summaryrefslogtreecommitdiffstats
path: root/providers/implementations/rands/seeding/rand_unix.c
blob: f394927daef4a38df4c01839059ec80f3bce8ba0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
/*
 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
#include "../e_os.h"
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/rand.h>
#include <openssl/crypto.h>
#include "crypto/rand_pool.h"
#include "crypto/rand.h"
#include <stdio.h>
#include "internal/dso.h"
#include "prov/seeding.h"

#ifdef __linux
# include <sys/syscall.h>
# ifdef DEVRANDOM_WAIT
#  include <sys/shm.h>
#  include <sys/utsname.h>
# endif
#endif
#if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
# include <sys/types.h>
# include <sys/sysctl.h>
# include <sys/param.h>
#endif
#if defined(__OpenBSD__)
# include <sys/param.h>
#endif
#if defined(__DragonFly__)
# include <sys/param.h>
# include <sys/random.h>
#endif

#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
     || defined(__DJGPP__)
# include <sys/types.h>
# include <sys/stat.h>
# include <fcntl.h>
# include <unistd.h>
# include <sys/time.h>

static uint64_t get_time_stamp(void);
static uint64_t get_timer_bits(void);

/* Macro to convert two thirty two bit values into a sixty four bit one */
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))

/*
 * Check for the existence and support of POSIX timers.  The standard
 * says that the _POSIX_TIMERS macro will have a positive value if they
 * are available.
 *
 * However, we want an additional constraint: that the timer support does
 * not require an extra library dependency.  Early versions of glibc
 * require -lrt to be specified on the link line to access the timers,
 * so this needs to be checked for.
 *
 * It is worse because some libraries define __GLIBC__ but don't
 * support the version testing macro (e.g. uClibc).  This means
 * an extra check is needed.
 *
 * The final condition is:
 *      "have posix timers and either not glibc or glibc without -lrt"
 *
 * The nested #if sequences are required to avoid using a parameterised
 * macro that might be undefined.
 */
# undef OSSL_POSIX_TIMER_OKAY
/* On some systems, _POSIX_TIMERS is defined but empty.
 * Subtracting by 0 when comparing avoids an error in this case. */
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS -0 > 0
#  if defined(__GLIBC__)
#   if defined(__GLIBC_PREREQ)
#    if __GLIBC_PREREQ(2, 17)
#     define OSSL_POSIX_TIMER_OKAY
#    endif
#   endif
#  else
#   define OSSL_POSIX_TIMER_OKAY
#  endif
# endif
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
          || defined(__DJGPP__) */

#if defined(OPENSSL_RAND_SEED_NONE)
/* none means none. this simplifies the following logic */
# undef OPENSSL_RAND_SEED_OS
# undef OPENSSL_RAND_SEED_GETRANDOM
# undef OPENSSL_RAND_SEED_LIBRANDOM
# undef OPENSSL_RAND_SEED_DEVRANDOM
# undef OPENSSL_RAND_SEED_RDTSC
# undef OPENSSL_RAND_SEED_RDCPU
# undef OPENSSL_RAND_SEED_EGD
#endif

#if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
# error "UEFI only supports seeding NONE"
#endif

#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
    || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
    || defined(OPENSSL_SYS_UEFI))

# if defined(OPENSSL_SYS_VOS)

#  ifndef OPENSSL_RAND_SEED_OS
#   error "Unsupported seeding method configured; must be os"
#  endif

#  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
#   error "Unsupported HP-PA and IA32 at the same time."
#  endif
#  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
#   error "Must have one of HP-PA or IA32"
#  endif

/*
 * The following algorithm repeatedly samples the real-time clock (RTC) to
 * generate a sequence of unpredictable data.  The algorithm relies upon the
 * uneven execution speed of the code (due to factors such as cache misses,
 * interrupts, bus activity, and scheduling) and upon the rather large
 * relative difference between the speed of the clock and the rate at which
 * it can be read.  If it is ported to an environment where execution speed
 * is more constant or where the RTC ticks at a much slower rate, or the
 * clock can be read with fewer instructions, it is likely that the results
 * would be far more predictable.  This should only be used for legacy
 * platforms.
 *
 * As a precaution, we assume only 2 bits of entropy per byte.
 */
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
{
    short int code;
    int i, k;
    size_t bytes_needed;
    struct timespec ts;
    unsigned char v;
#  ifdef OPENSSL_SYS_VOS_HPPA
    long duration;
    extern void s$sleep(long *_duration, short int *_code);
#  else
    long long duration;
    extern void s$sleep2(long long *_duration, short int *_code);
#  endif

    bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);

    for (i = 0; i < bytes_needed; i++) {
        /*
         * burn some cpu; hope for interrupts, cache collisions, bus
         * interference, etc.
         */
        for (k = 0; k < 99; k++)
            ts.tv_nsec = random();

#  ifdef OPENSSL_SYS_VOS_HPPA
        /* sleep for 1/1024 of a second (976 us).  */
        duration = 1;
        s$sleep(&duration, &code);
#  else
        /* sleep for 1/65536 of a second (15 us).  */
        duration = 1;
        s$sleep2(&duration, &code);
#  endif

        /* Get wall clock time, take 8 bits. */
        clock_gettime(CLOCK_REALTIME, &ts);
        v = (unsigned char)(ts.tv_nsec & 0xFF);
        ossl_rand_pool_add(pool, arg, &v, sizeof(v), 2);
    }
    return ossl_rand_pool_entropy_available(pool);
}

void ossl_rand_pool_cleanup(void)
{
}

void ossl_rand_pool_keep_random_devices_open(int keep)
{
}

# else

#  if defined(OPENSSL_RAND_SEED_EGD) && \
        (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
#   error "Seeding uses EGD but EGD is turned off or no device given"
#  endif

#  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
#   error "Seeding uses urandom but DEVRANDOM is not configured"
#  endif

#  if defined(OPENSSL_RAND_SEED_OS)
#   if !defined(DEVRANDOM)
#    error "OS seeding requires DEVRANDOM to be configured"
#   endif
#   define OPENSSL_RAND_SEED_GETRANDOM
#   define OPENSSL_RAND_SEED_DEVRANDOM
#  endif

#  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
#   error "librandom not (yet) supported"
#  endif

#  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
/*
 * sysctl_random(): Use sysctl() to read a random number from the kernel
 * Returns the number of bytes returned in buf on success, -1 on failure.
 */
static ssize_t sysctl_random(char *buf, size_t buflen)
{
    int mib[2];
    size_t done = 0;
    size_t len;

    /*
     * Note: sign conversion between size_t and ssize_t is safe even
     * without a range check, see comment in syscall_random()
     */

    /*
     * On FreeBSD old implementations returned longs, newer versions support
     * variable sizes up to 256 byte. The code below would not work properly
     * when the sysctl returns long and we want to request something not a
     * multiple of longs, which should never be the case.
     */
#if   defined(__FreeBSD__)
    if (!ossl_assert(buflen % sizeof(long) == 0)) {
        errno = EINVAL;
        return -1;
    }
#endif

    /*
     * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
     * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
     * it returns a variable number of bytes with the current version supporting
     * up to 256 bytes.
     * Just return an error on older NetBSD versions.
     */
#if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
    errno = ENOSYS;
    return -1;
#endif

    mib[0] = CTL_KERN;
    mib[1] = KERN_ARND;

    do {
        len = buflen > 256 ? 256 : buflen;
        if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
            return done > 0 ? done : -1;
        done += len;
        buf += len;
        buflen -= len;
    } while (buflen > 0);

    return done;
}
#  endif

#  if defined(OPENSSL_RAND_SEED_GETRANDOM)

#   if defined(__linux) && !defined(__NR_getrandom)
#    if defined(__arm__)
#     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
#    elif defined(__i386__)
#     define __NR_getrandom    355
#    elif defined(__x86_64__)
#     if defined(__ILP32__)
#      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
#     else
#      define __NR_getrandom   318
#     endif
#    elif defined(__xtensa__)
#     define __NR_getrandom    338
#    elif defined(__s390__) || defined(__s390x__)
#     define __NR_getrandom    349
#    elif defined(__bfin__)
#     define __NR_getrandom    389
#    elif defined(__powerpc__)
#     define __NR_getrandom    359
#    elif defined(__mips__) || defined(__mips64)
#     if _MIPS_SIM == _MIPS_SIM_ABI32
#      define __NR_getrandom   (__NR_Linux + 353)
#     elif _MIPS_SIM == _MIPS_SIM_ABI64
#      define __NR_getrandom   (__NR_Linux + 313)
#     elif _MIPS_SIM == _MIPS_SIM_NABI32
#      define __NR_getrandom   (__NR_Linux + 317)
#     endif
#    elif defined(__hppa__)
#     define __NR_getrandom    (__NR_Linux + 339)
#    elif defined(__sparc__)
#     define __NR_getrandom    347
#    elif defined(__ia64__)
#     define __NR_getrandom    1339
#    elif defined(__alpha__)
#     define __NR_getrandom    511
#    elif defined(__sh__)
#     if defined(__SH5__)
#      define __NR_getrandom   373
#     else
#      define __NR_getrandom   384
#     endif
#    elif defined(__avr32__)
#     define __NR_getrandom    317
#    elif defined(__microblaze__)
#     define __NR_getrandom    385
#    elif defined(__m68k__)
#     define __NR_getrandom    352
#    elif defined(__cris__)
#     define __NR_getrandom    356
#    elif defined(__aarch64__)
#     define __NR_getrandom    278
#    else /* generic */
#     define __NR_getrandom    278
#    endif
#   endif

/*
 * syscall_random(): Try to get random data using a system call
 * returns the number of bytes returned in buf, or < 0 on error.
 */
static ssize_t syscall_random(void *buf, size_t buflen)
{
    /*
     * Note: 'buflen' equals the size of the buffer which is used by the
     * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
     *
     *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
     *
     * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
     * between size_t and ssize_t is safe even without a range check.
     */

    /*
     * Do runtime detection to find getentropy().
     *
     * Known OSs that should support this:
     * - Darwin since 16 (OSX 10.12, IOS 10.0).
     * - Solaris since 11.3
     * - OpenBSD since 5.6
     * - Linux since 3.17 with glibc 2.25
     * - FreeBSD since 12.0 (1200061)
     *
     * Note: Sometimes getentropy() can be provided but not implemented
     * internally. So we need to check errno for ENOSYS
     */
#  if !defined(__DragonFly__) && !defined(__NetBSD__)
#    if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
    extern int getentropy(void *buffer, size_t length) __attribute__((weak));

    if (getentropy != NULL) {
        if (getentropy(buf, buflen) == 0)
            return (ssize_t)buflen;
        if (errno != ENOSYS)
            return -1;
    }
#    elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)

    if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
	    return (ssize_t)buflen;

    return -1;
#    else
    union {
        void *p;
        int (*f)(void *buffer, size_t length);
    } p_getentropy;

    /*
     * We could cache the result of the lookup, but we normally don't
     * call this function often.
     */
    ERR_set_mark();
    p_getentropy.p = DSO_global_lookup("getentropy");
    ERR_pop_to_mark();
    if (p_getentropy.p != NULL)
        return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
#    endif
#  endif /* !__DragonFly__ */

    /* Linux supports this since version 3.17 */
#  if defined(__linux) && defined(__NR_getrandom)
    return syscall(__NR_getrandom, buf, buflen, 0);
#  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
    return sysctl_random(buf, buflen);
#  elif (defined(__DragonFly__)  && __DragonFly_version >= 500700) \
     || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000)
    return getrandom(buf, buflen, 0);
#  else
    errno = ENOSYS;
    return -1;
#  endif
}
#  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */

#  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
static const char *random_device_paths[] = { DEVRANDOM };
static struct random_device {
    int fd;
    dev_t dev;
    ino_t ino;
    mode_t mode;
    dev_t rdev;
} random_devices[OSSL_NELEM(random_device_paths)];
static int keep_random_devices_open = 1;

#   if defined(__linux) && defined(DEVRANDOM_WAIT) \
       && defined(OPENSSL_RAND_SEED_GETRANDOM)
static void *shm_addr;

static void cleanup_shm(void)
{
    shmdt(shm_addr);
}

/*
 * Ensure that the system randomness source has been adequately seeded.
 * This is done by having the first start of libcrypto, wait until the device
 * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
 * of the library and later reseedings do not need to do this.
 */
static int wait_random_seeded(void)
{
    static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
    static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
    int kernel[2];
    int shm_id, fd, r;
    char c, *p;
    struct utsname un;
    fd_set fds;

    if (!seeded) {
        /* See if anything has created the global seeded indication */
        if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
            /*
             * Check the kernel's version and fail if it is too recent.
             *
             * Linux kernels from 4.8 onwards do not guarantee that
             * /dev/urandom is properly seeded when /dev/random becomes
             * readable.  However, such kernels support the getentropy(2)
             * system call and this should always succeed which renders
             * this alternative but essentially identical source moot.
             */
            if (uname(&un) == 0) {
                kernel[0] = atoi(un.release);
                p = strchr(un.release, '.');
                kernel[1] = p == NULL ? 0 : atoi(p + 1);
                if (kernel[0] > kernel_version[0]
                    || (kernel[0] == kernel_version[0]
                        && kernel[1] >= kernel_version[1])) {
                    return 0;
                }
            }
            /* Open /dev/random and wait for it to be readable */
            if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
                if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
                    FD_ZERO(&fds);
                    FD_SET(fd, &fds);
                    while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
                           && errno == EINTR);
                } else {
                    while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
                }
                close(fd);
                if (r == 1) {
                    seeded = 1;
                    /* Create the shared memory indicator */
                    shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
                                    IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
                }
            }
        }
        if (shm_id != -1) {
            seeded = 1;
            /*
             * Map the shared memory to prevent its premature destruction.
             * If this call fails, it isn't a big problem.
             */
            shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
            if (shm_addr != (void *)-1)
                OPENSSL_atexit(&cleanup_shm);
        }
    }
    return seeded;
}
#   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
static int wait_random_seeded(void)
{
    return 1;
}
#   endif

/*
 * Verify that the file descriptor associated with the random source is
 * still valid. The rationale for doing this is the fact that it is not
 * uncommon for daemons to close all open file handles when daemonizing.
 * So the handle might have been closed or even reused for opening
 * another file.
 */
static int check_random_device(struct random_device * rd)
{
    struct stat st;

    return rd->fd != -1
           && fstat(rd->fd, &st) != -1
           && rd->dev == st.st_dev
           && rd->ino == st.st_ino
           && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
           && rd->rdev == st.st_rdev;
}

/*
 * Open a random device if required and return its file descriptor or -1 on error
 */
static int get_random_device(size_t n)
{
    struct stat st;
    struct random_device * rd = &random_devices[n];

    /* reuse existing file descriptor if it is (still) valid */
    if (check_random_device(rd))
        return rd->fd;

    /* open the random device ... */
    if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
        return rd->fd;

    /* ... and cache its relevant stat(2) data */
    if (fstat(rd->fd, &st) != -1) {
        rd->dev = st.st_dev;
        rd->ino = st.st_ino;
        rd->mode = st.st_mode;
        rd->rdev = st.st_rdev;
    } else {
        close(rd->fd);
        rd->fd = -1;
    }

    return rd->fd;
}

/*
 * Close a random device making sure it is a random device
 */
static void close_random_device(size_t n)
{
    struct random_device * rd = &random_devices[n];

    if (check_random_device(rd))
        close(rd->fd);
    rd->fd = -1;
}

int ossl_rand_pool_init(void)
{
    size_t i;

    for (i = 0; i < OSSL_NELEM(random_devices); i++)
        random_devices[i].fd = -1;

    return 1;
}

void ossl_rand_pool_cleanup(void)
{
    size_t i;

    for (i = 0; i < OSSL_NELEM(random_devices); i++)
        close_random_device(i);
}

void ossl_rand_pool_keep_random_devices_open(int keep)
{
    if (!keep)
        ossl_rand_pool_cleanup();

    keep_random_devices_open = keep;
}

#  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */

int ossl_rand_pool_init(void)
{
    return 1;
}

void ossl_rand_pool_cleanup(void)
{
}

void ossl_rand_pool_keep_random_devices_open(int keep)
{
}

#  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */

/*
 * Try the various seeding methods in turn, exit when successful.
 *
 * If more than one entropy source is available, is it
 * preferable to stop as soon as enough entropy has been collected
 * (as favored by @rsalz) or should one rather be defensive and add
 * more entropy than requested and/or from different sources?
 *
 * Currently, the user can select multiple entropy sources in the
 * configure step, yet in practice only the first available source
 * will be used. A more flexible solution has been requested, but
 * currently it is not clear how this can be achieved without
 * overengineering the problem. There are many parameters which
 * could be taken into account when selecting the order and amount
 * of input from the different entropy sources (trust, quality,
 * possibility of blocking).
 */
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
{
#  if defined(OPENSSL_RAND_SEED_NONE)
    return ossl_rand_pool_entropy_available(pool);
#  else
    size_t entropy_available = 0;

    (void)entropy_available;    /* avoid compiler warning */

#   if defined(OPENSSL_RAND_SEED_GETRANDOM)
    {
        size_t bytes_needed;
        unsigned char *buffer;
        ssize_t bytes;
        /* Maximum allowed number of consecutive unsuccessful attempts */
        int attempts = 3;

        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
        while (bytes_needed != 0 && attempts-- > 0) {
            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
            bytes = syscall_random(buffer, bytes_needed);
            if (bytes > 0) {
                ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
                bytes_needed -= bytes;
                attempts = 3; /* reset counter after successful attempt */
            } else if (bytes < 0 && errno != EINTR) {
                break;
            }
        }
    }
    entropy_available = ossl_rand_pool_entropy_available(pool);
    if (entropy_available > 0)
        return entropy_available;
#   endif

#   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
    {
        /* Not yet implemented. */
    }
#   endif

#   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
    if (wait_random_seeded()) {
        size_t bytes_needed;
        unsigned char *buffer;
        size_t i;

        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
        for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
             i++) {
            ssize_t bytes = 0;
            /* Maximum number of consecutive unsuccessful attempts */
            int attempts = 3;
            const int fd = get_random_device(i);

            if (fd == -1)
                continue;

            while (bytes_needed != 0 && attempts-- > 0) {
                buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
                bytes = read(fd, buffer, bytes_needed);

                if (bytes > 0) {
                    ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
                    bytes_needed -= bytes;
                    attempts = 3; /* reset counter on successful attempt */
                } else if (bytes < 0 && errno != EINTR) {
                    break;
                }
            }
            if (bytes < 0 || !keep_random_devices_open)
                close_random_device(i);

            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
        }
        entropy_available = ossl_rand_pool_entropy_available(pool);
        if (entropy_available > 0)
            return entropy_available;
    }
#   endif

#   if defined(OPENSSL_RAND_SEED_RDTSC)
    entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
    if (entropy_available > 0)
        return entropy_available;
#   endif

#   if defined(OPENSSL_RAND_SEED_RDCPU)
    entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
    if (entropy_available > 0)
        return entropy_available;
#   endif

#   if defined(OPENSSL_RAND_SEED_EGD)
    {
        static const char *paths[] = { DEVRANDOM_EGD, NULL };
        size_t bytes_needed;
        unsigned char *buffer;
        int i;

        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
        for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
            size_t bytes = 0;
            int num;

            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
            num = RAND_query_egd_bytes(paths[i],
                                       buffer, (int)bytes_needed);
            if (num == (int)bytes_needed)
                bytes = bytes_needed;

            ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
        }
        entropy_available = ossl_rand_pool_entropy_available(pool);
        if (entropy_available > 0)
            return entropy_available;
    }
#   endif

    return ossl_rand_pool_entropy_available(pool);
#  endif
}
# endif
#endif

#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
     || defined(__DJGPP__)
int ossl_pool_add_nonce_data(RAND_POOL *pool)
{
    struct {
        pid_t pid;
        CRYPTO_THREAD_ID tid;
        uint64_t time;
    } data;

    /* Erase the entire structure including any padding */
    memset(&data, 0, sizeof(data));

    /*
     * Add process id, thread id, and a high resolution timestamp to
     * ensure that the nonce is unique with high probability for
     * different process instances.
     */
    data.pid = getpid();
    data.tid = CRYPTO_THREAD_get_current_id();
    data.time = get_time_stamp();

    return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}

int ossl_rand_pool_add_additional_data(RAND_POOL *pool)
{
    struct {
        int fork_id;
        CRYPTO_THREAD_ID tid;
        uint64_t time;
    } data;

    /* Erase the entire structure including any padding */
    memset(&data, 0, sizeof(data));

    /*
     * Add some noise from the thread id and a high resolution timer.
     * The fork_id adds some extra fork-safety.
     * The thread id adds a little randomness if the drbg is accessed
     * concurrently (which is the case for the <master> drbg).
     */
    data.fork_id = openssl_get_fork_id();
    data.tid = CRYPTO_THREAD_get_current_id();
    data.time = get_timer_bits();

    return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}


/*
 * Get the current time with the highest possible resolution
 *
 * The time stamp is added to the nonce, so it is optimized for not repeating.
 * The current time is ideal for this purpose, provided the computer's clock
 * is synchronized.
 */
static uint64_t get_time_stamp(void)
{
# if defined(OSSL_POSIX_TIMER_OKAY)
    {
        struct timespec ts;

        if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
    }
# endif
# if defined(__unix__) \
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
    {
        struct timeval tv;

        if (gettimeofday(&tv, NULL) == 0)
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
    }
# endif
    return time(NULL);
}

/*
 * Get an arbitrary timer value of the highest possible resolution
 *
 * The timer value is added as random noise to the additional data,
 * which is not considered a trusted entropy sourec, so any result
 * is acceptable.
 */
static uint64_t get_timer_bits(void)
{
    uint64_t res = OPENSSL_rdtsc();

    if (res != 0)
        return res;

# if defined(__sun) || defined(__hpux)
    return gethrtime();
# elif defined(_AIX)
    {
        timebasestruct_t t;

        read_wall_time(&t, TIMEBASE_SZ);
        return TWO32TO64(t.tb_high, t.tb_low);
    }
# elif defined(OSSL_POSIX_TIMER_OKAY)
    {
        struct timespec ts;

#  ifdef CLOCK_BOOTTIME
#   define CLOCK_TYPE CLOCK_BOOTTIME
#  elif defined(_POSIX_MONOTONIC_CLOCK)
#   define CLOCK_TYPE CLOCK_MONOTONIC
#  else
#   define CLOCK_TYPE CLOCK_REALTIME
#  endif

        if (clock_gettime(CLOCK_TYPE, &ts) == 0)
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
    }
# endif
# if defined(__unix__) \
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
    {
        struct timeval tv;

        if (gettimeofday(&tv, NULL) == 0)
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
    }
# endif
    return time(NULL);
}
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
          || defined(__DJGPP__) */