summaryrefslogtreecommitdiffstats
path: root/ssl/quic/quic_record_rx.c
blob: afc5011a491bea892e6f006ebdfb99bcc221d881 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
/*
 * Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <openssl/ssl.h>
#include "internal/quic_record_rx.h"
#include "quic_record_shared.h"
#include "internal/common.h"
#include "internal/list.h"
#include "../ssl_local.h"

/*
 * Mark a packet in a bitfield.
 *
 * pkt_idx: index of packet within datagram.
 */
static ossl_inline void pkt_mark(uint64_t *bitf, size_t pkt_idx)
{
    assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
    *bitf |= ((uint64_t)1) << pkt_idx;
}

/* Returns 1 if a packet is in the bitfield. */
static ossl_inline int pkt_is_marked(const uint64_t *bitf, size_t pkt_idx)
{
    assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
    return (*bitf & (((uint64_t)1) << pkt_idx)) != 0;
}

/*
 * RXE
 * ===
 *
 * RX Entries (RXEs) store processed (i.e., decrypted) data received from the
 * network. One RXE is used per received QUIC packet.
 */
typedef struct rxe_st RXE;

struct rxe_st {
    OSSL_QRX_PKT        pkt;
    OSSL_LIST_MEMBER(rxe, RXE);
    size_t              data_len, alloc_len, refcount;

    /* Extra fields for per-packet information. */
    QUIC_PKT_HDR        hdr; /* data/len are decrypted payload */

    /* Decoded packet number. */
    QUIC_PN             pn;

    /* Addresses copied from URXE. */
    BIO_ADDR            peer, local;

    /* Time we received the packet (not when we processed it). */
    OSSL_TIME           time;

    /* Total length of the datagram which contained this packet. */
    size_t              datagram_len;

    /*
     * alloc_len allocated bytes (of which data_len bytes are valid) follow this
     * structure.
     */
};

DEFINE_LIST_OF(rxe, RXE);
typedef OSSL_LIST(rxe) RXE_LIST;

static ossl_inline unsigned char *rxe_data(const RXE *e)
{
    return (unsigned char *)(e + 1);
}

/*
 * QRL
 * ===
 */
struct ossl_qrx_st {
    OSSL_LIB_CTX               *libctx;
    const char                 *propq;

    /* Demux to receive datagrams from. */
    QUIC_DEMUX                 *demux;

    /* Length of connection IDs used in short-header packets in bytes. */
    size_t                      short_conn_id_len;

    /* Maximum number of deferred datagrams buffered at any one time. */
    size_t                      max_deferred;

    /* Current count of deferred datagrams. */
    size_t                      num_deferred;

    /*
     * List of URXEs which are filled with received encrypted data.
     * These are returned to the DEMUX's free list as they are processed.
     */
    QUIC_URXE_LIST              urx_pending;

    /*
     * List of URXEs which we could not decrypt immediately and which are being
     * kept in case they can be decrypted later.
     */
    QUIC_URXE_LIST              urx_deferred;

    /*
     * List of RXEs which are not currently in use. These are moved
     * to the pending list as they are filled.
     */
    RXE_LIST                    rx_free;

    /*
     * List of RXEs which are filled with decrypted packets ready to be passed
     * to the user. A RXE is removed from all lists inside the QRL when passed
     * to the user, then returned to the free list when the user returns it.
     */
    RXE_LIST                    rx_pending;

    /* Largest PN we have received and processed in a given PN space. */
    QUIC_PN                     largest_pn[QUIC_PN_SPACE_NUM];

    /* Per encryption-level state. */
    OSSL_QRL_ENC_LEVEL_SET      el_set;

    /* Bytes we have received since this counter was last cleared. */
    uint64_t                    bytes_received;

    /*
     * Number of forged packets we have received since the QRX was instantiated.
     * Note that as per RFC 9001, this is connection-level state; it is not per
     * EL and is not reset by a key update.
     */
    uint64_t                    forged_pkt_count;

    /* Validation callback. */
    ossl_qrx_early_validation_cb   *validation_cb;
    void                           *validation_cb_arg;

    /* Key update callback. */
    ossl_qrx_key_update_cb         *key_update_cb;
    void                           *key_update_cb_arg;

    /* Initial key phase. For debugging use only; always 0 in real use. */
    unsigned char                   init_key_phase_bit;

    /* Message callback related arguments */
    ossl_msg_cb msg_callback;
    void *msg_callback_arg;
    SSL *msg_callback_s;
};

static void qrx_on_rx(QUIC_URXE *urxe, void *arg);

OSSL_QRX *ossl_qrx_new(const OSSL_QRX_ARGS *args)
{
    OSSL_QRX *qrx;
    size_t i;

    if (args->demux == NULL || args->max_deferred == 0)
        return 0;

    qrx = OPENSSL_zalloc(sizeof(OSSL_QRX));
    if (qrx == NULL)
        return 0;

    for (i = 0; i < OSSL_NELEM(qrx->largest_pn); ++i)
        qrx->largest_pn[i] = args->init_largest_pn[i];

    qrx->libctx                 = args->libctx;
    qrx->propq                  = args->propq;
    qrx->demux                  = args->demux;
    qrx->short_conn_id_len      = args->short_conn_id_len;
    qrx->init_key_phase_bit     = args->init_key_phase_bit;
    qrx->max_deferred           = args->max_deferred;
    qrx->msg_callback           = args->msg_callback;
    qrx->msg_callback_arg       = args->msg_callback_arg;
    qrx->msg_callback_s         = args->msg_callback_s;
    return qrx;
}

static void qrx_cleanup_rxl(RXE_LIST *l)
{
    RXE *e, *enext;

    for (e = ossl_list_rxe_head(l); e != NULL; e = enext) {
        enext = ossl_list_rxe_next(e);
        ossl_list_rxe_remove(l, e);
        OPENSSL_free(e);
    }
}

static void qrx_cleanup_urxl(OSSL_QRX *qrx, QUIC_URXE_LIST *l)
{
    QUIC_URXE *e, *enext;

    for (e = ossl_list_urxe_head(l); e != NULL; e = enext) {
        enext = ossl_list_urxe_next(e);
        ossl_list_urxe_remove(l, e);
        ossl_quic_demux_release_urxe(qrx->demux, e);
    }
}

void ossl_qrx_free(OSSL_QRX *qrx)
{
    uint32_t i;

    if (qrx == NULL)
        return;

    /* Unregister from the RX DEMUX. */
    ossl_quic_demux_unregister_by_cb(qrx->demux, qrx_on_rx, qrx);

    /* Free RXE queue data. */
    qrx_cleanup_rxl(&qrx->rx_free);
    qrx_cleanup_rxl(&qrx->rx_pending);
    qrx_cleanup_urxl(qrx, &qrx->urx_pending);
    qrx_cleanup_urxl(qrx, &qrx->urx_deferred);

    /* Drop keying material and crypto resources. */
    for (i = 0; i < QUIC_ENC_LEVEL_NUM; ++i)
        ossl_qrl_enc_level_set_discard(&qrx->el_set, i);

    OPENSSL_free(qrx);
}

void ossl_qrx_inject_urxe(OSSL_QRX *qrx, QUIC_URXE *urxe)
{
    /* Initialize our own fields inside the URXE and add to the pending list. */
    urxe->processed     = 0;
    urxe->hpr_removed   = 0;
    urxe->deferred      = 0;
    ossl_list_urxe_insert_tail(&qrx->urx_pending, urxe);

    if (qrx->msg_callback != NULL)
        qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_DATAGRAM, urxe + 1,
                          urxe->data_len, qrx->msg_callback_s, qrx->msg_callback_arg);
}

static void qrx_on_rx(QUIC_URXE *urxe, void *arg)
{
    OSSL_QRX *qrx = arg;
    ossl_qrx_inject_urxe(qrx, urxe);
}

int ossl_qrx_add_dst_conn_id(OSSL_QRX *qrx,
                             const QUIC_CONN_ID *dst_conn_id)
{
    return ossl_quic_demux_register(qrx->demux,
                                    dst_conn_id,
                                    qrx_on_rx,
                                    qrx);
}

int ossl_qrx_remove_dst_conn_id(OSSL_QRX *qrx,
                                const QUIC_CONN_ID *dst_conn_id)
{
    return ossl_quic_demux_unregister(qrx->demux, dst_conn_id);
}

static void qrx_requeue_deferred(OSSL_QRX *qrx)
{
    QUIC_URXE *e;

    while ((e = ossl_list_urxe_head(&qrx->urx_deferred)) != NULL) {
        ossl_list_urxe_remove(&qrx->urx_deferred, e);
        ossl_list_urxe_insert_head(&qrx->urx_pending, e);
    }
}

int ossl_qrx_provide_secret(OSSL_QRX *qrx, uint32_t enc_level,
                            uint32_t suite_id, EVP_MD *md,
                            const unsigned char *secret, size_t secret_len)
{
    if (enc_level >= QUIC_ENC_LEVEL_NUM)
        return 0;

    if (!ossl_qrl_enc_level_set_provide_secret(&qrx->el_set,
                                               qrx->libctx,
                                               qrx->propq,
                                               enc_level,
                                               suite_id,
                                               md,
                                               secret,
                                               secret_len,
                                               qrx->init_key_phase_bit,
                                               /*is_tx=*/0))
        return 0;

    /*
     * Any packets we previously could not decrypt, we may now be able to
     * decrypt, so move any datagrams containing deferred packets from the
     * deferred to the pending queue.
     */
    qrx_requeue_deferred(qrx);
    return 1;
}

int ossl_qrx_discard_enc_level(OSSL_QRX *qrx, uint32_t enc_level)
{
    if (enc_level >= QUIC_ENC_LEVEL_NUM)
        return 0;

    ossl_qrl_enc_level_set_discard(&qrx->el_set, enc_level);
    return 1;
}

/* Returns 1 if there are one or more pending RXEs. */
int ossl_qrx_processed_read_pending(OSSL_QRX *qrx)
{
    return !ossl_list_rxe_is_empty(&qrx->rx_pending);
}

/* Returns 1 if there are yet-unprocessed packets. */
int ossl_qrx_unprocessed_read_pending(OSSL_QRX *qrx)
{
    return !ossl_list_urxe_is_empty(&qrx->urx_pending)
           || !ossl_list_urxe_is_empty(&qrx->urx_deferred);
}

/* Pop the next pending RXE. Returns NULL if no RXE is pending. */
static RXE *qrx_pop_pending_rxe(OSSL_QRX *qrx)
{
    RXE *rxe = ossl_list_rxe_head(&qrx->rx_pending);

    if (rxe == NULL)
        return NULL;

    ossl_list_rxe_remove(&qrx->rx_pending, rxe);
    return rxe;
}

/* Allocate a new RXE. */
static RXE *qrx_alloc_rxe(size_t alloc_len)
{
    RXE *rxe;

    if (alloc_len >= SIZE_MAX - sizeof(RXE))
        return NULL;

    rxe = OPENSSL_malloc(sizeof(RXE) + alloc_len);
    if (rxe == NULL)
        return NULL;

    ossl_list_rxe_init_elem(rxe);
    rxe->alloc_len = alloc_len;
    rxe->data_len  = 0;
    rxe->refcount  = 0;
    return rxe;
}

/*
 * Ensures there is at least one RXE in the RX free list, allocating a new entry
 * if necessary. The returned RXE is in the RX free list; it is not popped.
 *
 * alloc_len is a hint which may be used to determine the RXE size if allocation
 * is necessary. Returns NULL on allocation failure.
 */
static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len)
{
    RXE *rxe;

    if (ossl_list_rxe_head(&qrx->rx_free) != NULL)
        return ossl_list_rxe_head(&qrx->rx_free);

    rxe = qrx_alloc_rxe(alloc_len);
    if (rxe == NULL)
        return NULL;

    ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
    return rxe;
}

/*
 * Resize the data buffer attached to an RXE to be n bytes in size. The address
 * of the RXE might change; the new address is returned, or NULL on failure, in
 * which case the original RXE remains valid.
 */
static RXE *qrx_resize_rxe(RXE_LIST *rxl, RXE *rxe, size_t n)
{
    RXE *rxe2, *p;

    /* Should never happen. */
    if (rxe == NULL)
        return NULL;

    if (n >= SIZE_MAX - sizeof(RXE))
        return NULL;

    /* Remove the item from the list to avoid accessing freed memory */
    p = ossl_list_rxe_prev(rxe);
    ossl_list_rxe_remove(rxl, rxe);

    /* Should never resize an RXE which has been handed out. */
    if (!ossl_assert(rxe->refcount == 0))
        return NULL;

    /*
     * NOTE: We do not clear old memory, although it does contain decrypted
     * data.
     */
    rxe2 = OPENSSL_realloc(rxe, sizeof(RXE) + n);
    if (rxe2 == NULL) {
        /* Resize failed, restore old allocation. */
        if (p == NULL)
            ossl_list_rxe_insert_head(rxl, rxe);
        else
            ossl_list_rxe_insert_after(rxl, p, rxe);
        return NULL;
    }

    if (p == NULL)
        ossl_list_rxe_insert_head(rxl, rxe2);
    else
        ossl_list_rxe_insert_after(rxl, p, rxe2);

    rxe2->alloc_len = n;
    return rxe2;
}

/*
 * Ensure the data buffer attached to an RXE is at least n bytes in size.
 * Returns NULL on failure.
 */
static RXE *qrx_reserve_rxe(RXE_LIST *rxl,
                            RXE *rxe, size_t n)
{
    if (rxe->alloc_len >= n)
        return rxe;

    return qrx_resize_rxe(rxl, rxe, n);
}

/* Return a RXE handed out to the user back to our freelist. */
static void qrx_recycle_rxe(OSSL_QRX *qrx, RXE *rxe)
{
    /* RXE should not be in any list */
    assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL);
    rxe->pkt.hdr    = NULL;
    rxe->pkt.peer   = NULL;
    rxe->pkt.local  = NULL;
    ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
}

/*
 * Given a pointer to a pointer pointing to a buffer and the size of that
 * buffer, copy the buffer into *prxe, expanding the RXE if necessary (its
 * pointer may change due to realloc). *pi is the offset in bytes to copy the
 * buffer to, and on success is updated to be the offset pointing after the
 * copied buffer. *pptr is updated to point to the new location of the buffer.
 */
static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi,
                               const unsigned char **pptr, size_t buf_len)
{
    RXE *rxe;
    unsigned char *dst;

    if (!buf_len)
        return 1;

    if ((rxe = qrx_reserve_rxe(&qrx->rx_free, *prxe, *pi + buf_len)) == NULL)
        return 0;

    *prxe = rxe;
    dst = (unsigned char *)rxe_data(rxe) + *pi;

    memcpy(dst, *pptr, buf_len);
    *pi += buf_len;
    *pptr = dst;
    return 1;
}

static uint32_t qrx_determine_enc_level(const QUIC_PKT_HDR *hdr)
{
    switch (hdr->type) {
        case QUIC_PKT_TYPE_INITIAL:
            return QUIC_ENC_LEVEL_INITIAL;
        case QUIC_PKT_TYPE_HANDSHAKE:
            return QUIC_ENC_LEVEL_HANDSHAKE;
        case QUIC_PKT_TYPE_0RTT:
            return QUIC_ENC_LEVEL_0RTT;
        case QUIC_PKT_TYPE_1RTT:
            return QUIC_ENC_LEVEL_1RTT;

        default:
            assert(0);
        case QUIC_PKT_TYPE_RETRY:
        case QUIC_PKT_TYPE_VERSION_NEG:
            return QUIC_ENC_LEVEL_INITIAL; /* not used */
    }
}

static uint32_t rxe_determine_pn_space(RXE *rxe)
{
    uint32_t enc_level;

    enc_level = qrx_determine_enc_level(&rxe->hdr);
    return ossl_quic_enc_level_to_pn_space(enc_level);
}

static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe,
                                  const QUIC_CONN_ID *first_dcid)
{
    /* Ensure version is what we want. */
    if (rxe->hdr.version != QUIC_VERSION_1
        && rxe->hdr.version != QUIC_VERSION_NONE)
        return 0;

    /* Clients should never receive 0-RTT packets. */
    if (rxe->hdr.type == QUIC_PKT_TYPE_0RTT)
        return 0;

    /* Version negotiation and retry packets must be the first packet. */
    if (first_dcid != NULL && !ossl_quic_pkt_type_can_share_dgram(rxe->hdr.type))
        return 0;

    /*
     * If this is not the first packet in a datagram, the destination connection
     * ID must match the one in that packet.
     */
    if (first_dcid != NULL) {
        if (!ossl_assert(first_dcid->id_len < QUIC_MAX_CONN_ID_LEN)
            || !ossl_quic_conn_id_eq(first_dcid,
                                     &rxe->hdr.dst_conn_id))
        return 0;
    }

    return 1;
}

/* Validate header and decode PN. */
static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe)
{
    int pn_space = rxe_determine_pn_space(rxe);

    if (!ossl_quic_wire_decode_pkt_hdr_pn(rxe->hdr.pn, rxe->hdr.pn_len,
                                          qrx->largest_pn[pn_space],
                                          &rxe->pn))
        return 0;

    /*
     * Allow our user to decide whether to discard the packet before we try and
     * decrypt it.
     */
    if (qrx->validation_cb != NULL
        && !qrx->validation_cb(rxe->pn, pn_space, qrx->validation_cb_arg))
        return 0;

    return 1;
}

/* Retrieves the correct cipher context for an EL and key phase. */
static size_t qrx_get_cipher_ctx_idx(OSSL_QRX *qrx, OSSL_QRL_ENC_LEVEL *el,
                                     uint32_t enc_level,
                                     unsigned char key_phase_bit)
{
    if (enc_level != QUIC_ENC_LEVEL_1RTT)
        return 0;

    if (!ossl_assert(key_phase_bit <= 1))
        return SIZE_MAX;

    /*
     * RFC 9001 requires that we not create timing channels which could reveal
     * the decrypted value of the Key Phase bit. We usually handle this by
     * keeping the cipher contexts for both the current and next key epochs
     * around, so that we just select a cipher context blindly using the key
     * phase bit, which is time-invariant.
     *
     * In the COOLDOWN state, we only have one keyslot/cipher context. RFC 9001
     * suggests an implementation strategy to avoid creating a timing channel in
     * this case:
     *
     *   Endpoints can use randomized packet protection keys in place of
     *   discarded keys when key updates are not yet permitted.
     *
     * Rather than use a randomised key, we simply use our existing key as it
     * will fail AEAD verification anyway. This avoids the need to keep around a
     * dedicated garbage key.
     *
     * Note: Accessing different cipher contexts is technically not
     * timing-channel safe due to microarchitectural side channels, but this is
     * the best we can reasonably do and appears to be directly suggested by the
     * RFC.
     */
    return el->state == QRL_EL_STATE_PROV_COOLDOWN ? el->key_epoch & 1
                                                   : key_phase_bit;
}

/*
 * Tries to decrypt a packet payload.
 *
 * Returns 1 on success or 0 on failure (which is permanent). The payload is
 * decrypted from src and written to dst. The buffer dst must be of at least
 * src_len bytes in length. The actual length of the output in bytes is written
 * to *dec_len on success, which will always be equal to or less than (usually
 * less than) src_len.
 */
static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst,
                                const unsigned char *src,
                                size_t src_len, size_t *dec_len,
                                const unsigned char *aad, size_t aad_len,
                                QUIC_PN pn, uint32_t enc_level,
                                unsigned char key_phase_bit)
{
    int l = 0, l2 = 0;
    unsigned char nonce[EVP_MAX_IV_LENGTH];
    size_t nonce_len, i, cctx_idx;
    OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
                                                        enc_level, 1);
    EVP_CIPHER_CTX *cctx;

    if (src_len > INT_MAX || aad_len > INT_MAX)
        return 0;

    /* We should not have been called if we do not have key material. */
    if (!ossl_assert(el != NULL))
        return 0;

    if (el->tag_len >= src_len)
        return 0;

    /*
     * If we have failed to authenticate a certain number of ciphertexts, refuse
     * to decrypt any more ciphertexts.
     */
    if (qrx->forged_pkt_count >= ossl_qrl_get_suite_max_forged_pkt(el->suite_id))
        return 0;

    cctx_idx = qrx_get_cipher_ctx_idx(qrx, el, enc_level, key_phase_bit);
    if (!ossl_assert(cctx_idx < OSSL_NELEM(el->cctx)))
        return 0;

    cctx = el->cctx[cctx_idx];

    /* Construct nonce (nonce=IV ^ PN). */
    nonce_len = EVP_CIPHER_CTX_get_iv_length(cctx);
    if (!ossl_assert(nonce_len >= sizeof(QUIC_PN)))
        return 0;

    memcpy(nonce, el->iv[cctx_idx], nonce_len);
    for (i = 0; i < sizeof(QUIC_PN); ++i)
        nonce[nonce_len - i - 1] ^= (unsigned char)(pn >> (i * 8));

    /* type and key will already have been setup; feed the IV. */
    if (EVP_CipherInit_ex(cctx, NULL,
                          NULL, NULL, nonce, /*enc=*/0) != 1)
        return 0;

    /* Feed the AEAD tag we got so the cipher can validate it. */
    if (EVP_CIPHER_CTX_ctrl(cctx, EVP_CTRL_AEAD_SET_TAG,
                            el->tag_len,
                            (unsigned char *)src + src_len - el->tag_len) != 1)
        return 0;

    /* Feed AAD data. */
    if (EVP_CipherUpdate(cctx, NULL, &l, aad, aad_len) != 1)
        return 0;

    /* Feed encrypted packet body. */
    if (EVP_CipherUpdate(cctx, dst, &l, src, src_len - el->tag_len) != 1)
        return 0;

    /* Ensure authentication succeeded. */
    if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
        /* Authentication failed, increment failed auth counter. */
        ++qrx->forged_pkt_count;
        return 0;
    }

    *dec_len = l;
    return 1;
}

static ossl_inline void ignore_res(int x)
{
    /* No-op. */
}

static void qrx_key_update_initiated(OSSL_QRX *qrx)
{
    if (!ossl_qrl_enc_level_set_key_update(&qrx->el_set, QUIC_ENC_LEVEL_1RTT))
        return;

    if (qrx->key_update_cb != NULL)
        qrx->key_update_cb(qrx->key_update_cb_arg);
}

/* Process a single packet in a datagram. */
static int qrx_process_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe,
                           PACKET *pkt, size_t pkt_idx,
                           QUIC_CONN_ID *first_dcid,
                           size_t datagram_len)
{
    RXE *rxe;
    const unsigned char *eop = NULL;
    size_t i, aad_len = 0, dec_len = 0;
    PACKET orig_pkt = *pkt;
    const unsigned char *sop = PACKET_data(pkt);
    unsigned char *dst;
    char need_second_decode = 0, already_processed = 0;
    QUIC_PKT_HDR_PTRS ptrs;
    uint32_t pn_space, enc_level;
    OSSL_QRL_ENC_LEVEL *el = NULL;

    /*
     * Get a free RXE. If we need to allocate a new one, use the packet length
     * as a good ballpark figure.
     */
    rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(pkt));
    if (rxe == NULL)
        return 0;

    /* Have we already processed this packet? */
    if (pkt_is_marked(&urxe->processed, pkt_idx))
        already_processed = 1;

    /*
     * Decode the header into the RXE structure. We first decrypt and read the
     * unprotected part of the packet header (unless we already removed header
     * protection, in which case we decode all of it).
     */
    need_second_decode = !pkt_is_marked(&urxe->hpr_removed, pkt_idx);
    if (!ossl_quic_wire_decode_pkt_hdr(pkt,
                                       qrx->short_conn_id_len,
                                       need_second_decode, &rxe->hdr, &ptrs))
        goto malformed;

    /*
     * Our successful decode above included an intelligible length and the
     * PACKET is now pointing to the end of the QUIC packet.
     */
    eop = PACKET_data(pkt);

    /*
     * Make a note of the first packet's DCID so we can later ensure the
     * destination connection IDs of all packets in a datagram match.
     */
    if (pkt_idx == 0)
        *first_dcid = rxe->hdr.dst_conn_id;

    /*
     * Early header validation. Since we now know the packet length, we can also
     * now skip over it if we already processed it.
     */
    if (already_processed
        || !qrx_validate_hdr_early(qrx, rxe, pkt_idx == 0 ? NULL : first_dcid))
        /*
         * Already processed packets are handled identically to malformed
         * packets; i.e., they are ignored.
         */
        goto malformed;

    if (!ossl_quic_pkt_type_is_encrypted(rxe->hdr.type)) {
        /*
         * Version negotiation and retry packets are a special case. They do not
         * contain a payload which needs decrypting and have no header
         * protection.
         */

        /* Just copy the payload from the URXE to the RXE. */
        if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len)) == NULL)
            /*
             * Allocation failure. EOP will be pointing to the end of the
             * datagram so processing of this datagram will end here.
             */
            goto malformed;

        /* We are now committed to returning the packet. */
        memcpy(rxe_data(rxe), rxe->hdr.data, rxe->hdr.len);
        pkt_mark(&urxe->processed, pkt_idx);

        rxe->hdr.data   = rxe_data(rxe);
        rxe->pn         = QUIC_PN_INVALID;

        /* Move RXE to pending. */
        ossl_list_rxe_remove(&qrx->rx_free, rxe);
        ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
        return 0; /* success, did not defer */
    }

    /* Determine encryption level of packet. */
    enc_level = qrx_determine_enc_level(&rxe->hdr);

    /* If we do not have keying material for this encryption level yet, defer. */
    switch (ossl_qrl_enc_level_set_have_el(&qrx->el_set, enc_level)) {
        case 1:
            /* We have keys. */
            break;
        case 0:
            /* No keys yet. */
            goto cannot_decrypt;
        default:
            /* We already discarded keys for this EL, we will never process this.*/
            goto malformed;
    }

    /*
     * We will copy any token included in the packet to the start of our RXE
     * data buffer (so that we don't reference the URXE buffer any more and can
     * recycle it). Track our position in the RXE buffer by index instead of
     * pointer as the pointer may change as reallocs occur.
     */
    i = 0;

    /*
     * rxe->hdr.data is now pointing at the (encrypted) packet payload. rxe->hdr
     * also has fields pointing into the PACKET buffer which will be going away
     * soon (the URXE will be reused for another incoming packet).
     *
     * Firstly, relocate some of these fields into the RXE as needed.
     *
     * Relocate token buffer and fix pointer.
     */
    if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL
        && !qrx_relocate_buffer(qrx, &rxe, &i, &rxe->hdr.token,
                                rxe->hdr.token_len))
        goto malformed;

    /* Now remove header protection. */
    *pkt = orig_pkt;

    el = ossl_qrl_enc_level_set_get(&qrx->el_set, enc_level, 1);
    assert(el != NULL); /* Already checked above */

    if (need_second_decode) {
        if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs))
            goto malformed;

        /*
         * We have removed header protection, so don't attempt to do it again if
         * the packet gets deferred and processed again.
         */
        pkt_mark(&urxe->hpr_removed, pkt_idx);

        /* Decode the now unprotected header. */
        if (ossl_quic_wire_decode_pkt_hdr(pkt, qrx->short_conn_id_len,
                                          0, &rxe->hdr, NULL) != 1)
            goto malformed;

        if (qrx->msg_callback != NULL)
            qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_PACKET, sop,
                              eop - sop, qrx->msg_callback_s, qrx->msg_callback_arg);
    }

    /* Validate header and decode PN. */
    if (!qrx_validate_hdr(qrx, rxe))
        goto malformed;

    /*
     * The AAD data is the entire (unprotected) packet header including the PN.
     * The packet header has been unprotected in place, so we can just reuse the
     * PACKET buffer. The header ends where the payload begins.
     */
    aad_len = rxe->hdr.data - sop;

    /* Ensure the RXE buffer size is adequate for our payload. */
    if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL) {
        /*
         * Allocation failure, treat as malformed and do not bother processing
         * any further packets in the datagram as they are likely to also
         * encounter allocation failures.
         */
        eop = NULL;
        goto malformed;
    }

    /*
     * We decrypt the packet body to immediately after the token at the start of
     * the RXE buffer (where present).
     *
     * Do the decryption from the PACKET (which points into URXE memory) to our
     * RXE payload (single-copy decryption), then fixup the pointers in the
     * header to point to our new buffer.
     *
     * If decryption fails this is considered a permanent error; we defer
     * packets we don't yet have decryption keys for above, so if this fails,
     * something has gone wrong with the handshake process or a packet has been
     * corrupted.
     */
    dst = (unsigned char *)rxe_data(rxe) + i;
    if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len,
                              &dec_len, sop, aad_len, rxe->pn, enc_level,
                              rxe->hdr.key_phase))
        goto malformed;

    /*
     * At this point, we have successfully authenticated the AEAD tag and no
     * longer need to worry about exposing the Key Phase bit in timing channels.
     * Check for a Key Phase bit differing from our expectation.
     */
    if (rxe->hdr.type == QUIC_PKT_TYPE_1RTT
        && rxe->hdr.key_phase != (el->key_epoch & 1))
        qrx_key_update_initiated(qrx);

    /*
     * We have now successfully decrypted the packet payload. If there are
     * additional packets in the datagram, it is possible we will fail to
     * decrypt them and need to defer them until we have some key material we
     * don't currently possess. If this happens, the URXE will be moved to the
     * deferred queue. Since a URXE corresponds to one datagram, which may
     * contain multiple packets, we must ensure any packets we have already
     * processed in the URXE are not processed again (this is an RFC
     * requirement). We do this by marking the nth packet in the datagram as
     * processed.
     *
     * We are now committed to returning this decrypted packet to the user,
     * meaning we now consider the packet processed and must mark it
     * accordingly.
     */
    pkt_mark(&urxe->processed, pkt_idx);

    /*
     * Update header to point to the decrypted buffer, which may be shorter
     * due to AEAD tags, block padding, etc.
     */
    rxe->hdr.data       = dst;
    rxe->hdr.len        = dec_len;
    rxe->data_len       = dec_len;
    rxe->datagram_len   = datagram_len;

    /* We processed the PN successfully, so update largest processed PN. */
    pn_space = rxe_determine_pn_space(rxe);
    if (rxe->pn > qrx->largest_pn[pn_space])
        qrx->largest_pn[pn_space] = rxe->pn;

    /* Copy across network addresses and RX time from URXE to RXE. */
    rxe->peer   = urxe->peer;
    rxe->local  = urxe->local;
    rxe->time   = urxe->time;

    /* Move RXE to pending. */
    ossl_list_rxe_remove(&qrx->rx_free, rxe);
    ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
    return 0; /* success, did not defer; not distinguished from failure */

cannot_decrypt:
    /*
     * We cannot process this packet right now (but might be able to later). We
     * MUST attempt to process any other packets in the datagram, so defer it
     * and skip over it.
     */
    assert(eop != NULL && eop >= PACKET_data(pkt));
    /*
     * We don't care if this fails as it will just result in the packet being at
     * the end of the datagram buffer.
     */
    ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
    return 1; /* deferred */

malformed:
    if (eop != NULL) {
        /*
         * This packet cannot be processed and will never be processable. We
         * were at least able to decode its header and determine its length, so
         * we can skip over it and try to process any subsequent packets in the
         * datagram.
         *
         * Mark as processed as an optimization.
         */
        assert(eop >= PACKET_data(pkt));
        pkt_mark(&urxe->processed, pkt_idx);
        /* We don't care if this fails (see above) */
        ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
    } else {
        /*
         * This packet cannot be processed and will never be processable.
         * Because even its header is not intelligible, we cannot examine any
         * further packets in the datagram because its length cannot be
         * discerned.
         *
         * Advance over the entire remainder of the datagram, and mark it as
         * processed gap as an optimization.
         */
        pkt_mark(&urxe->processed, pkt_idx);
        /* We don't care if this fails (see above) */
        ignore_res(PACKET_forward(pkt, PACKET_remaining(pkt)));
    }
    return 0; /* failure, did not defer; not distinguished from success */
}

/* Process a datagram which was received. */
static int qrx_process_datagram(OSSL_QRX *qrx, QUIC_URXE *e,
                                const unsigned char *data,
                                size_t data_len)
{
    int have_deferred = 0;
    PACKET pkt;
    size_t pkt_idx = 0;
    QUIC_CONN_ID first_dcid = { 255 };

    qrx->bytes_received += data_len;

    if (!PACKET_buf_init(&pkt, data, data_len))
        return 0;

    for (; PACKET_remaining(&pkt) > 0; ++pkt_idx) {
        /*
         * A packet smaller than the minimum possible QUIC packet size is not
         * considered valid. We also ignore more than a certain number of
         * packets within the same datagram.
         */
        if (PACKET_remaining(&pkt) < QUIC_MIN_VALID_PKT_LEN
            || pkt_idx >= QUIC_MAX_PKT_PER_URXE)
            break;

        /*
         * We note whether packet processing resulted in a deferral since
         * this means we need to move the URXE to the deferred list rather
         * than the free list after we're finished dealing with it for now.
         *
         * However, we don't otherwise care here whether processing succeeded or
         * failed, as the RFC says even if a packet in a datagram is malformed,
         * we should still try to process any packets following it.
         *
         * In the case where the packet is so malformed we can't determine its
         * length, qrx_process_pkt will take care of advancing to the end of
         * the packet, so we will exit the loop automatically in this case.
         */
        if (qrx_process_pkt(qrx, e, &pkt, pkt_idx, &first_dcid, data_len))
            have_deferred = 1;
    }

    /* Only report whether there were any deferrals. */
    return have_deferred;
}

/* Process a single pending URXE. */
static int qrx_process_one_urxe(OSSL_QRX *qrx, QUIC_URXE *e)
{
    int was_deferred;

    /* The next URXE we process should be at the head of the pending list. */
    if (!ossl_assert(e == ossl_list_urxe_head(&qrx->urx_pending)))
        return 0;

    /*
     * Attempt to process the datagram. The return value indicates only if
     * processing of the datagram was deferred. If we failed to process the
     * datagram, we do not attempt to process it again and silently eat the
     * error.
     */
    was_deferred = qrx_process_datagram(qrx, e, ossl_quic_urxe_data(e),
                                        e->data_len);

    /*
     * Remove the URXE from the pending list and return it to
     * either the free or deferred list.
     */
    ossl_list_urxe_remove(&qrx->urx_pending, e);
    if (was_deferred > 0 &&
            (e->deferred || qrx->num_deferred < qrx->max_deferred)) {
        ossl_list_urxe_insert_tail(&qrx->urx_deferred, e);
        if (!e->deferred) {
            e->deferred = 1;
            ++qrx->num_deferred;
        }
    } else {
        if (e->deferred) {
            e->deferred = 0;
            --qrx->num_deferred;
        }
        ossl_quic_demux_release_urxe(qrx->demux, e);
    }

    return 1;
}

/* Process any pending URXEs to generate pending RXEs. */
static int qrx_process_pending_urxl(OSSL_QRX *qrx)
{
    QUIC_URXE *e;

    while ((e = ossl_list_urxe_head(&qrx->urx_pending)) != NULL)
        if (!qrx_process_one_urxe(qrx, e))
            return 0;

    return 1;
}

int ossl_qrx_read_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT **ppkt)
{
    RXE *rxe;

    if (!ossl_qrx_processed_read_pending(qrx)) {
        if (!qrx_process_pending_urxl(qrx))
            return 0;

        if (!ossl_qrx_processed_read_pending(qrx))
            return 0;
    }

    rxe = qrx_pop_pending_rxe(qrx);
    if (!ossl_assert(rxe != NULL))
        return 0;

    assert(rxe->refcount == 0);
    rxe->refcount = 1;

    rxe->pkt.hdr            = &rxe->hdr;
    rxe->pkt.pn             = rxe->pn;
    rxe->pkt.time           = rxe->time;
    rxe->pkt.datagram_len   = rxe->datagram_len;
    rxe->pkt.peer
        = BIO_ADDR_family(&rxe->peer) != AF_UNSPEC ? &rxe->peer : NULL;
    rxe->pkt.local
        = BIO_ADDR_family(&rxe->local) != AF_UNSPEC ? &rxe->local : NULL;
    rxe->pkt.qrx            = qrx;
    *ppkt = &rxe->pkt;
    return 1;
}

void ossl_qrx_pkt_release(OSSL_QRX_PKT *pkt)
{
    RXE *rxe;

    if (pkt == NULL)
        return;

    rxe = (RXE *)pkt;
    assert(rxe->refcount > 0);
    if (--rxe->refcount == 0)
        qrx_recycle_rxe(pkt->qrx, rxe);
}

void ossl_qrx_pkt_up_ref(OSSL_QRX_PKT *pkt)
{
    RXE *rxe = (RXE *)pkt;

    assert(rxe->refcount > 0);
    ++rxe->refcount;
}

uint64_t ossl_qrx_get_bytes_received(OSSL_QRX *qrx, int clear)
{
    uint64_t v = qrx->bytes_received;

    if (clear)
        qrx->bytes_received = 0;

    return v;
}

int ossl_qrx_set_early_validation_cb(OSSL_QRX *qrx,
                                     ossl_qrx_early_validation_cb *cb,
                                     void *cb_arg)
{
    qrx->validation_cb       = cb;
    qrx->validation_cb_arg   = cb_arg;
    return 1;
}

int ossl_qrx_set_key_update_cb(OSSL_QRX *qrx,
                               ossl_qrx_key_update_cb *cb,
                               void *cb_arg)
{
    qrx->key_update_cb      = cb;
    qrx->key_update_cb_arg  = cb_arg;
    return 1;
}

uint64_t ossl_qrx_get_key_epoch(OSSL_QRX *qrx)
{
    OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
                                                        QUIC_ENC_LEVEL_1RTT, 1);

    return el == NULL ? UINT64_MAX : el->key_epoch;
}

int ossl_qrx_key_update_timeout(OSSL_QRX *qrx, int normal)
{
    OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
                                                        QUIC_ENC_LEVEL_1RTT, 1);

    if (el == NULL)
        return 0;

    if (el->state == QRL_EL_STATE_PROV_UPDATING
        && !ossl_qrl_enc_level_set_key_update_done(&qrx->el_set,
                                                   QUIC_ENC_LEVEL_1RTT))
        return 0;

    if (normal && el->state == QRL_EL_STATE_PROV_COOLDOWN
        && !ossl_qrl_enc_level_set_key_cooldown_done(&qrx->el_set,
                                                     QUIC_ENC_LEVEL_1RTT))
        return 0;

    return 1;
}

uint64_t ossl_qrx_get_cur_forged_pkt_count(OSSL_QRX *qrx)
{
    return qrx->forged_pkt_count;
}

uint64_t ossl_qrx_get_max_forged_pkt_count(OSSL_QRX *qrx,
                                           uint32_t enc_level)
{
    OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
                                                        enc_level, 1);

    return el == NULL ? UINT64_MAX
        : ossl_qrl_get_suite_max_forged_pkt(el->suite_id);
}