summaryrefslogtreecommitdiffstats
path: root/crypto/modes/siv128.c
blob: 04abea25c10c02cbccdfb6e08b9f8b0e3a5643ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*
 * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <string.h>
#include <stdlib.h>
#include <openssl/crypto.h>
#include <openssl/evp.h>
#include <openssl/core_names.h>
#include <openssl/params.h>
#include "internal/modes_int.h"
#include "internal/siv_int.h"

#ifndef OPENSSL_NO_SIV

__owur static ossl_inline uint32_t rotl8(uint32_t x)
{
    return (x << 8) | (x >> 24);
}

__owur static ossl_inline uint32_t rotr8(uint32_t x)
{
    return (x >> 8) | (x << 24);
}

__owur static ossl_inline uint64_t byteswap8(uint64_t x)
{
    uint32_t high = (uint32_t)(x >> 32);
    uint32_t low = (uint32_t)x;

    high = (rotl8(high) & 0x00ff00ff) | (rotr8(high) & 0xff00ff00);
    low = (rotl8(low) & 0x00ff00ff) | (rotr8(low) & 0xff00ff00);
    return ((uint64_t)low) << 32 | (uint64_t)high;
}

__owur static ossl_inline uint64_t siv128_getword(SIV_BLOCK const *b, size_t i)
{
    const union {
        long one;
        char little;
    } is_endian = { 1 };

    if (is_endian.little)
        return byteswap8(b->word[i]);
    return b->word[i];
}

static ossl_inline void siv128_putword(SIV_BLOCK *b, size_t i, uint64_t x)
{
    const union {
        long one;
        char little;
    } is_endian = { 1 };

    if (is_endian.little)
        b->word[i] = byteswap8(x);
    else
        b->word[i] = x;
}

static ossl_inline void siv128_xorblock(SIV_BLOCK *x,
                                        SIV_BLOCK const *y)
{
    x->word[0] ^= y->word[0];
    x->word[1] ^= y->word[1];
}

/*
 * Doubles |b|, which is 16 bytes representing an element
 * of GF(2**128) modulo the irreducible polynomial
 * x**128 + x**7 + x**2 + x + 1.
 * Assumes two's-complement arithmetic
 */
static ossl_inline void siv128_dbl(SIV_BLOCK *b)
{
    uint64_t high = siv128_getword(b, 0);
    uint64_t low = siv128_getword(b, 1);
    uint64_t high_carry = high & (((uint64_t)1) << 63);
    uint64_t low_carry = low & (((uint64_t)1) << 63);
    int64_t low_mask = -((int64_t)(high_carry >> 63)) & 0x87;
    uint64_t high_mask = low_carry >> 63;

    high = (high << 1) | high_mask;
    low = (low << 1) ^ (uint64_t)low_mask;
    siv128_putword(b, 0, high);
    siv128_putword(b, 1, low);
}

__owur static ossl_inline int siv128_do_s2v_p(SIV128_CONTEXT *ctx, SIV_BLOCK *out,
                                              unsigned char const* in, size_t len)
{
    SIV_BLOCK t;
    size_t out_len = sizeof(out->byte);
    EVP_MAC_CTX *mac_ctx;
    int ret = 0;

    mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init);
    if (mac_ctx == NULL)
        return 0;

    if (len >= SIV_LEN) {
        if (!EVP_MAC_update(mac_ctx, in, len - SIV_LEN))
            goto err;
        memcpy(&t, in + (len-SIV_LEN), SIV_LEN);
        siv128_xorblock(&t, &ctx->d);
        if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN))
            goto err;
    } else {
        memset(&t, 0, sizeof(t));
        memcpy(&t, in, len);
        t.byte[len] = 0x80;
        siv128_dbl(&ctx->d);
        siv128_xorblock(&t, &ctx->d);
        if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN))
            goto err;
    }
    if (!EVP_MAC_final(mac_ctx, out->byte, &out_len, sizeof(out->byte))
        || out_len != SIV_LEN)
        goto err;

    ret = 1;

err:
    EVP_MAC_CTX_free(mac_ctx);
    return ret;
}


__owur static ossl_inline int siv128_do_encrypt(EVP_CIPHER_CTX *ctx, unsigned char *out,
                                             unsigned char const *in, size_t len,
                                             SIV_BLOCK *icv)
{
    int out_len = (int)len;

    if (!EVP_CipherInit_ex(ctx, NULL, NULL, NULL, icv->byte, 1))
        return 0;
    return EVP_EncryptUpdate(ctx, out, &out_len, in, out_len);
}

/*
 * Create a new SIV128_CONTEXT
 */
SIV128_CONTEXT *CRYPTO_siv128_new(const unsigned char *key, int klen, EVP_CIPHER* cbc, EVP_CIPHER* ctr)
{
    SIV128_CONTEXT *ctx;
    int ret;

    if ((ctx = OPENSSL_malloc(sizeof(*ctx))) != NULL) {
        ret = CRYPTO_siv128_init(ctx, key, klen, cbc, ctr);
        if (ret)
            return ctx;
        OPENSSL_free(ctx);
    }

    return NULL;
}

/*
 * Initialise an existing SIV128_CONTEXT
 */
int CRYPTO_siv128_init(SIV128_CONTEXT *ctx, const unsigned char *key, int klen,
                       const EVP_CIPHER* cbc, const EVP_CIPHER* ctr)
{
    static const unsigned char zero[SIV_LEN] = { 0 };
    size_t out_len = SIV_LEN;
    EVP_MAC_CTX *mac_ctx = NULL;
    OSSL_PARAM params[3];
    const char *cbc_name = EVP_CIPHER_name(cbc);

    params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_ALGORITHM,
                                                 (char *)cbc_name,
                                                 strlen(cbc_name) + 1);
    params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
                                                  (void *)key, klen);
    params[2] = OSSL_PARAM_construct_end();

    memset(&ctx->d, 0, sizeof(ctx->d));
    ctx->cipher_ctx = NULL;
    ctx->mac_ctx_init = NULL;

    if (key == NULL || cbc == NULL || ctr == NULL
            || (ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL
            /* TODO(3.0) library context */
            || (ctx->mac = EVP_MAC_fetch(NULL, "CMAC", NULL)) == NULL
            || (ctx->mac_ctx_init = EVP_MAC_CTX_new(ctx->mac)) == NULL
            || !EVP_MAC_CTX_set_params(ctx->mac_ctx_init, params)
            || !EVP_EncryptInit_ex(ctx->cipher_ctx, ctr, NULL, key + klen, NULL)
            || (mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL
            || !EVP_MAC_update(mac_ctx, zero, sizeof(zero))
            || !EVP_MAC_final(mac_ctx, ctx->d.byte, &out_len,
                              sizeof(ctx->d.byte))) {
        EVP_CIPHER_CTX_free(ctx->cipher_ctx);
        EVP_MAC_CTX_free(ctx->mac_ctx_init);
        EVP_MAC_CTX_free(mac_ctx);
        EVP_MAC_free(ctx->mac);
        return 0;
    }
    EVP_MAC_CTX_free(mac_ctx);

    ctx->final_ret = -1;
    ctx->crypto_ok = 1;

    return 1;
}

/*
 * Copy an SIV128_CONTEXT object
 */
int CRYPTO_siv128_copy_ctx(SIV128_CONTEXT *dest, SIV128_CONTEXT *src)
{
    memcpy(&dest->d, &src->d, sizeof(src->d));
    if (!EVP_CIPHER_CTX_copy(dest->cipher_ctx, src->cipher_ctx))
        return 0;
    EVP_MAC_CTX_free(dest->mac_ctx_init);
    dest->mac_ctx_init = EVP_MAC_CTX_dup(src->mac_ctx_init);
    if (dest->mac_ctx_init == NULL)
        return 0;
    return 1;
}

/*
 * Provide any AAD. This can be called multiple times.
 * Per RFC5297, the last piece of associated data
 * is the nonce, but it's not treated special
 */
int CRYPTO_siv128_aad(SIV128_CONTEXT *ctx, const unsigned char *aad,
                      size_t len)
{
    SIV_BLOCK mac_out;
    size_t out_len = SIV_LEN;
    EVP_MAC_CTX *mac_ctx;

    siv128_dbl(&ctx->d);

    if ((mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL
        || !EVP_MAC_update(mac_ctx, aad, len)
        || !EVP_MAC_final(mac_ctx, mac_out.byte, &out_len,
                          sizeof(mac_out.byte))
        || out_len != SIV_LEN) {
        EVP_MAC_CTX_free(mac_ctx);
        return 0;
    }
    EVP_MAC_CTX_free(mac_ctx);

    siv128_xorblock(&ctx->d, &mac_out);

    return 1;
}

/*
 * Provide any data to be encrypted. This can be called once.
 */
int CRYPTO_siv128_encrypt(SIV128_CONTEXT *ctx,
                          const unsigned char *in, unsigned char *out,
                          size_t len)
{
    SIV_BLOCK q;

    /* can only do one crypto operation */
    if (ctx->crypto_ok == 0)
        return 0;
    ctx->crypto_ok--;

    if (!siv128_do_s2v_p(ctx, &q, in, len))
        return 0;

    memcpy(ctx->tag.byte, &q, SIV_LEN);
    q.byte[8] &= 0x7f;
    q.byte[12] &= 0x7f;

    if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q))
        return 0;
    ctx->final_ret = 0;
    return len;
}

/*
 * Provide any data to be decrypted. This can be called once.
 */
int CRYPTO_siv128_decrypt(SIV128_CONTEXT *ctx,
                          const unsigned char *in, unsigned char *out,
                          size_t len)
{
    unsigned char* p;
    SIV_BLOCK t, q;
    int i;

    /* can only do one crypto operation */
    if (ctx->crypto_ok == 0)
        return 0;
    ctx->crypto_ok--;

    memcpy(&q, ctx->tag.byte, SIV_LEN);
    q.byte[8] &= 0x7f;
    q.byte[12] &= 0x7f;

    if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q)
        || !siv128_do_s2v_p(ctx, &t, out, len))
        return 0;

    p = ctx->tag.byte;
    for (i = 0; i < SIV_LEN; i++)
        t.byte[i] ^= p[i];

    if ((t.word[0] | t.word[1]) != 0) {
        OPENSSL_cleanse(out, len);
        return 0;
    }
    ctx->final_ret = 0;
    return len;
}

/*
 * Return the already calculated final result.
 */
int CRYPTO_siv128_finish(SIV128_CONTEXT *ctx)
{
    return ctx->final_ret;
}

/*
 * Set the tag
 */
int CRYPTO_siv128_set_tag(SIV128_CONTEXT *ctx, const unsigned char *tag, size_t len)
{
    if (len != SIV_LEN)
        return 0;

    /* Copy the tag from the supplied buffer */
    memcpy(ctx->tag.byte, tag, len);
    return 1;
}

/*
 * Retrieve the calculated tag
 */
int CRYPTO_siv128_get_tag(SIV128_CONTEXT *ctx, unsigned char *tag, size_t len)
{
    if (len != SIV_LEN)
        return 0;

    /* Copy the tag into the supplied buffer */
    memcpy(tag, ctx->tag.byte, len);
    return 1;
}

/*
 * Release all resources
 */
int CRYPTO_siv128_cleanup(SIV128_CONTEXT *ctx)
{
    if (ctx != NULL) {
        EVP_CIPHER_CTX_free(ctx->cipher_ctx);
        ctx->cipher_ctx = NULL;
        EVP_MAC_CTX_free(ctx->mac_ctx_init);
        ctx->mac_ctx_init = NULL;
        EVP_MAC_free(ctx->mac);
        ctx->mac = NULL;
        OPENSSL_cleanse(&ctx->d, sizeof(ctx->d));
        OPENSSL_cleanse(&ctx->tag, sizeof(ctx->tag));
        ctx->final_ret = -1;
        ctx->crypto_ok = 1;
    }
    return 1;
}

int CRYPTO_siv128_speed(SIV128_CONTEXT *ctx, int arg)
{
    ctx->crypto_ok = (arg == 1) ? -1 : 1;
    return 1;
}

#endif                          /* OPENSSL_NO_SIV */