .quad 0x0fffffffffffffff, 0x1fffffffffffffff
+ .quad 0x3fffffffffffffff, 0x7fffffffffffffff
+ .quad 0xffffffffffffffff
+___
+
+} else {
+# Fallback for old assembler
+$code .= <<___;
+.text
+.globl ossl_vaes_vpclmulqdq_capable
+.type ossl_vaes_vpclmulqdq_capable,\@abi-omnipotent
+ossl_vaes_vpclmulqdq_capable:
+ xor %eax,%eax
+ ret
+.size ossl_vaes_vpclmulqdq_capable, .-ossl_vaes_vpclmulqdq_capable
+
+.globl ossl_aes_gcm_init_avx512
+.globl ossl_aes_gcm_setiv_avx512
+.globl ossl_aes_gcm_update_aad_avx512
+.globl ossl_aes_gcm_encrypt_avx512
+.globl ossl_aes_gcm_decrypt_avx512
+.globl ossl_aes_gcm_finalize_avx512
+.globl ossl_gcm_gmult_avx512
+
+.type ossl_aes_gcm_init_avx512,\@abi-omnipotent
+ossl_aes_gcm_init_avx512:
+ossl_aes_gcm_setiv_avx512:
+ossl_aes_gcm_update_aad_avx512:
+ossl_aes_gcm_encrypt_avx512:
+ossl_aes_gcm_decrypt_avx512:
+ossl_aes_gcm_finalize_avx512:
+ossl_gcm_gmult_avx512:
+ .byte 0x0f,0x0b # ud2
+ ret
+.size ossl_aes_gcm_init_avx512, .-ossl_aes_gcm_init_avx512
+___
+}
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+print $code;
+close STDOUT or die "error closing STDOUT: $!";
diff --git a/crypto/modes/build.info b/crypto/modes/build.info
index 3166cdc2a6..d7c0207d79 100644
--- a/crypto/modes/build.info
+++ b/crypto/modes/build.info
@@ -4,7 +4,7 @@ $MODESASM=
IF[{- !$disabled{asm} -}]
$MODESASM_x86=ghash-x86.s
$MODESDEF_x86=GHASH_ASM
- $MODESASM_x86_64=ghash-x86_64.s aesni-gcm-x86_64.s
+ $MODESASM_x86_64=ghash-x86_64.s aesni-gcm-x86_64.s aes-gcm-avx512.s
$MODESDEF_x86_64=GHASH_ASM
# ghash-ia64.s doesn't work on VMS
@@ -66,6 +66,7 @@ GENERATE[ghash-ia64.s]=asm/ghash-ia64.pl
GENERATE[ghash-x86.s]=asm/ghash-x86.pl
GENERATE[ghash-x86_64.s]=asm/ghash-x86_64.pl
GENERATE[aesni-gcm-x86_64.s]=asm/aesni-gcm-x86_64.pl
+GENERATE[aes-gcm-avx512.s]=asm/aes-gcm-avx512.pl
GENERATE[ghash-sparcv9.S]=asm/ghash-sparcv9.pl
INCLUDE[ghash-sparcv9.o]=..
GENERATE[ghash-alpha.S]=asm/ghash-alpha.pl