summaryrefslogtreecommitdiffstats
path: root/crypto/threads_win.c
blob: 03a22fd2c92a66db7984f0a13e0ddfaa0f9d5c03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
/*
 * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#if defined(_WIN32)
# include <windows.h>
# if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600
#  define USE_RWLOCK
# endif
#endif
#include <assert.h>

/*
 * VC++ 2008 or earlier x86 compilers do not have an inline implementation
 * of InterlockedOr64 for 32bit and will fail to run on Windows XP 32bit.
 * https://docs.microsoft.com/en-us/cpp/intrinsics/interlockedor-intrinsic-functions#requirements
 * To work around this problem, we implement a manual locking mechanism for
 * only VC++ 2008 or earlier x86 compilers.
 */

#if ((defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER <= 1600) || (defined(__MINGW32__) && !defined(__MINGW64__)))
# define NO_INTERLOCKEDOR64
#endif

#include <openssl/crypto.h>
#include <crypto/cryptlib.h>
#include "internal/common.h"
#include "internal/thread_arch.h"
#include "internal/rcu.h"
#include "rcu_internal.h"

#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && defined(OPENSSL_SYS_WINDOWS)

# ifdef USE_RWLOCK
typedef struct {
    SRWLOCK lock;
    int exclusive;
} CRYPTO_win_rwlock;
# endif

/*
 * users is broken up into 2 parts
 * bits 0-31 current readers
 * bit 32-63 ID
 */
# define READER_SHIFT 0
# define ID_SHIFT 32
/* TODO: READER_SIZE 16 in threads_pthread.c */
# define READER_SIZE 32
# define ID_SIZE 32

# define READER_MASK     (((uint64_t)1 << READER_SIZE) - 1)
# define ID_MASK         (((uint64_t)1 << ID_SIZE) - 1)
# define READER_COUNT(x) ((uint32_t)(((uint64_t)(x) >> READER_SHIFT) & \
                                     READER_MASK))
# define ID_VAL(x)       ((uint32_t)(((uint64_t)(x) >> ID_SHIFT) & ID_MASK))
# define VAL_READER      ((int64_t)1 << READER_SHIFT)
# define VAL_ID(x)       ((uint64_t)x << ID_SHIFT)

/*
 * This defines a quescent point (qp)
 * This is the barrier beyond which a writer
 * must wait before freeing data that was
 * atomically updated
 */
struct rcu_qp {
    volatile uint64_t users;
};

struct thread_qp {
    struct rcu_qp *qp;
    unsigned int depth;
    CRYPTO_RCU_LOCK *lock;
};

# define MAX_QPS 10
/*
 * This is the per thread tracking data
 * that is assigned to each thread participating
 * in an rcu qp
 *
 * qp points to the qp that it last acquired
 *
 */
struct rcu_thr_data {
    struct thread_qp thread_qps[MAX_QPS];
};

/*
 * This is the internal version of a CRYPTO_RCU_LOCK
 * it is cast from CRYPTO_RCU_LOCK
 */
struct rcu_lock_st {
    /* Callbacks to call for next ossl_synchronize_rcu */
    struct rcu_cb_item *cb_items;

    /* The context we are being created against */
    OSSL_LIB_CTX *ctx;

    /* rcu generation counter for in-order retirement */
    uint32_t id_ctr;

    /* TODO: can be moved before id_ctr for better alignment */
    /* Array of quiescent points for synchronization */
    struct rcu_qp *qp_group;

    /* Number of elements in qp_group array */
    uint32_t group_count;

    /* Index of the current qp in the qp_group array */
    uint32_t reader_idx;

    /* value of the next id_ctr value to be retired */
    uint32_t next_to_retire;

    /* index of the next free rcu_qp in the qp_group */
    uint32_t current_alloc_idx;

    /* number of qp's in qp_group array currently being retired */
    uint32_t writers_alloced;

    /* lock protecting write side operations */
    CRYPTO_MUTEX *write_lock;

    /* lock protecting updates to writers_alloced/current_alloc_idx */
    CRYPTO_MUTEX *alloc_lock;

    /* signal to wake threads waiting on alloc_lock */
    CRYPTO_CONDVAR *alloc_signal;

    /* lock to enforce in-order retirement */
    CRYPTO_MUTEX *prior_lock;

    /* signal to wake threads waiting on prior_lock */
    CRYPTO_CONDVAR *prior_signal;

    /* lock used with NO_INTERLOCKEDOR64: VS2010 x86 */
    CRYPTO_RWLOCK *rw_lock;
};

/* TODO: count should be unsigned, e.g uint32_t */
/* a negative value could result in unexpected behaviour */
static struct rcu_qp *allocate_new_qp_group(struct rcu_lock_st *lock,
                                            int count)
{
    struct rcu_qp *new =
        OPENSSL_zalloc(sizeof(*new) * count);

    lock->group_count = count;
    return new;
}

CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
{
    struct rcu_lock_st *new;

    /*
     * We need a minimum of 3 qps
     */
    if (num_writers < 3)
        num_writers = 3;

    ctx = ossl_lib_ctx_get_concrete(ctx);
    if (ctx == NULL)
        return 0;

    new = OPENSSL_zalloc(sizeof(*new));

    if (new == NULL)
        return NULL;

    new->ctx = ctx;
    new->rw_lock = CRYPTO_THREAD_lock_new();
    new->write_lock = ossl_crypto_mutex_new();
    new->alloc_signal = ossl_crypto_condvar_new();
    new->prior_signal = ossl_crypto_condvar_new();
    new->alloc_lock = ossl_crypto_mutex_new();
    new->prior_lock = ossl_crypto_mutex_new();
    new->qp_group = allocate_new_qp_group(new, num_writers);
    /* By default the first qp is already alloced */
    new->writers_alloced = 1;
    if (new->qp_group == NULL
        || new->alloc_signal == NULL
        || new->prior_signal == NULL
        || new->write_lock == NULL
        || new->alloc_lock == NULL
        || new->prior_lock == NULL
        || new->rw_lock == NULL) {
        CRYPTO_THREAD_lock_free(new->rw_lock);
        OPENSSL_free(new->qp_group);
        ossl_crypto_condvar_free(&new->alloc_signal);
        ossl_crypto_condvar_free(&new->prior_signal);
        ossl_crypto_mutex_free(&new->alloc_lock);
        ossl_crypto_mutex_free(&new->prior_lock);
        ossl_crypto_mutex_free(&new->write_lock);
        OPENSSL_free(new);
        new = NULL;
    }

    return new;

}

void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
{
    CRYPTO_THREAD_lock_free(lock->rw_lock);
    OPENSSL_free(lock->qp_group);
    ossl_crypto_condvar_free(&lock->alloc_signal);
    ossl_crypto_condvar_free(&lock->prior_signal);
    ossl_crypto_mutex_free(&lock->alloc_lock);
    ossl_crypto_mutex_free(&lock->prior_lock);
    ossl_crypto_mutex_free(&lock->write_lock);
    OPENSSL_free(lock);
}

/* Read side acquisition of the current qp */
static ossl_inline struct rcu_qp *get_hold_current_qp(CRYPTO_RCU_LOCK *lock)
{
    uint32_t qp_idx;
    uint32_t tmp;
    uint64_t tmp64;

    /* get the current qp index */
    for (;;) {
        CRYPTO_atomic_load_int((int *)&lock->reader_idx, (int *)&qp_idx,
                               lock->rw_lock);
        CRYPTO_atomic_add64(&lock->qp_group[qp_idx].users, VAL_READER, &tmp64,
                            lock->rw_lock);
        CRYPTO_atomic_load_int((int *)&lock->reader_idx, (int *)&tmp,
                               lock->rw_lock);
        if (qp_idx == tmp)
            break;
        CRYPTO_atomic_add64(&lock->qp_group[qp_idx].users, -VAL_READER, &tmp64,
                            lock->rw_lock);
    }

    return &lock->qp_group[qp_idx];
}

static void ossl_rcu_free_local_data(void *arg)
{
    OSSL_LIB_CTX *ctx = arg;
    CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
    struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
    OPENSSL_free(data);
    CRYPTO_THREAD_set_local(lkey, NULL);
}

void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
{
    struct rcu_thr_data *data;
    int i;
    int available_qp = -1;
    CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);

    /*
     * we're going to access current_qp here so ask the
     * processor to fetch it
     */
    data = CRYPTO_THREAD_get_local(lkey);

    if (data == NULL) {
        data = OPENSSL_zalloc(sizeof(*data));
        OPENSSL_assert(data != NULL);
        CRYPTO_THREAD_set_local(lkey, data);
        ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
    }

    for (i = 0; i < MAX_QPS; i++) {
        if (data->thread_qps[i].qp == NULL && available_qp == -1)
            available_qp = i;
        /* If we have a hold on this lock already, we're good */
        if (data->thread_qps[i].lock == lock)
            return;
    }

    /*
     * if we get here, then we don't have a hold on this lock yet
     */
    assert(available_qp != -1);

    data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
    data->thread_qps[available_qp].depth = 1;
    data->thread_qps[available_qp].lock = lock;
}

void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
{
    ossl_crypto_mutex_lock(lock->write_lock);
}

void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
{
    ossl_crypto_mutex_unlock(lock->write_lock);
}

void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
{
    CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
    struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
    int i;
    LONG64 ret;

    assert(data != NULL);

    for (i = 0; i < MAX_QPS; i++) {
        if (data->thread_qps[i].lock == lock) {
            data->thread_qps[i].depth--;
            if (data->thread_qps[i].depth == 0) {
                CRYPTO_atomic_add64(&data->thread_qps[i].qp->users,
                                    -VAL_READER, (uint64_t *)&ret,
                                    lock->rw_lock);
                OPENSSL_assert(ret >= 0);
                data->thread_qps[i].qp = NULL;
                data->thread_qps[i].lock = NULL;
            }
            return;
        }
    }
}

/*
 * Write side allocation routine to get the current qp
 * and replace it with a new one
 */
static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
{
    uint64_t new_id;
    uint32_t current_idx;
    uint32_t tmp;
    uint64_t tmp64;

    ossl_crypto_mutex_lock(lock->alloc_lock);
    /*
     * we need at least one qp to be available with one
     * left over, so that readers can start working on
     * one that isn't yet being waited on
     */
    while (lock->group_count - lock->writers_alloced < 2)
        /* we have to wait for one to be free */
        ossl_crypto_condvar_wait(lock->alloc_signal, lock->alloc_lock);

    current_idx = lock->current_alloc_idx;

    /* Allocate the qp */
    lock->writers_alloced++;

    /* increment the allocation index */
    lock->current_alloc_idx =
        (lock->current_alloc_idx + 1) % lock->group_count;

    /* get and insert a new id */
    new_id = VAL_ID(lock->id_ctr);
    lock->id_ctr++;

    /*
     * Even though we are under a write side lock here
     * We need to use atomic instructions to ensure that the results
     * of this update are published to the read side prior to updating the
     * reader idx below
     */
    CRYPTO_atomic_and(&lock->qp_group[current_idx].users, ID_MASK, &tmp64,
                      lock->rw_lock);
    CRYPTO_atomic_add64(&lock->qp_group[current_idx].users, new_id, &tmp64,
                        lock->rw_lock);

    /* update the reader index to be the prior qp */
    tmp = lock->current_alloc_idx;
    InterlockedExchange((LONG volatile *)&lock->reader_idx, tmp);

    /* wake up any waiters */
    ossl_crypto_condvar_broadcast(lock->alloc_signal);
    ossl_crypto_mutex_unlock(lock->alloc_lock);
    return &lock->qp_group[current_idx];
}

static void retire_qp(CRYPTO_RCU_LOCK *lock,
                      struct rcu_qp *qp)
{
    ossl_crypto_mutex_lock(lock->alloc_lock);
    lock->writers_alloced--;
    ossl_crypto_condvar_broadcast(lock->alloc_signal);
    ossl_crypto_mutex_unlock(lock->alloc_lock);
}


void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
{
    struct rcu_qp *qp;
    uint64_t count;
    struct rcu_cb_item *cb_items, *tmpcb;

    /* before we do anything else, lets grab the cb list */
    cb_items = InterlockedExchangePointer((void * volatile *)&lock->cb_items,
                                          NULL);

    qp = update_qp(lock);

    /* wait for the reader count to reach zero */
    do {
        CRYPTO_atomic_load(&qp->users, &count, lock->rw_lock);
    } while (READER_COUNT(count) != 0);

    /* retire in order */
    ossl_crypto_mutex_lock(lock->prior_lock);
    while (lock->next_to_retire != ID_VAL(count))
        ossl_crypto_condvar_wait(lock->prior_signal, lock->prior_lock);

    lock->next_to_retire++;
    ossl_crypto_condvar_broadcast(lock->prior_signal);
    ossl_crypto_mutex_unlock(lock->prior_lock);

    retire_qp(lock, qp);

    /* handle any callbacks that we have */
    while (cb_items != NULL) {
        tmpcb = cb_items;
        cb_items = cb_items->next;
        tmpcb->fn(tmpcb->data);
        OPENSSL_free(tmpcb);
    }

    /* and we're done */
    return;

}

int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
{
    struct rcu_cb_item *new;

    new = OPENSSL_zalloc(sizeof(struct rcu_cb_item));
    if (new == NULL)
        return 0;
    new->data = data;
    new->fn = cb;

    new->next = InterlockedExchangePointer((void * volatile *)&lock->cb_items,
                                           new);
    return 1;
}

void *ossl_rcu_uptr_deref(void **p)
{
    return (void *)*p;
}

void ossl_rcu_assign_uptr(void **p, void **v)
{
    InterlockedExchangePointer((void * volatile *)p, (void *)*v);
}


CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
{
    CRYPTO_RWLOCK *lock;
# ifdef USE_RWLOCK
    CRYPTO_win_rwlock *rwlock;

    if ((lock = OPENSSL_zalloc(sizeof(CRYPTO_win_rwlock))) == NULL)
        /* Don't set error, to avoid recursion blowup. */
        return NULL;
    rwlock = lock;
    InitializeSRWLock(&rwlock->lock);
# else

    if ((lock = OPENSSL_zalloc(sizeof(CRITICAL_SECTION))) == NULL)
        /* Don't set error, to avoid recursion blowup. */
        return NULL;

#  if !defined(_WIN32_WCE)
    /* 0x400 is the spin count value suggested in the documentation */
    if (!InitializeCriticalSectionAndSpinCount(lock, 0x400)) {
        OPENSSL_free(lock);
        return NULL;
    }
#  else
    InitializeCriticalSection(lock);
#  endif
# endif

    return lock;
}

__owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
    CRYPTO_win_rwlock *rwlock = lock;

    AcquireSRWLockShared(&rwlock->lock);
# else
    EnterCriticalSection(lock);
# endif
    return 1;
}

__owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
    CRYPTO_win_rwlock *rwlock = lock;

    AcquireSRWLockExclusive(&rwlock->lock);
    rwlock->exclusive = 1;
# else
    EnterCriticalSection(lock);
# endif
    return 1;
}

int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
    CRYPTO_win_rwlock *rwlock = lock;

    if (rwlock->exclusive) {
        rwlock->exclusive = 0;
        ReleaseSRWLockExclusive(&rwlock->lock);
    } else {
        ReleaseSRWLockShared(&rwlock->lock);
    }
# else
    LeaveCriticalSection(lock);
# endif
    return 1;
}

void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
{
    if (lock == NULL)
        return;

# ifndef USE_RWLOCK
    DeleteCriticalSection(lock);
# endif
    OPENSSL_free(lock);

    return;
}

# define ONCE_UNINITED     0
# define ONCE_ININIT       1
# define ONCE_DONE         2

/*
 * We don't use InitOnceExecuteOnce because that isn't available in WinXP which
 * we still have to support.
 */
int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
{
    LONG volatile *lock = (LONG *)once;
    LONG result;

    if (*lock == ONCE_DONE)
        return 1;

    do {
        result = InterlockedCompareExchange(lock, ONCE_ININIT, ONCE_UNINITED);
        if (result == ONCE_UNINITED) {
            init();
            *lock = ONCE_DONE;
            return 1;
        }
    } while (result == ONCE_ININIT);

    return (*lock == ONCE_DONE);
}

int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
{
    *key = TlsAlloc();
    if (*key == TLS_OUT_OF_INDEXES)
        return 0;

    return 1;
}

void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
{
    DWORD last_error;
    void *ret;

    /*
     * TlsGetValue clears the last error even on success, so that callers may
     * distinguish it successfully returning NULL or failing. It is documented
     * to never fail if the argument is a valid index from TlsAlloc, so we do
     * not need to handle this.
     *
     * However, this error-mangling behavior interferes with the caller's use of
     * GetLastError. In particular SSL_get_error queries the error queue to
     * determine whether the caller should look at the OS's errors. To avoid
     * destroying state, save and restore the Windows error.
     *
     * https://msdn.microsoft.com/en-us/library/windows/desktop/ms686812(v=vs.85).aspx
     */
    last_error = GetLastError();
    ret = TlsGetValue(*key);
    SetLastError(last_error);
    return ret;
}

int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
{
    if (TlsSetValue(*key, val) == 0)
        return 0;

    return 1;
}

int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
{
    if (TlsFree(*key) == 0)
        return 0;

    return 1;
}

CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
{
    return GetCurrentThreadId();
}

int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
{
    return (a == b);
}

int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
{
    *ret = (int)InterlockedExchangeAdd((LONG volatile *)val, (LONG)amount)
        + amount;
    return 1;
}

int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
                        CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
    if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
        return 0;
    *val += op;
    *ret = *val;

    if (!CRYPTO_THREAD_unlock(lock))
        return 0;

    return 1;
# else
    *ret = (uint64_t)InterlockedAdd64((LONG64 volatile *)val, (LONG64)op);
    return 1;
# endif
}

int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
                      CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
    if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
        return 0;
    *val &= op;
    *ret = *val;

    if (!CRYPTO_THREAD_unlock(lock))
        return 0;

    return 1;
# else
    *ret = (uint64_t)InterlockedAnd64((LONG64 volatile *)val, (LONG64)op) & op;
    return 1;
# endif
}

int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
                     CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
    if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
        return 0;
    *val |= op;
    *ret = *val;

    if (!CRYPTO_THREAD_unlock(lock))
        return 0;

    return 1;
# else
    *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, (LONG64)op) | op;
    return 1;
# endif
}

int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
    if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
        return 0;
    *ret = *val;
    if (!CRYPTO_THREAD_unlock(lock))
        return 0;

    return 1;
# else
    *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, 0);
    return 1;
# endif
}

int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
    if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
        return 0;
    *dst = val;
    if (!CRYPTO_THREAD_unlock(lock))
        return 0;

    return 1;
# else
    InterlockedExchange64(dst, val);
    return 1;
# endif
}

int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
    if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
        return 0;
    *ret = *val;
    if (!CRYPTO_THREAD_unlock(lock))
        return 0;

    return 1;
# else
    /* On Windows, LONG (but not long) is always the same size as int. */
    *ret = (int)InterlockedOr((LONG volatile *)val, 0);
    return 1;
# endif
}

int openssl_init_fork_handlers(void)
{
    return 0;
}

int openssl_get_fork_id(void)
{
    return 0;
}
#endif