diff options
Diffstat (limited to 'ssl/record/methods/ssl3_cbc.c')
-rw-r--r-- | ssl/record/methods/ssl3_cbc.c | 504 |
1 files changed, 504 insertions, 0 deletions
diff --git a/ssl/record/methods/ssl3_cbc.c b/ssl/record/methods/ssl3_cbc.c new file mode 100644 index 0000000000..a254489769 --- /dev/null +++ b/ssl/record/methods/ssl3_cbc.c @@ -0,0 +1,504 @@ +/* + * Copyright 2012-2021 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the Apache License 2.0 (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +/* + * This file has no dependencies on the rest of libssl because it is shared + * with the providers. It contains functions for low level MAC calculations. + * Responsibility for this lies with the HMAC implementation in the + * providers. However there are legacy code paths in libssl which also need to + * do this. In time those legacy code paths can be removed and this file can be + * moved out of libssl. + */ + + +/* + * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for + * internal use. + */ +#include "internal/deprecated.h" + +#include "recmethod_local.h" + +#include "internal/constant_time.h" +#include "internal/cryptlib.h" + +#include <openssl/evp.h> +#ifndef FIPS_MODULE +# include <openssl/md5.h> +#endif +#include <openssl/sha.h> + +# define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \ + *((c)++)=(unsigned char)(((l)>>16)&0xff), \ + *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ + *((c)++)=(unsigned char)(((l) )&0xff)) + +# define l2n6(l,c) (*((c)++)=(unsigned char)(((l)>>40)&0xff), \ + *((c)++)=(unsigned char)(((l)>>32)&0xff), \ + *((c)++)=(unsigned char)(((l)>>24)&0xff), \ + *((c)++)=(unsigned char)(((l)>>16)&0xff), \ + *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ + *((c)++)=(unsigned char)(((l) )&0xff)) + +# define l2n8(l,c) (*((c)++)=(unsigned char)(((l)>>56)&0xff), \ + *((c)++)=(unsigned char)(((l)>>48)&0xff), \ + *((c)++)=(unsigned char)(((l)>>40)&0xff), \ + *((c)++)=(unsigned char)(((l)>>32)&0xff), \ + *((c)++)=(unsigned char)(((l)>>24)&0xff), \ + *((c)++)=(unsigned char)(((l)>>16)&0xff), \ + *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ + *((c)++)=(unsigned char)(((l) )&0xff)) + +/* + * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's + * length field. (SHA-384/512 have 128-bit length.) + */ +#define MAX_HASH_BIT_COUNT_BYTES 16 + +/* + * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. + * Currently SHA-384/512 has a 128-byte block size and that's the largest + * supported by TLS.) + */ +#define MAX_HASH_BLOCK_SIZE 128 + +#ifndef FIPS_MODULE +/* + * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in + * little-endian order. The value of p is advanced by four. + */ +# define u32toLE(n, p) \ + (*((p)++)=(unsigned char)(n), \ + *((p)++)=(unsigned char)(n>>8), \ + *((p)++)=(unsigned char)(n>>16), \ + *((p)++)=(unsigned char)(n>>24)) + +/* + * These functions serialize the state of a hash and thus perform the + * standard "final" operation without adding the padding and length that such + * a function typically does. + */ +static void tls1_md5_final_raw(void *ctx, unsigned char *md_out) +{ + MD5_CTX *md5 = ctx; + u32toLE(md5->A, md_out); + u32toLE(md5->B, md_out); + u32toLE(md5->C, md_out); + u32toLE(md5->D, md_out); +} +#endif /* FIPS_MODULE */ + +static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out) +{ + SHA_CTX *sha1 = ctx; + l2n(sha1->h0, md_out); + l2n(sha1->h1, md_out); + l2n(sha1->h2, md_out); + l2n(sha1->h3, md_out); + l2n(sha1->h4, md_out); +} + +static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out) +{ + SHA256_CTX *sha256 = ctx; + unsigned i; + + for (i = 0; i < 8; i++) { + l2n(sha256->h[i], md_out); + } +} + +static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out) +{ + SHA512_CTX *sha512 = ctx; + unsigned i; + + for (i = 0; i < 8; i++) { + l2n8(sha512->h[i], md_out); + } +} + +#undef LARGEST_DIGEST_CTX +#define LARGEST_DIGEST_CTX SHA512_CTX + +/*- + * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS + * record. + * + * ctx: the EVP_MD_CTX from which we take the hash function. + * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. + * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. + * md_out_size: if non-NULL, the number of output bytes is written here. + * header: the 13-byte, TLS record header. + * data: the record data itself, less any preceding explicit IV. + * data_size: the secret, reported length of the data once the MAC and padding + * has been removed. + * data_plus_mac_plus_padding_size: the public length of the whole + * record, including MAC and padding. + * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. + * + * On entry: we know that data is data_plus_mac_plus_padding_size in length + * Returns 1 on success or 0 on error + */ +int ssl3_cbc_digest_record(const EVP_MD *md, + unsigned char *md_out, + size_t *md_out_size, + const unsigned char *header, + const unsigned char *data, + size_t data_size, + size_t data_plus_mac_plus_padding_size, + const unsigned char *mac_secret, + size_t mac_secret_length, char is_sslv3) +{ + union { + OSSL_UNION_ALIGN; + unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; + } md_state; + void (*md_final_raw) (void *ctx, unsigned char *md_out); + void (*md_transform) (void *ctx, const unsigned char *block); + size_t md_size, md_block_size = 64; + size_t sslv3_pad_length = 40, header_length, variance_blocks, + len, max_mac_bytes, num_blocks, + num_starting_blocks, k, mac_end_offset, c, index_a, index_b; + size_t bits; /* at most 18 bits */ + unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; + /* hmac_pad is the masked HMAC key. */ + unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; + unsigned char first_block[MAX_HASH_BLOCK_SIZE]; + unsigned char mac_out[EVP_MAX_MD_SIZE]; + size_t i, j; + unsigned md_out_size_u; + EVP_MD_CTX *md_ctx = NULL; + /* + * mdLengthSize is the number of bytes in the length field that + * terminates * the hash. + */ + size_t md_length_size = 8; + char length_is_big_endian = 1; + int ret = 0; + + /* + * This is a, hopefully redundant, check that allows us to forget about + * many possible overflows later in this function. + */ + if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024)) + return 0; + + if (EVP_MD_is_a(md, "MD5")) { +#ifdef FIPS_MODULE + return 0; +#else + if (MD5_Init((MD5_CTX *)md_state.c) <= 0) + return 0; + md_final_raw = tls1_md5_final_raw; + md_transform = + (void (*)(void *ctx, const unsigned char *block))MD5_Transform; + md_size = 16; + sslv3_pad_length = 48; + length_is_big_endian = 0; +#endif + } else if (EVP_MD_is_a(md, "SHA1")) { + if (SHA1_Init((SHA_CTX *)md_state.c) <= 0) + return 0; + md_final_raw = tls1_sha1_final_raw; + md_transform = + (void (*)(void *ctx, const unsigned char *block))SHA1_Transform; + md_size = 20; + } else if (EVP_MD_is_a(md, "SHA2-224")) { + if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0) + return 0; + md_final_raw = tls1_sha256_final_raw; + md_transform = + (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; + md_size = 224 / 8; + } else if (EVP_MD_is_a(md, "SHA2-256")) { + if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0) + return 0; + md_final_raw = tls1_sha256_final_raw; + md_transform = + (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; + md_size = 32; + } else if (EVP_MD_is_a(md, "SHA2-384")) { + if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0) + return 0; + md_final_raw = tls1_sha512_final_raw; + md_transform = + (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; + md_size = 384 / 8; + md_block_size = 128; + md_length_size = 16; + } else if (EVP_MD_is_a(md, "SHA2-512")) { + if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0) + return 0; + md_final_raw = tls1_sha512_final_raw; + md_transform = + (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; + md_size = 64; + md_block_size = 128; + md_length_size = 16; + } else { + /* + * ssl3_cbc_record_digest_supported should have been called first to + * check that the hash function is supported. + */ + if (md_out_size != NULL) + *md_out_size = 0; + return ossl_assert(0); + } + + if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES) + || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE) + || !ossl_assert(md_size <= EVP_MAX_MD_SIZE)) + return 0; + + header_length = 13; + if (is_sslv3) { + header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence + * number */ + + 1 /* record type */ + + 2 /* record length */ ; + } + + /* + * variance_blocks is the number of blocks of the hash that we have to + * calculate in constant time because they could be altered by the + * padding value. In SSLv3, the padding must be minimal so the end of + * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively + * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes + * of hash termination (0x80 + 64-bit length) don't fit in the final + * block, we say that the final two blocks can vary based on the padding. + * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not + * required to be minimal. Therefore we say that the final |variance_blocks| + * blocks can + * vary based on the padding. Later in the function, if the message is + * short and there obviously cannot be this many blocks then + * variance_blocks can be reduced. + */ + variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1); + /* + * From now on we're dealing with the MAC, which conceptually has 13 + * bytes of `header' before the start of the data (TLS) or 71/75 bytes + * (SSLv3) + */ + len = data_plus_mac_plus_padding_size + header_length; + /* + * max_mac_bytes contains the maximum bytes of bytes in the MAC, + * including * |header|, assuming that there's no padding. + */ + max_mac_bytes = len - md_size - 1; + /* num_blocks is the maximum number of hash blocks. */ + num_blocks = + (max_mac_bytes + 1 + md_length_size + md_block_size - + 1) / md_block_size; + /* + * In order to calculate the MAC in constant time we have to handle the + * final blocks specially because the padding value could cause the end + * to appear somewhere in the final |variance_blocks| blocks and we can't + * leak where. However, |num_starting_blocks| worth of data can be hashed + * right away because no padding value can affect whether they are + * plaintext. + */ + num_starting_blocks = 0; + /* + * k is the starting byte offset into the conceptual header||data where + * we start processing. + */ + k = 0; + /* + * mac_end_offset is the index just past the end of the data to be MACed. + */ + mac_end_offset = data_size + header_length; + /* + * c is the index of the 0x80 byte in the final hash block that contains + * application data. + */ + c = mac_end_offset % md_block_size; + /* + * index_a is the hash block number that contains the 0x80 terminating + * value. + */ + index_a = mac_end_offset / md_block_size; + /* + * index_b is the hash block number that contains the 64-bit hash length, + * in bits. + */ + index_b = (mac_end_offset + md_length_size) / md_block_size; + /* + * bits is the hash-length in bits. It includes the additional hash block + * for the masked HMAC key, or whole of |header| in the case of SSLv3. + */ + + /* + * For SSLv3, if we're going to have any starting blocks then we need at + * least two because the header is larger than a single block. + */ + if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) { + num_starting_blocks = num_blocks - variance_blocks; + k = md_block_size * num_starting_blocks; + } + + bits = 8 * mac_end_offset; + if (!is_sslv3) { + /* + * Compute the initial HMAC block. For SSLv3, the padding and secret + * bytes are included in |header| because they take more than a + * single block. + */ + bits += 8 * md_block_size; + memset(hmac_pad, 0, md_block_size); + if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad))) + return 0; + memcpy(hmac_pad, mac_secret, mac_secret_length); + for (i = 0; i < md_block_size; i++) + hmac_pad[i] ^= 0x36; + + md_transform(md_state.c, hmac_pad); + } + + if (length_is_big_endian) { + memset(length_bytes, 0, md_length_size - 4); + length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24); + length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16); + length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8); + length_bytes[md_length_size - 1] = (unsigned char)bits; + } else { + memset(length_bytes, 0, md_length_size); + length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24); + length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16); + length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8); + length_bytes[md_length_size - 8] = (unsigned char)bits; + } + + if (k > 0) { + if (is_sslv3) { + size_t overhang; + + /* + * The SSLv3 header is larger than a single block. overhang is + * the number of bytes beyond a single block that the header + * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no + * ciphersuites in SSLv3 that are not SHA1 or MD5 based and + * therefore we can be confident that the header_length will be + * greater than |md_block_size|. However we add a sanity check just + * in case + */ + if (header_length <= md_block_size) { + /* Should never happen */ + return 0; + } + overhang = header_length - md_block_size; + md_transform(md_state.c, header); + memcpy(first_block, header + md_block_size, overhang); + memcpy(first_block + overhang, data, md_block_size - overhang); + md_transform(md_state.c, first_block); + for (i = 1; i < k / md_block_size - 1; i++) + md_transform(md_state.c, data + md_block_size * i - overhang); + } else { + /* k is a multiple of md_block_size. */ + memcpy(first_block, header, 13); + memcpy(first_block + 13, data, md_block_size - 13); + md_transform(md_state.c, first_block); + for (i = 1; i < k / md_block_size; i++) + md_transform(md_state.c, data + md_block_size * i - 13); + } + } + + memset(mac_out, 0, sizeof(mac_out)); + + /* + * We now process the final hash blocks. For each block, we construct it + * in constant time. If the |i==index_a| then we'll include the 0x80 + * bytes and zero pad etc. For each block we selectively copy it, in + * constant time, to |mac_out|. + */ + for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; + i++) { + unsigned char block[MAX_HASH_BLOCK_SIZE]; + unsigned char is_block_a = constant_time_eq_8_s(i, index_a); + unsigned char is_block_b = constant_time_eq_8_s(i, index_b); + for (j = 0; j < md_block_size; j++) { + unsigned char b = 0, is_past_c, is_past_cp1; + if (k < header_length) + b = header[k]; + else if (k < data_plus_mac_plus_padding_size + header_length) + b = data[k - header_length]; + k++; + + is_past_c = is_block_a & constant_time_ge_8_s(j, c); + is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1); + /* + * If this is the block containing the end of the application + * data, and we are at the offset for the 0x80 value, then + * overwrite b with 0x80. + */ + b = constant_time_select_8(is_past_c, 0x80, b); + /* + * If this block contains the end of the application data + * and we're past the 0x80 value then just write zero. + */ + b = b & ~is_past_cp1; + /* + * If this is index_b (the final block), but not index_a (the end + * of the data), then the 64-bit length didn't fit into index_a + * and we're having to add an extra block of zeros. + */ + b &= ~is_block_b | is_block_a; + + /* + * The final bytes of one of the blocks contains the length. + */ + if (j >= md_block_size - md_length_size) { + /* If this is index_b, write a length byte. */ + b = constant_time_select_8(is_block_b, + length_bytes[j - + (md_block_size - + md_length_size)], b); + } + block[j] = b; + } + + md_transform(md_state.c, block); + md_final_raw(md_state.c, block); + /* If this is index_b, copy the hash value to |mac_out|. */ + for (j = 0; j < md_size; j++) + mac_out[j] |= block[j] & is_block_b; + } + + md_ctx = EVP_MD_CTX_new(); + if (md_ctx == NULL) + goto err; + + if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */ ) <= 0) + goto err; + if (is_sslv3) { + /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ + memset(hmac_pad, 0x5c, sslv3_pad_length); + + if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0 + || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0 + || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0) + goto err; + } else { + /* Complete the HMAC in the standard manner. */ + for (i = 0; i < md_block_size; i++) + hmac_pad[i] ^= 0x6a; + + if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0 + || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0) + goto err; + } + ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u); + if (ret && md_out_size) + *md_out_size = md_out_size_u; + + ret = 1; + err: + EVP_MD_CTX_free(md_ctx); + return ret; +} |